Logics for Data and Knowledge Representation 6. DLs more expressive than $\mathcal{A L C}$

Luciano Serafini

FBK-irst, Trento, Italy
October 15, 2012

Extensions of $\mathcal{A L C}$

Number restrictions $\mathcal{A L C N}(\leq n) R[(\geq n) R]$

$$
\text { Persons } \sqsubseteq(\leq 1) \text { is_merried_with }
$$

Number restriction allows to impose that a relation is a function
Qualified Number restrictions $\mathcal{A L C Q}(\leq n) R . C[(\geq n) R . C]$

$$
\begin{aligned}
\text { football_team } \sqsubseteq & (\geq 1) \text { has_player.Golly } \sqcap \\
& (\leq 2) \text { has_player.Golly } \sqcap \\
& (\geq 2) \text { has_player.Defensor } \sqcap \\
& (\geq 4) \text { has_player.Defensor } \sqcap
\end{aligned}
$$

Extensions of $\mathcal{A L C}$

Inverse roles $\mathcal{A L C I} R^{-}$. make it possible to use the inverse of a role.
For example, we can specify has_Parent as the inverse of has_Child,

$$
\text { has_Parent } \equiv \text { has_Child }{ }^{-}
$$

meaning that hasParent ${ }^{\mathcal{I}}=\left\{(y, x) \mid(x, y) \in\right.$ has_Child $\left.^{\mathcal{I}}\right\}$
Transitive roles $\operatorname{tr}(\mathrm{R})$ used to state that a given relation is transitive

$$
\operatorname{Tr}(\text { hasAncestor })
$$

meaning that $(x, y),(y, z) \in$ hasAncestor $^{\mathcal{I}} \rightarrow(x, z) \in$ hasAncestor $^{\mathcal{I}}$
Subsumptions between roles $R \sqsubseteq S$ used to state that a relation is contained in another relation.

$$
\text { hasMother } \sqsubseteq \text { hasParent }
$$

Modeling with Inverse role

Exercise

Try to model the following facts in $\mathcal{A L C L}$. (notice that not all the statements are modellable in $\mathcal{A L C I}$)
(1) Lonely people do not have friends and are not friends of anybody
(2) An intermediate stop is a stop which has a predecessor stop and a successor stop
(0) A person is a child of his father

Modeling with Inverse role

Solution

(1) Lonely people do not have friends and are not friends of anybody
(2) An intermediate stop is a stop which has a predecessor stop and a successor stop
(3) A person is a child of his father

Modeling with Inverse role

Solution

(1) Lonely people do not have friends and are not friends of anybody

$$
\text { lonely_person } \equiv \text { person } \sqcap \neg \exists h^{2} \text { as_friend }{ }^{-} . \top \sqcap \neg \exists \text { has_friend. } \top
$$

(2) An intermediate stop is a stop which has a predecessor stop and a successor stop
(3) A person is a child of his father

Modeling with Inverse role

Solution

(1) Lonely people do not have friends and are not friends of anybody

$$
\text { lonely_person } \equiv \text { person } \sqcap \neg \exists h^{2} \text { as_friend }{ }^{-} . \top \sqcap \neg \exists \text { has_friend. } \top
$$

(2) An intermediate stop is a stop which has a predecessor stop and a successor stop

$$
\text { Intermediate_stop } \equiv \text { Stop } \sqcap \exists \text { next.Stop } \sqcap \exists \text { next }{ }^{-} \text {.Stop }
$$

(3) A person is a child of his father

$$
\begin{gathered}
\text { non modellable } \\
\text { Person } \sqsubseteq \forall \text { has_father(} \forall \text { has_father }{ }^{-} \text {.Person) } \\
\text { is not enough }
\end{gathered}
$$

Expressiveness of Inverse role

Exercise

Prove that the inverse role primitive constitutes an effective extension of the expressivity of $\mathcal{A L C}$, i.e., show that that $\mathcal{A L C}$ is strictly less expressive than $\mathcal{A L C I}$.

Expressiveness of Inverse role

Exercise

Prove that the inverse role primitive constitutes an effective extension of the expressivity of $\mathcal{A L C}$, i.e., show that that $\mathcal{A L C}$ is strictly less expressive than $\mathcal{A L C I}$.

Solution

Suggestion: do it via bisimulation. I.e., show that there are two models that bisimulate which are distinguishable in $\mathcal{A L C I}$.

Expressiveness of Inverse role

Exercise

Prove that the inverse role primitive constitutes an effective extension of the expressivity of $\mathcal{A L C}$, i.e., show that that $\mathcal{A L C}$ is strictly less expressive than $\mathcal{A L C I}$.

Solution

Suggestion: do it via bisimulation. I.e., show that there are two models that bisimulate which are distinguishable in $\mathcal{A L C I}$.

Expressiveness of Inverse role

Exercise

Prove that the inverse role primitive constitutes an effective extension of the expressivity of $\mathcal{A L C}$, i.e., show that that $\mathcal{A L C}$ is strictly less expressive than $\mathcal{A L C I}$.

Solution

Suggestion: do it via bisimulation. I.e., show that there are two models that bisimulate which are distinguishable in $\mathcal{A L C I}$.

Expressiveness of Inverse role

Exercise

Prove that the inverse role primitive constitutes an effective extension of the expressivity of $\mathcal{A L C}$, i.e., show that that $\mathcal{A L C}$ is strictly less expressive than $\mathcal{A L C I}$.

Solution

Suggestion: do it via bisimulation. I.e., show that there are two models that bisimulate which are distinguishable in $\mathcal{A L C I}$.

Expressiveness of Inverse role

Exercise

Prove that the inverse role primitive constitutes an effective extension of the expressivity of $\mathcal{A L C}$, i.e., show that that $\mathcal{A L C}$ is strictly less expressive than $\mathcal{A L C I}$.

Solution

Suggestion: do it via bisimulation. I.e., show that there are two models that bisimulate which are distinguishable in $\mathcal{A L C I}$.

Properties of $\mathcal{A L C I}$ models

Theorem (Tree model property)
If C is satisfiable w.r.t. a T-box \mathcal{T}, then it is satisfiable w.r.t. \mathcal{T} by a tree-shaped model with root an element of C.

Proof.

Properties of $\mathcal{A L C I}$ models

Theorem (Tree model property)
If C is satisfiable w.r.t. a T-box \mathcal{T}, then it is satisfiable w.r.t. \mathcal{T} by a tree-shaped model with root an element of C.

Proof.
(1) extend the notion of bisimulation for $\mathcal{A L C I}$

Properties of $\mathcal{A L C I}$ models

Theorem (Tree model property)

If C is satisfiable w.r.t. a T-box \mathcal{T}, then it is satisfiable w.r.t. \mathcal{T} by a tree-shaped model with root an element of C.

Proof.

(1) extend the notion of bisimulation for $\mathcal{A L C I}$
(2) show that if $(\mathcal{I}, d) \sim_{\mathcal{A L C I}}(\mathcal{J}, e)$, then $d \in C^{\mathcal{I}}$ iff $e \in C^{\mathcal{J}}$ for any $\mathcal{A L C I}$ concept C

Properties of $\mathcal{A L C I}$ models

Theorem (Tree model property)

If C is satisfiable w.r.t. a T-box \mathcal{T}, then it is satisfiable w.r.t. \mathcal{T} by a tree-shaped model with root an element of C.

Proof.

(1) extend the notion of bisimulation for $\mathcal{A L C I}$
(2) show that if $(\mathcal{I}, d) \sim_{\mathcal{A L C I}}(\mathcal{J}, e)$, then $d \in C^{\mathcal{I}}$ iff $e \in C^{\mathcal{J}}$ for any $\mathcal{A L C I}$ concept C
(For a non tree-shaped model \mathcal{I} and any element d, generate a tree-shaped model \mathcal{J} rooted at e and show that $(\mathcal{I}, d) \sim_{\mathcal{A L C I}}(\mathcal{J}, e)$.

Bisimulation for $\mathcal{A L C I}]$

Definition ($\mathcal{A L C L}$-Bisimulation)

A $\mathcal{A L C I}$-bisimulation ρ between two $\mathcal{A L C I}$ interpretations \mathcal{I} and \mathcal{J} is a bisimulation ρ, that satisfies the following additional condition when $d \rho e$: Inverse relation equivalence

- for all d^{\prime} such that $\left(d^{\prime}, d\right) \in R^{\mathcal{I}}$, there is an $e^{\prime} \in \Delta^{\mathcal{J}}$ such that $\left(e^{\prime}, e\right) \in R^{\mathcal{J}}$ and $d^{\prime} \rho e^{\prime}$.
- Same property in the opposite direction
$(\mathcal{I}, d) \sim_{\mathcal{A L C I}}(\mathcal{J}, e)$ means that there is a $\mathcal{A L C I}$-bisimulation ρ between \mathcal{I} and \mathcal{J} such that epe.

$\mathcal{A L C I}$-bisimulation

Example of bisimulation which is not a $\mathcal{A L C I}$-bisimulation, and how

$(\mathcal{I}, 2) \sim(\mathcal{J}, 2)$ but $\operatorname{not}(\mathcal{I}, 1) \sim_{\mathcal{A L C I}}(\mathcal{J}, 1)$

$\mathcal{A L C I}$-bisimulation

Example of bisimulation which is not a $\mathcal{A L C I}$-bisimulation, and how

$(\mathcal{I}, 2) \sim(\mathcal{J}, 2)$ but $\operatorname{not}(\mathcal{I}, 1) \sim_{\mathcal{A L C I}}(\mathcal{J}, 1)$

Invariance under $\mathcal{A L C I}$-bisimulation

Theorem

If $(\mathcal{I}, d) \sim_{\mathcal{A L C I}}(\mathcal{J}, e)$, then $d \in C^{\mathcal{I}}$ iff $e \in C^{\mathcal{J}}$ for any $\mathcal{A L C I}$ concept C

Proof.

by induction on the complexity of C. All the cases as in $\mathcal{A L C}$, in addition we have the following step cases

- if C is $\exists R^{-} . C$

$$
\begin{array}{lll}
\mathcal{I}, d \equiv \exists R^{-} . C & \text { iff } & \mathcal{I}, d^{\prime} \models C \text { for some } d^{\prime} \text { with }\left(d^{\prime}, d\right) \in R^{\mathcal{I}} \\
& \text { iff } & \mathcal{J}, e^{\prime} \models C \text { for some } e^{\prime} \text { with }\left(e^{\prime}, e\right) \in R^{J} \\
& \text { and }\left(\mathcal{I}, d^{\prime}\right) \sim_{\mathcal{A L C I}}\left(\mathcal{J}, e^{\prime}\right) \\
\text { iff } & \mathcal{J}, e \models \exists R^{-} . C
\end{array}
$$

Theorem

If \mathcal{I} is a non tree-shaped model, and d any element of \mathcal{I}, then there is a model \mathcal{J} which is tree-shaped such that $(\mathcal{I}, d) \sim_{\mathcal{A L C I}}(\mathcal{J}, d)$.

Proof.

We define \mathcal{J} as follows:

Transformation in tree-shaped $\mathcal{A L C I}$ models

Theorem

If \mathcal{I} is a non tree-shaped model, and d any element of \mathcal{I}, then there is a model \mathcal{J} which is tree-shaped such that $(\mathcal{I}, d) \sim_{\mathcal{A L C I}}(\mathcal{J}, d)$.

Proof.

We define \mathcal{J} as follows:

- $\Delta_{\mathcal{J}}$ is the set of paths $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ such that $d_{1}=d$, and $\left(d_{i}, d_{i+1}\right) \in R_{i}$ or $\left(d_{i+1}, d_{i}\right) \in R_{i}^{\mathcal{I}}$ for $(1 \leq i \leq n-1)$.
- $A^{\mathcal{J}}=\left\{\pi d_{n} \mid d_{n} \in A^{\mathcal{I}}\right\}$
- $R^{\mathcal{J}}=\left\{\left(\pi d_{n}, \pi d_{n} d_{n+1}\right) \mid\left(d_{n}, d_{n+1}\right) \in R^{\mathcal{I}}\right\} \cup$ $\left\{\left(\pi d_{n} d_{n+1}, \pi d_{n}\right) \mid\left(d_{n+1}, d_{n}\right) \in R^{\mathcal{I}}\right\}$

Transformation in tree-shaped $\mathcal{A L C I}$ models

Theorem

If \mathcal{I} is a non tree-shaped model, and d any element of \mathcal{I}, then there is a model \mathcal{J} which is tree-shaped such that $(\mathcal{I}, d) \sim_{\mathcal{A L C I}}(\mathcal{J}, d)$.

Proof.

We define \mathcal{J} as follows:

- $\Delta_{\mathcal{J}}$ is the set of paths $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ such that $d_{1}=d$, and $\left(d_{i}, d_{i+1}\right) \in R_{i}$ or $\left(d_{i+1}, d_{i}\right) \in R_{i}^{\mathcal{I}}$ for $(1 \leq i \leq n-1)$.
- $A^{\mathcal{J}}=\left\{\pi d_{n} \mid d_{n} \in A^{\mathcal{I}}\right\}$
- $R^{\mathcal{J}}=\left\{\left(\pi d_{n}, \pi d_{n} d_{n+1}\right) \mid\left(d_{n}, d_{n+1}\right) \in R^{\mathcal{I}}\right\} \cup$ $\left\{\left(\pi d_{n} d_{n+1}, \pi d_{n}\right) \mid\left(d_{n+1}, d_{n}\right) \in R^{\mathcal{I}}\right\}$
It's easy to show that \mathcal{J} is a tree-shaped model rooted at d

Transformation in tree-shaped $\mathcal{A L C I}$ models

Theorem

If \mathcal{I} is a non tree-shaped model, and d any element of \mathcal{I}, then there is a model \mathcal{J} which is tree-shaped such that $(\mathcal{I}, d) \sim_{\mathcal{A L C I}}(\mathcal{J}, d)$.

Proof.

We define \mathcal{J} as follows:

- $\Delta_{\mathcal{J}}$ is the set of paths $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ such that $d_{1}=d$, and $\left(d_{i}, d_{i+1}\right) \in R_{i}$ or $\left(d_{i+1}, d_{i}\right) \in R_{i}^{\mathcal{I}}$ for $(1 \leq i \leq n-1)$.
- $A^{\mathcal{J}}=\left\{\pi d_{n} \mid d_{n} \in A^{\mathcal{I}}\right\}$
- $R^{\mathcal{J}}=\left\{\left(\pi d_{n}, \pi d_{n} d_{n+1}\right) \mid\left(d_{n}, d_{n+1}\right) \in R^{\mathcal{I}}\right\} \cup$ $\left\{\left(\pi d_{n} d_{n+1}, \pi d_{n}\right) \mid\left(d_{n+1}, d_{n}\right) \in R^{\mathcal{I}}\right\}$
It's easy to show that \mathcal{J} is a tree-shaped model rooted at d The $\mathcal{A L C I}$ bisimulation ρ between \mathcal{I} and \mathcal{J} is defined as $\left.\left(d_{i}\right), \pi d_{i}\right) \in \rho$

Number restriction

Exercise

Prove that number restriction is an effective extension of the expressivity of $\mathcal{A L C}$, i.e., show that that $\mathcal{A L C}$ is strictly less expressive than $\mathcal{A L C N}$.

Number restriction

Exercise

Prove that number restriction is an effective extension of the expressivity of $\mathcal{A L C}$, i.e., show that that $\mathcal{A L C}$ is strictly less expressive than $\mathcal{A L C N}$.

Solution

Qualified number restriction

Exercise

Prove that qualified number restriction is an effective extension of the expressivity of $\mathcal{A L C N}$, i.e., show that that $\mathcal{A L C N}$ is strictly less expressive than $\mathcal{A L C Q}$.

Solution (outline)

(1) Extend the notion of bisimulation relation to $\mathcal{A L C N}$.
(2) Prove that $\mathcal{A L C N}$ is bisimulation invariant for the bisimulation relation defined in 1

- Prove that $\mathcal{A L C Q}$ is more expressive than $\mathcal{A L C N}$.

Bisimulation for $\mathcal{A L C N}$

Definition ($\mathcal{L L C N}$-Bisimulation)

A $\mathcal{A L C N}$-bisimulation ρ between two $\mathcal{A L C N}$ interpretations \mathcal{I} and \mathcal{J} is a bisimulation ρ, that satisfies the following additional condition when d ρ e:
relation (cardinality) equivalence

- if d_{1}, \ldots, d_{n} are all the distinct elemnts of $\Delta^{\mathcal{I}}$ such that $\left\langle d, d_{i}\right\rangle \in R^{\mathcal{I}}$ for $1 \leq i \leq n$, then there are exactly n, e_{1}, \ldots, e_{n} elements of $\Delta^{\mathcal{J}}$ such that $\left(e, e_{i}\right) \in R^{\mathcal{J}}$ for all $1 \leq i \leq n$
- Same property in the opposite direction
$(\mathcal{I}, d) \sim(\mathcal{J}, e)$ means that there is a bisimulation ρ between \mathcal{I} and \mathcal{J} such that e ee.

Invariance w.r.t. $\mathcal{A L C N}$

Theorem

If $(\mathcal{I}, d) \sim(\mathcal{J}, e)$ then for every $\mathcal{A L C N}$ concept $C(\mathcal{I}, d) \models C$ if and only if $(\mathcal{J}, e) \models C$

Proof.

By induction on the complexity of C, similar as for $\mathcal{A L C}$ bisimulation with the following additional base step:
If C is $(\leq n) R$ If $(\mathcal{I}, d) \models(\leq n) R$, then there are $m \leq n$ elements d_{1}, \ldots, d_{m} with $R\left(d, d_{i}\right)$. The additional condition on $\mathcal{A L C I}$-bisimulation implies that, there are exactly m elements e_{1}, \ldots, e_{m}, of $\Delta^{\mathcal{J}}$ such that $\left(e, e_{i}\right) \in R^{\mathcal{J}}$. which implies that $(\mathcal{J}, e) \models(\leq n) R$.
$\mathcal{A L C Q}$ is more expressive than $\mathcal{A L C N}$

We show that in ALCQ we can distinguish]two models which are not distinguishable in $\mathcal{A L C N}$

$$
\models(\leq 1) R . \neg A
$$

$\not \models(\leq 1) R . \neg A$
$\mathcal{A L C Q}$ is more expressive than $\mathcal{A L C N}$

We show that in ALCQ we can distinguish]two models which are not distinguishable in $\mathcal{A L C N}$

$$
\models(\leq 1) R . \neg A
$$

$$
\not \models(\leq 1) R . \neg A
$$

Representing number restriction with inverse and functional roles

Exercise

Suppose that the concept C and T-box \mathcal{T} contains number restrictions only on a single role R. Define set of axioms \mathcal{T}_{R} such and a transformation τ from concepts of $\mathcal{A L C N}$ and $\mathcal{A L C \mathcal { I F }}$ such that the following fact holds: C is satisfiable w.r.t. \mathcal{T} in $\mathcal{A L C N}$ iff $\tau(C)$ is satisfiable w.r.t. $\tau(\mathcal{T}) \cup \mathcal{T}_{R}$ in $\mathcal{A L C I F}$

Representing number restriction with inverse and functional roles

Exercise

Suppose that the concept C and T-box \mathcal{T} contains number restrictions only on a single role R. Define set of axioms \mathcal{T}_{R} such and a transformation τ from concepts of $\mathcal{A L C N}$ and $\mathcal{A L C I F}$ such that the following fact holds: C is satisfiable w.r.t. \mathcal{T} in $\mathcal{A L C N}$ iff $\tau(C)$ is satisfiable w.r.t. $\tau(\mathcal{T}) \cup \mathcal{T}_{R}$ in $\mathcal{A L C I F}$

Intuitive solution

Replace the role R with R_{1}, \ldots, R_{n} used for counting the number of R 's successors.

$$
\begin{aligned}
& 1 \models(\leq 3) R \\
& 1 \models \neg(\geq 4) R
\end{aligned}
$$

Representing number restriction with inverse and functional roles

Exercise

Suppose that the concept C and T-box \mathcal{T} contains number restrictions only on a single role R. Define set of axioms \mathcal{T}_{R} such and a transformation τ from concepts of $\mathcal{A L C N}$ and $\mathcal{A L C I F}$ such that the following fact holds: C is satisfiable w.r.t. \mathcal{T} in $\mathcal{A L C N}$ iff $\tau(C)$ is satisfiable w.r.t. $\tau(\mathcal{T}) \cup \mathcal{T}_{R}$ in $\mathcal{A L C I F}$

Intuitive solution

Replace the role R with R_{1}, \ldots, R_{n} used for counting the number of R 's successors.

Encoding number restriction with inverse and

 functional roles
Solution (Formal)

(1) n is the maximum number occurring in a number restriction of C
(2) for every role R introduce R_{1}, \ldots, R_{n+1}
(0) for every role R_{i}, \mathcal{T}_{R} contains the axioms:

$$
\begin{aligned}
& \text { (} \exists R_{i+1} \text {.T } \subseteq \exists R_{i} \text {. T for } 1 \leq i \leq n \\
& \text { © } \subsetneq(\leq 1) R_{i} \text { for } 1 \leq i \leq n\left(N B: R_{n+1}\right. \text { is not functional) } \\
& \text { - } \top \sqsubseteq \forall R_{i} .\left(\forall R_{j}^{-} . \perp\right) \text { for } 1 \leq i \neq j \leq n
\end{aligned}
$$

(-) $\tau((\geq m) R)=\exists R_{m} \cdot \tau(A)$
(0) $\tau((\leq m) R)=\forall R_{m+1} \cdot \neg \tau(A)$
($\tau(\exists R . A)=\exists R_{1} \cdot \tau(A) \sqcup \cdots \sqcup \exists R_{n+1} \cdot \tau(A)$
($\tau(\forall R . A)=\forall R_{1} \cdot \tau(A) \sqcap \cdots \sqcap \forall R_{n+1} \cdot \tau(A)$

Encoding number restriction with inverse and

 functional roles
Solution (Formal (cont'd))

We have to prove that if C is satisfiable, then $\tau(C)$ is satisfiable in \mathcal{T}_{R}.
(1) If C is satisfiable in $\mathcal{A L C N}$, then it has a tree-shaped model \mathcal{I}

Encoding number restriction with inverse and

 functional roles
Solution (Formal (cont'd))

We have to prove that if C is satisfiable, then $\tau(C)$ is satisfiable in \mathcal{T}_{R}.
(1) If C is satisfiable in $\mathcal{A L C N}$, then it has a tree-shaped model \mathcal{I}
(2) Extend \mathcal{I} into \mathcal{J} with the interpretation of R_{1}, \ldots, R_{n+1} as follows. For all $d \in \Delta^{\mathcal{I}}$, let $R^{\mathcal{I}}(d)=\left\{d_{1}, \ldots, d_{m}, \ldots\right\}$ is the set of R-successors of d in \mathcal{I}, then

Encoding number restriction with inverse and

 functional roles
Solution (Formal (cont'd))

We have to prove that if C is satisfiable, then $\tau(C)$ is satisfiable in \mathcal{T}_{R}.
(1) If C is satisfiable in $\mathcal{A L C N}$, then it has a tree-shaped model \mathcal{I}
(2) Extend \mathcal{I} into \mathcal{J} with the interpretation of R_{1}, \ldots, R_{n+1} as follows. For all $d \in \Delta^{\mathcal{I}}$, let $R^{\mathcal{I}}(d)=\left\{d_{1}, \ldots, d_{m}, \ldots\right\}$ is the set of R-successors of d in \mathcal{I}, then

- if $|D|<n$, then add $\left(d, d_{i}\right)$ to $R_{i}^{\mathcal{J}}$ for $1 \leq i \leq|D|$

Encoding number restriction with inverse and

 functional roles
Solution (Formal (cont'd))

We have to prove that if C is satisfiable, then $\tau(C)$ is satisfiable in \mathcal{T}_{R}.
(1) If C is satisfiable in $\mathcal{A L C N}$, then it has a tree-shaped model \mathcal{I}
(2) Extend \mathcal{I} into \mathcal{J} with the interpretation of R_{1}, \ldots, R_{n+1} as follows.

For all $d \in \Delta^{\mathcal{I}}$, let $R^{\mathcal{I}}(d)=\left\{d_{1}, \ldots, d_{m}, \ldots\right\}$ is the set of R-successors of d in \mathcal{I}, then

- if $|D|<n$, then add $\left(d, d_{i}\right)$ to $R_{i}^{\mathcal{J}}$ for $1 \leq i \leq|D|$
- if $|D| \geq n$, then add $\left(d, d_{i}\right)$ to R_{i}^{I} for $1 \leq i \leq n$ and also add $\left(d, d_{j}\right)$ to R_{n+1}^{I} for $j \geq n+1$

Encoding number restriction with inverse and

 functional roles
Solution (Formal (cont'd))

We have to prove that if C is satisfiable, then $\tau(C)$ is satisfiable in \mathcal{T}_{R}.
(1) If C is satisfiable in $\mathcal{A L C N}$, then it has a tree-shaped model \mathcal{I}
(2) Extend \mathcal{I} into \mathcal{J} with the interpretation of R_{1}, \ldots, R_{n+1} as follows.

For all $d \in \Delta^{\mathcal{I}}$, let $R^{\mathcal{I}}(d)=\left\{d_{1}, \ldots, d_{m}, \ldots\right\}$ is the set of
R-successors of d in \mathcal{I}, then

- if $|D|<n$, then add $\left(d, d_{i}\right)$ to $R_{i}^{\mathcal{J}}$ for $1 \leq i \leq|D|$
- if $|D| \geq n$, then add $\left(d, d_{i}\right)$ to R_{i}^{I} for $1 \leq i \leq n$ and also add $\left(d, d_{j}\right)$ to R_{n+1}^{I} for $j \geq n+1$
(3) Prove that \mathcal{J} is a model of \mathcal{T}_{R}

Encoding number restriction with inverse and

 functional roles
Solution (Formal (cont'd))

We have to prove that if C is satisfiable, then $\tau(C)$ is satisfiable in \mathcal{T}_{R}.
(1) If C is satisfiable in $\mathcal{A L C N}$, then it has a tree-shaped model \mathcal{I}
(2) Extend \mathcal{I} into \mathcal{J} with the interpretation of R_{1}, \ldots, R_{n+1} as follows.

For all $d \in \Delta^{\mathcal{I}}$, let $R^{\mathcal{I}}(d)=\left\{d_{1}, \ldots, d_{m}, \ldots\right\}$ is the set of
R-successors of d in \mathcal{I}, then

- if $|D|<n$, then add $\left(d, d_{i}\right)$ to $R_{i}^{\mathcal{J}}$ for $1 \leq i \leq|D|$
- if $|D| \geq n$, then add $\left(d, d_{i}\right)$ to R_{i}^{I} for $1 \leq i \leq n$ and also add $\left(d, d_{j}\right)$ to R_{n+1}^{I} for $j \geq n+1$
(3) Prove that \mathcal{J} is a model of \mathcal{T}_{R}
(- Prove that \mathcal{J} is a model of $\tau(C)$

Encoding number restriction with inverse and

 functional roles
Solution (Formal (cont'd))

Finally we have to prove that if $\tau(C)$ is satisfiable in \mathcal{T}_{R}, then C is satisfiable.
(1) Let \mathcal{J} be a tree-shaped model of \mathcal{T}_{R} that satisfies C.
(2) Let \mathcal{I} be obtained by extending \mathcal{J} with the interpretation of R as follows $R^{\mathcal{I}}=R_{1}^{\mathcal{I}} \cup \cdots \cup R_{n+1}^{\mathcal{I}}$
(0) prove by induction on C, that \mathcal{I} is a model of C.

Role hierarchy \mathcal{H}

Definition

Role Hierarchy A role hierarchy \mathcal{H} is a finite set of role subsumptions, i.e., expressions of the form

$$
R \sqsubseteq S
$$

for role symbols R and S We say that R is a subrole of S

Definition
 $\mathcal{I} \models R \sqsubseteq S$ if and only if $R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$.

Role hierarchy \mathcal{H}

Definition

Role Hierarchy A role hierarchy \mathcal{H} is a finite set of role subsumptions, i.e., expressions of the form

$$
R \sqsubseteq S
$$

for role symbols R and S We say that R is a subrole of S

Definition

$\mathcal{I} \models R \sqsubseteq S$ if and only if $R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$.

Exercise

Explain why the construct $R \sqsubseteq S$ cannot be axiomatized by the subsumptions

$$
\begin{aligned}
& \exists R . T \sqsubseteq \exists S . \top \\
& \forall S . T \sqsubseteq \forall R . T
\end{aligned}
$$

Transitive roles \mathcal{S}

Semantic condition
$\mathcal{I} \models \operatorname{tr}(R)$ if $R^{\mathcal{I}}$ is a transitive relation.

Exercise

Explain why transitive roles cannot be axiomatized by the axiom

$$
\exists R .(\exists R . A) \sqsubseteq \exists R . A
$$

Transitive roles \mathcal{S}

Semantic condition

$\mathcal{I} \models \operatorname{tr}(R)$ if $R^{\mathcal{I}}$ is a transitive relation.

Exercise

Explain why transitive roles cannot be axiomatized by the axiom

$$
\exists R .(\exists R . A) \sqsubseteq \exists R . A
$$

Solution

this model satisfies the axiom $\exists R .(\exists R . A) \sqsubseteq \exists R . A$ but R is not transitive

T-box internalization

Satisfiability w.r.t. T-box vs. concept satisfiability

Until now we have distinguished between the following two problems:

- Satisfiability of a concept C and
- Satisfiability of a concept C w.r.t. a T-box \mathcal{T}.

Clearly the first problem is a special case of the second, but with expressive languages that support role hierarchy and transitive role satisfiability w.r.t., T-box can be reduced to satisfiability.

This is like in propositional or first order logic where the problem of checking $\Gamma \models \phi$ (validity under a finite set of axioms Γ) reduces to the problem of checking the validity of a single formula. I.e., $\wedge \Gamma \rightarrow \phi$.

T-box internalization for logics stronger than $\mathcal{S H}$

Lemma

Representing the whole t-box in a single concept Let C a concept and $\mathcal{T}=\left\{A_{1} \sqsubseteq B_{1}, \ldots, A_{n} \sqsubseteq B_{n}\right\}$ be a finite set of $G C l$.

$$
C_{\mathcal{T}}=\sqcap_{i=1}^{n} \neg A_{i} \sqcup B_{i}
$$

Let U be a new transitive role, and let

$$
\mathcal{R}_{U}=\{R \sqsubseteq U \mid \text { for all role } R \text { appearing in } C \text { and } \mathcal{T}\}
$$

C is satisfiable w.r.t., \mathcal{T} iff $C \sqcap C_{\mathcal{T}} \sqcap \forall U . C_{\mathcal{T}}$ is satisfiable w.r.t. \mathcal{R}_{U}

