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Traffic Light

Problem

Define a propositional language which allows to describe the state of a
traffic light on different instants. With the language defined above
provide a (set of) formulas which expresses the following facts:

the traffic light is either green, or red or orange;

the traffic light switches from green to orange, from orange to red,
and from red to green;

it can keep the same color over at most 3 successive states.
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Traffic Light

Solution

gk =”traffic light is green at instant k”, rk =”traffic light is red at instant
k” and ok =”traffic light is orange at instant k”.

Let’s formalize the traffic light behavior:

1 ”the traffic light is either green, or red or orange”
(gk ↔ (¬rk ∧¬ok))∧ (rk ↔ (¬gk ∧¬ok))∧ (ok ↔ (¬rk ∧¬gk))

2 ”the traffic light switches from green to orange, from orange
to red, and from red to green”
(gk−1 → (gk ∨ ok)) ∧ (ok−1 → (ok ∨ rk)) ∧ (rk−1 → (rk ∨ gk))

3 ”it can keep the same color over at most 3 successive states”
(gk−3 ∧ gk−2 ∧ gk−1 → ¬gk) ∧ (rk−3 ∧ rk−2 ∧ rk−1 →
¬rk) ∧ (ok−3 ∧ ok−2 ∧ ok−1 → ¬ok)
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Graph Coloring Problem

Problem

Provide a propositional language and a set of axioms that formalize
the graph coloring problem of a graph with at most n nodes, with
connection degree ≤ m, and with less then k + 1 colors.

node degree: number of adjacent nodes

connection degree of a graph: max among all the degree of its
nodes

Graph coloring problem: given a non-oriented graph, associate
a color to each of its nodes in such a way that no pair of
adjacent nodes have the same color.
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Graph Coloring: Propositional Formalization

Language

For each 1 ≤ i ≤ n and 1 ≤ c ≤ k, coloric is a proposition, which
intuitively means that ”the i-th node has the c color”

For each 1 ≤ i 6= j ≤ n, edgeij is a proposition, which intuitively means
that ”the i-th node is connected with the j-th node”.

Axioms

for each 1 ≤ i ≤ n,
∨k

c=1 coloric
”each node has at least one color”

for each 1 ≤ i ≤ n and 1 ≤ c, c ′ ≤ k, coloric → ¬coloric′
”every node has at most 1 color”

for each 1 ≤ i , j ≤ n and 1 ≤ c ≤ k, edgeij → ¬(coloric ∧ colorjc)
”adjacent nodes do not have the same color”

for each 1 ≤ i ≤ n, and each J ⊆ {1..n}, where |J| = m,∧
j∈J edgeij →

∧
j 6∈J ¬edgeij

”every node has at most m connected nodes”
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Sudoku Example

Problem

Sudoku is a placement puzzle. The aim of the puzzle is to enter a numeral from

1 through 9 in each cell of a grid, most frequently a 9× 9 grid made up of 3× 3

subgrids (called ”regions”), starting with various numerals given in some cells

(the ”givens”). Each row, column and region must contain only one instance of

each numeral. Its grid layout is like the one shown in the following schema

Provide a formalization in propositional logic of the sudoku problem, so that

any truth assignment to the propositional variables that satisfy the axioms is a

solution for the puzzle.
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Sudoku Example: Solution

Language

For 1 ≤ n, r , c ≤ 9,define the proposition

in(n, r , c)

which means that the number n has been inserted in the cross between row r

and column c.
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Sudoku Example: Solution

Axioms

1 ”A raw contains all numbers from 1 to 9 ”

9∧
r=1

 9∧
n=1

 9∨
c=1

in(n, r, c)


2 ”A column contains all numbers from 1 to 9”

9∧
c=1

 9∧
n=1

 9∨
r=1

in(n, r, c)


3 ”A region (sub-grid) contains all numbers from 1 to 9”

for any 0 ≤ k, h ≤ 2
9∧

n=1

 3∨
r=1

 3∨
c=1

in(n, 3 ∗ k + r, 3 ∗ h + c)


4 ”A cell cannot contain two numbers”

for any 1 ≤ n, n′, c, r ≤ 9 and n 6= n′ in(n, r, c)→ ¬in(n′, r, c)
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The circus puzzle

Problem

Consider the following puzzle

I'm not an acrobat 
and I'm not a thief I'm an acrobat 

but I'm not a 
thief

I'm not an 
acrobat but the 

thief is

I know that it was one of 
you. But you cannot fool 
me: i realised that only 

two of your sentences are 
true.

circus
Dream 

A juggler and two 
fabulous acrobats
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The circus puzzle: Solution

Language

AA = “Aimo is an acrobat”

AJ = “Aimo is a juggler”

AT = “Aimo is a thief”

BA = “Boris is an acrobat”

BJ = “Boris is a juggler”

BT = “Boris is a thief”

CA = “Clodio is an acrobat”

CJ = “Clodio is a juggler”

CT = “Clodio is a thief”

A = “I’m not an acrobat and I’m not a thief”

B = “I’m an acrobat but I’m not a thief”

C = “I’m not an acrobat but the thief is”
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The circus puzzle: Solution (?)

Axioms

A ≡ ¬ AA ∧¬ AT (“I’m not an acrobat and I’m not a thief” )

B ≡ BA ∧¬ BT (“I’m an acrobat but I’m not a thief”)

C ≡ ¬ CA ∧ (AT ⊃ AA) ∧ (BT ⊃ BA) ∧ (CT ⊃ CA) (“I’m not an
acrobat but the thief is”)

AT ∨ BT ∨ CT (“the thief is one among the three”)

(AJ ∧ BA ∧ CA) ∨ (AA ∧ BJ ∧ CA) ∨ (AA ∧ BA ∧ CJ) (“there are a
juggler and two acrobats”)

(A ∧ B ∧¬ C) ∨ (A ∧¬B ∧ C) ∨ (¬ A ∧ B ∧ C) (“only two statements
are true”)

AA ≡ ¬ AJ, BA ≡ ¬ BJ, CA ≡ ¬ CJ (“one cannot be juggler and
acrobat at the same time”)

Chiara Ghidini ghidini@fbk.eu Additional practical examples: Formalization in Propositional Logic


