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Origins of Description Logics

Description Logics stem from early days knowledge representation
formalisms (late ‘70s, early ‘80s):

Semantic Networks: graph-based formalism, used to represent the
meaning of sentences.

Frame Systems: frames used to represent prototypical situations,
antecedents of object-oriented formalisms.

Problems: no clear semantics, reasoning not well understood.
Description Logics (a.k.a. Concept Languages, Terminological
Languages) developed starting in the mid ’80s, with the aim of providing
semantics and inference techniques to knowledge representation system
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What are Description Logics today?

In the modern view, description logics are a family of logics that allow to
speak about a domain composed of a set of generic (pointwise) objects,
organized in classes, and related one another via various binary relations.
Abstractly, description logics allows to predicate about labeled directed
graphs

vertexes represents real world objects

vertexes’s labels represents qualities of objects

edges represents relations between (pairs of) objects

vertexes’ labels represents the types of relations between objects.

Every piece of world that can be abstractly represented in terms of a
labeled directed graph is a good candidate for being formalized by a DL.
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What are Description Logics about?

Exercise

Represent Metro lines in Milan in a labelled directed graph

Chiara Ghidini Mathematical Logic



What are Description Logics about?

Exercise

Represent some aspects of Facebook as a labelled directed graph
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What are Description Logics about?

Exercise

Represent some aspects of human anatomy as a labelled directed graph
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What are Description Logics about?

Exercise

Represent some aspects of everyday life as a labelled directed graph
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The everyday life example as a graph - intuition

Family of logics designed for knowledge representation

Allow to encode general knowledge (as above) as well as specific
properties about objects (with individuals, e.g., Mary).
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Ingredients of a Description Logic

A DL is characterized by:

1 A description language: how to form concepts and roles

Human uMale u ∃hasChild.> u ∀hasChild.(Doctor t Lawyer)

2 A mechanism to specify knowledge about concepts and roles (i.e., a TBox)

T =

 Father ≡ Human uMale u ∃hasChild.>
HappyFather v Father u ∀hasChild.(Doctor t Lawyer)
hasFather v hasParent


3 A mechanism to specify properties of objects (i.e., an ABox)

A = {HappyFather(john), hasChild(john,mary)}

4 A set of inference services that allow to infer new properties on concepts, roles
and objects, which are logical consequences of those explicitly asserted in the
T-box and in the A-box

(T ,A) |=
{

HappyFather v ∃hasChild .(Doctor t Lawyer)
Doctor t Lawyer(mary)

}
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Architecture of a Description Logic system
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Many description logics
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The description logics ALC: Syntax

Alphabet

The alphabet Σ of ALC is composed of:
ΣC : Concept names corresponding to node labels
ΣR : Role names corresponding to arc labels
ΣI : Individual names nodes identifiers

Grammar

Concept C := A|¬C |C u C |∃R.C A ∈ ΣC , R ∈ ΣR

Definition A
.

= C A ∈ ΣC

Subsumption C v C
Assertion C (a)|R(a, b) a, b ∈ ΣI , R ∈ ΣR
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The description logics ALC: Syntax

Abbreviations

> A t ¬A for some A ∈ ΣC

⊥ ¬>
C t D ¬(¬C u ¬D)
∀R.C ¬∃R.(¬C )
C ≡ D {C v D,D v C}
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The metro example in ALC

Exercise

Define Σ for speaking about the metro in Milan, and give examples of
Concepts, Definitions, Subsumptions, and Assertions

Solution (Syntax)

Concept Names (ΣC ):

Station the set of metro stations

RedLineStation the set of metro stations on the red line

ExchangeStation the set of metro stations where to change line

Role Names (ΣR ):

Next the relation between one station and its next stations

Individual Names (ΣI ):

Centrale the station called ”Centrale”

Gioia the station called ”Gioia” . . .
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The metro example in ALC (Cont’d)

Solution (Concepts)

the set of stations which are on both the red and green line
RedLineStation u GreenLineStation

the set of exchange stations on the red line
ExchangeStation u RedLineStation

the set of stations which have a next station on the red line
Station u ∃Next.RedLineStation

The set of End stations
Station u ∀Next.⊥
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The metro example in ALC (Cont’d)

Solution (Definitions)

RGExchangeStation
.

= RedLineStation u GreenLineStation

RYExchangeStation
.

= RedLineStation u YellowLineStation

GYExchangeStation
.

= GreenLineStation u YellowLineStation

ExchangeStation
.

= RGExchangeStation t RYExchangeStation

t GYExchangeStation
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The metro example in ALC (Cont’d)

Solution (Subsumptions)

A red line station is a station
RedLineStation v Station

everything next to something is a station
> v ∀Next.Station

everything that has something next must be a station
∃Next.> v Station
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The metro example in ALC (Cont’d)

Solution (Assertions)

“Gioia” is a station of the green line
GreenLineStation(Gioia)

“Loreto” is an exchange station between the green and the red line
RGExchangeStation(Loreto)

“Lima” is the stop that follows “Loreto”
Next(Loreto,Lima)

“Duomo” is not the next stop of “Loreto”
¬Next(Loreto,Duomo)
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The description logics ALC: Semantics

Definition

A DL interpretation I is pair 〈∆I , ·I〉 where:

∆I is a non empty set called interpretation domain

·I is an interpretation function of the alphabet Σ such that

AI ⊆ ∆I , every concept name is mapped into a subset of the
interpretation domain
RI ⊆ ∆I ×∆I , every role name is mapped into a binary relation on
the interpretation domain
oI ∈ ∆I every individual is mapped into an element of the
interpretation domain.
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The description logics ALC: Semantics

Interpretation of Complex concepts

(¬C )I = ∆I \ CI

(C u D)I = CI ∩ DI

(∃R.C )I = {d ∈ ∆I | exists d ′, 〈d , d ′〉 ∈ RI and d ′ ∈ CI}

Exercise

Provide the definition of the interpretations of the abbreviations:

(>)I = . . .

(⊥)I = . . .

(C t D)I = . . .

(∀R.C )I = . . .

Chiara Ghidini Mathematical Logic



The description logics ALC: Semantics

Satisfaction relation |=

I |= A
.

= C iff AI = CI

I |= C v D iff CI ⊆ DI

I |= C (a) iff aI ∈ CI

I |= R(a, b) iff 〈aI , bI〉 ∈ RI

Satisfiability of a concept

A concept C is satisfiable if there is an interpretation I, such that

CI 6= ∅
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ALC knowledge base

Definition (Knowledge Base)

A knowledge base K is a pair (T ,A), wehre

T , called the Terminological box (T-box), is a set of concept
definition and subsumptions

A, called the Assertional box (A-box), is a set of assertions

Logical Consequence |=
A subsumption/assertion φ is a logical consequence of T , T |= φ, if φ is
satisfied by all interpretations that satisfies T ,

Satisfiability of a concept w.r.t, T
A concept C is satisfiable w.r.t., T if there is an interpretation that
satisfies T and such that

CI 6= ∅
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ALC and First Order Logic

Remark

There is a strong relation between ALC and function free first order
logics with unary and binary predicates

ALC ←→ First order logic

I = 〈∆I , ·I〉

concept name A ←→ unary predicate A(x)
role name R ←→ binary predicate R(x , y)

∃R.C ←→ ∃y(R(x , y) ∧ C (y))
¬C ←→ ¬C (x)

C u D ←→ C (x) ∧ D(x)

I |= C (a) ←→ I |= C (a)
I |= C v D ←→ I |= ∀x(C (x)→ D(x))
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ALC and First Order Logics

Exercise

Define a transformation ·∗ from ALC concepts to first order formulas such that the
following proposition is true

|=ALC > v C ⇒ |=FOL C∗

Solution

ST x,y (A) = A(x)

ST x,y (A u B) = ST x,y (A) ∧ ST x,y (B)

ST x,y (¬A) = ¬ST x,y (A)

ST x,y (∃R.A) = ∃y(R(x , y) ∧ ST y,x (A))

Exercise

Show that

1 ST x,y (C t D) is equivalent to ST x,y (C) ∨ ST x,y (D)

2 ST x,y (∀R.C) is equivalent to ∀y(R(x , y)→ ST y,x (C)).
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Relationship with First Order Logic – Exercise

Exercise

Translate the following ALC concepts in english and then in FOL

1 Father u ∀.child .(Doctor tManage)

2 ∃manages.(Company u ∃employs.Doctor)

3 Father u ∀child .(Doctor t ∃manages.(Company u ∃employs.Doctor))

Solution

1 fathers whose children are either doctors or managers
Father(x) ∧ ∀y .(child(x , y)→ (Doctor(y) ∨Manager(y)))

2 those who manages a company that employs at least one doctor
∃y .(manages(x , y) ∧ (Company(y) ∧ ∃x .(employs(y , x) ∧ Doctor(x)))

3 fathers whose children are either doctors or managers of companies that
employ some doctor.
Father(x) ∧ ∀y .(child(x , y)→ (Doctor(y) ∨ ∃x .(manages(y , x) ∧
(Company(x) ∧ ∃y .(employs(x , y) ∧ Doctor(y))))))
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ALC and First Order Logics

Two Variables First Order Logics (FO2)

A k-variable first order logic, FOk is a logic defined on a First Order
Language without functional symbols and with k individual variables.
FO2 is the first order logic with at most two variables

Theorem

The satisfiability problem for FO2 is NexpTime complete. (Erich
Grädel, Phokion G. Kolaitis, Moshe Y. Vardi, On the Decision Problem
for Two-Variable First-Order Logic, The Bulletin of Symbolic Logic,
Volume 3, Number 1, March 1997,
http://www.math.ucla.edu/ asl/bsl/0301/0301-003.ps )

ALC is a fragment of FO2. However FOL with 2 variables is more
expressive than ALC (left for advanced courses in Logic for KR).
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Numeric constraints

Functionality restrictions ALCF : allow one to impose that a relation
is a function:

global functionality: > v (≤ 1R) (equivalent to (funct R))
Example: > v (≤ 1 hasFather)

local functionality: A v (≤ 1R)
Example: Person v (≤ 1 hasFather)

Number restrictions ALCN : (≤ n R) and (≥ n R)
Example: Person v (≤ 2 hasParent)

Qualified Number restrictions ALCQ: (≤ n R .C ) and (≥ n R .C )
Example: FootballTeam v (≥ 1 hasPlayer.Golly) u

(≤ 1 hasPlayer.Golly) u
(≥ 2 hasPlayer.Defensor) u
(≤ 4 hasPlayer.Defensor)
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Role constructs

Inverse roles ALCI: R−, interpreted as
(R−)I = {(y , x) | (x , y) ∈ RI}

Example:
we can refer to the parent, by using the hasChild role, e.g.,
∃hasChild−.Doctor.

Transitive roles: (trans R), stating that the relation RI is
transitive, i.e., {(x , y), (y , z)} ⊆ RI → (x , z) ∈ RI

Example: (trans hasAncestor)

Subsumption between roles: R1 v R2, used to state that a relation is
contained in another relation.

Example: hasMother v hasParent
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ALC language - exercises

Exercise

Let Man, Woman, Male, Female, and Human be concept names, and let
has-child, is-brother-of, is-sister-of, and is-married-to be role names.
Try to construct a T-box that contains definitions for

Mother
Father
Grandmother

Grandfather
Aunt
Ancle

Niece
Nephew
Mother-of-at-least-one-male
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ALC Language - exercises

Exercise

Express the following sentences in terms of the description logic ALC
1 All employees are humans.

employee v human

2 A mother is a female who has a child.
mother ≡ female u ∃hasChild .>

3 A parent is a mother or a father.
parent ≡ mather t father

4 A grandmother is a mother who has a child who is a parent.
grandmother ≡ mother u ∃hasChild .parent

5 Only humans have children that are humans.
∃hasChild .human v human
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ALC → FOL - exercises

Exercise

Translate the following inclusion axioms in the language of First order
logic

Female v Human females are humans
Child v Human children are humans
StudiesAtUni v Human university students are humans
SuccessfullMan ≡ Manu a successful man is a man who

InBusiness u ∃married .Lawyeru is in business, has married a lawyer
∃hasChild .(StudiesAtUni) and has a child who is a student

¬Female(Pedro) Pedro is not a female
InBusiness(Pedro) Pedro is in business
Lawyer(Mary) Mary is a lawyer
married(Pedro,Mary) pedro is married with Mary
child(Pedro, John) John is the child of Pedre
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Satisfaction - exercise

Exercise

Let I be the following ALC interpretation on the domain
∆I = {s0, s1, . . . , s5}. Calculate the interpretation of the following
concepts:

s0A,B

s1A,¬B s2 ¬A,B

s3¬A,¬B s4 ¬A,¬Bs5

A,B

r r

r r r
r

>I = {s0, s1, . . . , s5}

⊥I = ∅

AI = {s0, s1, s5}

BI = {s0, s2, s5}

(A u B)I = {s0, s5}

(A t B)I = ({s0, s1, s2, s5})

(¬A)I = {s2, s3, s4}

(∃r .A)I = {s0, s1, s4}

(∀r .¬B)I = {s3, s2}

(∀r .(A t B))I = {s0, s3, s4}
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Satisfaction - exercise

Exercise

Let I be the following ALC interpretation on the domain
∆I = {s0, s1, . . . , s5}. Calculate the interpretation of the following
concepts:

s0A,¬B

s1A,¬B s2 A,B

s3¬A,¬B s

r

s

r

s

(A t B)I = {s0, s1, s2}

(∃s.¬A)I = {s0, s1, s3}

(∀s.A)I = {s2}

(∃s.∃s.∃s.∃s.A)I = ∅

(¬∃r .(¬A t ¬B))I = {s1, s2}

(∃s.(A t ∀s.¬B) t ¬∀r .∃r .(A t ¬A))I = {s0, s1, s3}
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ALC satisfaction - exercises

Exercise

Consider an ALC-signature with atomic concepts Σc = {A,B} and role
names ΣR = {R,S} and an interpretation I = (∆I , ·I) given by

∆I = {1, 2, 3, . . . , 10}
AI = {n ∈ ∆I |n is even}
BI = {n ∈ ∆I |n ≤ 5}
RI = {(x , y) ∈ ∆I ×∆I |x < y}
SI = {(x , y) ∈ ∆I ×∆I |x − y = 2}

Compute the interpretation CI for each of the concepts C below

1 C = ∃S .∀R.⊥
2 C = ∀S .∃R.B

3 C = ¬∃S .(B u ∀R.A)
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ALC satisfaction - exercises

Solution

I can be graphically represented by the following graph:

1

¬A,B
2

A,B

3

¬A,B
4

A,B

5

¬A,B
6

A,¬B
7

¬A,¬B
8

A,¬B
9

¬A,¬B
10

A,¬B

R

S

1 (∃S.∀R.⊥)I = the set of nodes that have an outgoing S-arc that reaches a node
with no outgoing R-arcs. (notice that ∀R.⊥ is satisfied by the nodes that do not
have outgoing R-arcs. I.e., ∅

2 (∀S.∃R.B)I = the set of nodes such that every outgoing S-arc reaches a node
for which there is an outgoing R arch that reaches a node ≤ 5. I.e.,
{1, 2, 3, 4, 5, 6}

3 (¬∃S .(B u ∀R.A))I = the set of nodes for which there is no outgoing S-arc
reaching a node ≤ 5 and such that all its outgoing R-arcs reaches an even
number. I.e., {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
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ALC general properties - exercises

Exercise

Show that |= C v D implies |= ∃R.C v ∃R.D

Solution

We have to prove that for all I, (∃R.C )I ⊆ (∃R.C )I under the
hypothesis that for all I, CI ⊆ DI .

Let x ∈ (∃R.C )I , we want to show that x is also in (∃R.D)I .

If x ∈ (∃R.C )I , then by the interpretation of ∃R there must be an y
with (x , y) ∈ RI such that y ∈ CI .

By the hypothesis that CI ⊆ DI for all I, we have that y ∈ DI .

The fact that (x , y) ∈ RI and y ∈ DI implies that x ∈ (∃R.D)I .
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ALC (un)satisfiability and validity - exercises

Exercise

For each of the following formula say if it is valid, satisfiable or unsatisfiable. If it is
not valid provide a model that falsify it.

∀R(A u B) ≡ ∀RA u ∀RB
∀R(A t B) ≡ ∀RA t ∀RB
∃R(A u B) ≡ ∃RA u ∃RB
∃R(A t B) ≡ ∃RA t ∃RB

Solution

∀R(A u B) ≡ ∀RA t ∀RB is valid and we can prove that
(∀R(A u B))I = (∀R.A u ∀R.B)I for all interpretations I.

(∀R(A u B))I = {(x , y) ∈ RI | y ∈ (A u B)I}

= {(x , y) ∈ RI | y ∈ AI ∩ BI}

= {(x , y) ∈ RI | y ∈ AI} ∩ {(x , y) ∈ RI | y ∈ BI}

= (∀R.A)I ∩ (∀R.B)I

= (∀R.A u ∀R.B)I
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ALC (un)satisfiability and validity - exercises

Exercise

For each of the following formula say if it is valid, satisfiable or unsatisfiable. If it is
not valid provide a model that falsify it.

∀R(A u B) ≡ ∀RA u ∀RB
∀R(A t B) ≡ ∀RA t ∀RB
∃R(A u B) ≡ ∃RA u ∃RB
∃R(A t B) ≡ ∃RA t ∃RB

Solution

∀R(A t B) ≡ ∀RA t ∀RB is not valid. The following model is such that
(∀R(A t B))I 6= (∀RA t ∀RB)I

s0

s1A,¬B s2 ¬A,B
R R

s0 ∈ (∀R(A t B))I but

s0 6∈ (∀RA) and

s0 6∈ (∀RB)I

However notice that the containment: ∀R.A t ∀R.B v ∀R.(A t B) is valid
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ALC (un)satisfiability and validity - exercises

Exercise

For each of the following formula say if it is valid, satisfiable or unsatisfiable. If it is
not valid provide a model that falsify it.

∀R(A u B) ≡ ∀RA u ∀RB
∀R(A t B) ≡ ∀RA t ∀RB
∃R(A u B) ≡ ∃RA u ∃RB
∃R(A t B) ≡ ∃RA t ∃RB

Solution

∃R(A u B) ≡ ∃RA u ∃RB is not
valid. The following model is such that (∃R(A u B))I 6= (∃RA u ∃RB)I

s0

s1A,¬B s2 ¬A,B
R R

s0 ∈ (∃RA)I and

s0 ∈ (∃RB)I but

s0 6∈ (∃R(A u B))I

However notice that the containment: ∃R(A u B) v ∃RA u ∃RB is valid
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ALC (un)satisfiability and validity - exercises

Exercise

For each of the following formula say if it is valid, satisfiable or unsatisfiable. If it is
not valid provide a model that falsify it.

∀R(A u B) ≡ ∀RA u ∀RB
∀R(A t B) ≡ ∀RA t ∀RB
∃R(A u B) ≡ ∃RA u ∃RB
∃R(A t B) ≡ ∃RA t ∃RB

Solution

∃R(A t B) ≡ ∃RA t ∃RB is valid. We can provide a proof similar to the case of
∀R.(A u B) ≡ ∀R.A u ∀R.B, but in the following we provide an alternative proof,
which is based on other equivalences:

∃R(A t B) ≡ ¬∀R(¬(A t B))

≡ ¬∀R.(¬A u ¬B)

≡ ¬(∀R.(¬A) u ∀R.(¬B))

≡ ¬(∀R.(¬A) t ¬∀R.(¬B)

≡ ∃R.A t ∃R.B

Chiara Ghidini Mathematical Logic



ALC (un)satisfiability and validity - exercises

Exercise

For each of the following concept say if it is valid, satisfiable or
unsatisfiable. If it is valid, or unsatisfiable, provide a proof. If it is
satisfiable (and not valid) then exhibit a model that interprets the
concept in a non-empty set

1 ¬(∀R.A t ∃R.(¬A u ¬B))

2 ∃R.(∀S .C ) u ∀R.(∃S .¬C )

3 (∃S .C u ∃S .D) u ∀S .(¬C t ¬D)

4 ∃S .(C u D) u (∀S .¬C t ∃S .¬D)

5 C u ∃R.A u ∃R.B u ¬∃R.(A u B)
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ALC (un)satisfiability and validity - exercises

Solution

1 ¬(∀R.A t ∃R.(¬A u ¬B)) Satisfiable

s0 s1 ¬A,B
R s0 ∈ (¬(∀R.A t ∃R.(¬A u ¬B))I

s1 6∈ (¬(∀R.A t ∃R.(¬A u ¬B))I

2 ∃R.(∀S .C ) u ∀R.(∃S .¬C ) unsatisfiable, since
∃R.∀S .C ≡ ¬∀R.¬∀S .C ≡ ¬∀R.∃S .¬C . This implies that
∃R.(∀S .C ) u ∀R.(∃S .¬C ) is equivalent to
¬(∀R.∃S .¬C ) u (∀R.∃S .¬C ), which is a concept of the form
¬B u B which is always unsatisfiable.

3 (∃S .C u ∃S .D) u ∀S .(¬C t ¬D) satisfiable

4 ∃S .(C u D) u (∀S .¬C t ∃S .¬D) unsatisfiable

5 C u ∃R.A u ∃R.B u ¬∃R.(A u B) satisfiable
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ALC (un)satisfiability and validity - exercises

Exercise

Check if the following subsumption is valid

¬∀R.A u ∀R((∀R.B) t A) v ∀R.¬(∃R.A) u ∃R.(∃R.B)
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