

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

Outline

- 1. Problems
- 2. Timing
- 3. Doc index
 - 1. The problem: informal definition
 - 2. Solution statement
- 4. Groups definition

□ "An ontology is a formal, explicit specification of a shared conceptualization" -by Gruber (1993) and modified by Studer et. al (1998)

□ "A set of logical axioms designed to account for the intended meaning of a vocabulary" -Guarino (1998)

Protégé: An Ontology Editor

A free, open-source ontology editor and framework for building intelligent systems. Protégé was developed by the Stanford Center for Biomedical Informatics Research at the Stanford University School of Medicine.

Protégé <u>http://protege.stanford.edu</u>
Web Protégé <u>http://webprotege.stanford.edu</u>

Components of OWL Ontologies

□Individuals

Properties

□Individuals, represent objects in the domain in which we are interested (Also known as the domain of discourse (D')).

Properties

□ Properties are binary relations on individuals - i.e. properties link two individuals together.

□ For example, the property *hasSibling* might link the individual Matthew to the individual Gemma, or the property *hasChild* might link the individual Peter to the individual Matthew.

Representation Of Properties

Classes

□OWL classes are interpreted as sets that contain individuals. They are described using formal (math- ematical) descriptions that state precisely the requirements for membership of the class.

Representation Of Classes (Containing Individuals)

Building An OWL Ontology

OWL Properties

There are two main types of properties, Object properties, Datatype properties.

□ OWL also have third type of property --Annotation properties.

The Different types of OWL Properties

Characteristics: 💵 🗉 🗵	Description:
Functional	Equivalent To 🕂
Inverse functional	SubProperty Of 🛨
Transitive	Inverse Of 🕂
Symmetric	Domains (intersection) 🕂
	Ranges (intersection) 🕂
Asymmetric	Disjoint With 🕂
Reflexive	SuperProperty Of (Chain)
Irreflexive	

John is a *hostOf* Peter Peter is a *guestOf* John

16

Functional Properties

London *CapitalOf* UK London *CapitalOf* Great Britain

17

Symmetric Properties

John *friendOf* Peter Peter *friendOf* John

Property Restrictions

Quantifier Restrictions

Cardinality Restrictions

□ hasValue Restrictions

Existential and Universal Restrictions

Quantifier restrictions can be further categorized into *existential* restrictions and *universal* restrictions

Existential and Universal Restrictions

The Restriction *hasTopping* some Mozzarella. This restriction describes the class of individuals that have *at least one* topping that is Mozzarella

Inferred hierarchy
Inconsistency checking
Automated classification

Automated Classification

Annotations: administrativeDivision

Annotations **H**

comment [language: en]

a district defined for administrative purposes

isDefinedBy [type: anyURI] http://wordnetweb.princeton.edu/perl/webwn

- 1. owl:versionInfo in general the range of this property is a string.
- 2. **rdfs:label** has a range of a string. This property may be used to add meaningful, human readable names to ontology elements such as classes, properties and individuals. **rdfs:label** can also be used to provide multi-lingual names for ontology elements.
- 3. rdfs:comment has a range of a string.
- 4. rdfs:seeAlso has a range of a URI which can be used to identify related resources.
- 5. **rdfs:isDefinedBy** has a range of a URI reference which can be used to reference an ontology that defines ontology elements such as classes, properties and individuals.

Reference

A Practical Guide To Building OWL Ontologies Using protégé 4 and CO-ODE Tools
Edition 1.3. Matthew Horridge
http://protege.stanford.edu