KDI A Methodology for Data Integration

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

Overview of the Model

Generalized Queries

Etypes Model

Evaluation

Case Studies

Components of the Model

Generalized Queries

Application Scenario

Identify the Concepts

Queries Collection Mechanism

Application Scenario

Choose the application scenario

Generalized Queries

Start with a set of ground queries :

Given the application scenario, a set of queries will arise which place demands on an underlying ontology.

- Give a list all the Hotels in X City which has facility for disable?
- Identification of general query pattern

Give me all X in Y AND WHERE.property.True

• Identification: Concepts and Properties

Entity: Hotel, City Property: Hotel.name, City.name, facilityForDisable. Boolean Identify all the **core concepts** which are needed to answer the **generalized queries**.

Query generation methodology

- 1. via a user study, for instance via questionnaires or focus group
- 2. via a benchmarking analysis of existing sites and data
- 3. heuristically based on the understanding of the domain developer
- 4. from datasets (see **rapidminer** tree example... see also <u>http://quepy.machinalis.com/</u>)
- 5. a combination of the above

ER Model (example)

ER Model and Relational Database (example)

EMPLOYEE

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno
↑ ↑ ↑									
DEPARTMENT									
Dname Dnumber Mgr_ssn Mgr_start_date									
≜ ≜									
DEPT_LOCATIONS									
Dnumber Dlocation									
L									
PROJECT									
Pname Pnumber Plocation Dnum									
WORKS_ON									
Essn Pno Hours									
DEPENDENT									
Essn	Depend	lent_name	Sex	Bdate	Relations	ship			

EER Model (example)

Alignment with Upper Ontology and Classification

Formal Modelling

Issue_I:Attributes and DataProperties

Language Level

Language

Language Level

Language

- Inconsistency
 - circularity errors: [ex.Traveler *subclassOf* Person; Person subClassOfTraveler;]
 - semantic inconsistency errors: [ex. Airbus or Waterbus subclassOf Bus]
 - partition errors: [ex. Non stop Flight SubClassOf InternationalFlight and DomesticFlight where International and Domestic flight are disjoint]
- Incompleteness: On traveling domain, if we classify only beach and mountain location, and we do not consider cultural heritage site
- Redundancy
 - Identical formal definition of some class
 - Identical formal definition of instances

Case Studies (example)

Topics

- Technique
 - Used standard Human Computer Interaction (HCI) technique
 - Open Ended questions mixed with Likert scale closed questions
- How: Balanced Questioners
- Number of participant: 18
- Participants Information
 - Nationality: Italian, Indian, Germany, Brazil, Ukraine, Ethiopia, Mexico, Uganda, Cameroon
 - Gender: Male 13 Female 5
 - Age Range: 18-25 (14), 26-30 (4)
 - Level of education: Undergraduate (3) Postgraduate (15)

Perspicuity: How easy it is to get familiar with the methodology Efficiency: How effectively user can perform the process Dependability: Can user control the process Stimulation: Is it exciting and motivating Novelty: Is it innovative and creative

Results

Pros

- Well Structured
- programmatically durable
- It practically allows describe the world
- Provides methods to minimize the distance between the real world and the abstraction
- Helps finding out eventual defects of the ontology and helps correcting them : taxonomic errors, inconsistencies, reliability

Cons

- You need many practice to build something very well
- Needs more time to master
- difficult to identify class for to align with top level
- Necessary to write documentation to clarify choices and terms
- Formalizing DERA to DL

Reference

- Data on the Web Best Practices W3C Recommendation 31 January 2017 <u>https://www.w3.org/TR/dwbp/</u>
- Das, S., & Giunchiglia, F. (2016, October). GeoEtypes: Harmonizing Diversity in Geospatial Data (Short Paper). In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems" (pp. 643-653). Springer International Publishing.
- Hlomani, H., & Stacey, D. (2014). Approaches, methods, metrics, measures, and subjectivity in ontology evaluation: A survey. *SemanticWeb Journal*, 1-5.
- Giunchiglia, F., & Dutta, B. (2011). DERA: A FACETED KNOWLEDGE ORGANIZATION FRAMEWORK.
- Guarino, N., & Welty, C. A. (2009). An overview of OntoClean. In *Handbook on ontologies* (pp. 201-220). Springer Berlin Heidelberg.
- □ Gomez-Perez, A., Fernández-López, M., & Corcho, O. (2006). Ontological Engineering: with examples from the areas of Knowledge Management, e-Commerce and the Semantic Web. Springer Science & Business Media.