Logics for Data and Knowledge Representation 6. DLs more expressive than \mathcal{ALC}

Luciano Serafini

FBK-irst, Trento, Italy

October 15, 2012

Extensions of \mathcal{ALC}

Number restrictions \mathcal{ALCN} ($\leq n$)R [($\geq n$)R]

Persons \sqsubseteq (\leq 1)*is_merried_with*

Number restriction allows to impose that a relation is a function

Qualified Number restrictions \mathcal{ALCQ} ($\leq n$)R.C [($\geq n$)R.C]

 $\mathsf{football_team} \ \sqsubseteq \ (\geq 1)\mathsf{has_player}.\mathsf{Golly} \sqcap$

. . .

 (≤ 2) has_player.Golly \sqcap

 (≥ 2) has_player.Defensor \sqcap

 (≥ 4) has_player.Defensor \sqcap

Extensions of \mathcal{ALC}

Inverse roles $\mathcal{ALCI} \mathbb{R}^-$. make it possible to use the inverse of a role. For example, we can specify has_Parent as the inverse of has_Child,

 $\mathsf{has}_\mathsf{Parent} \equiv \mathsf{has}_\mathsf{Child}^-$

meaning that hasParent^{\mathcal{I}} = {(y, x) | (x, y) \in has_Childl^{\mathcal{I}}} Transitive roles tr(R) used to state that a given relation is transitive

Tr(*hasAncestor*)

meaning that $(x, y), (y, z) \in hasAncestor^{\mathcal{I}} \to (x, z) \in hasAncestor^{\mathcal{I}}$ Subsumptions between roles $R \sqsubseteq S$ used to state that a relation is contained in another relation.

 $hasMother \sqsubseteq hasParent$

Exercise

Try to model the following facts in ALCI. (notice that not all the statements are modellable in ALCI)

- Lonely people do not have friends and are not friends of anybody
- An intermediate stop is a stop which has a predecessor stop and a successor stop
- A person is a child of his father

Solution

(Lonely people do not have friends and are not friends of anybody

An intermediate stop is a stop which has a predecessor stop and a successor stop

3 A person is a child of his father

Solution

Lonely people do not have friends and are not friends of anybody

 $lonely_person \equiv person \sqcap \neg \exists has_friend^-. \top \sqcap \neg \exists has_friend. \top$

An intermediate stop is a stop which has a predecessor stop and a successor stop

3 A person is a child of his father

Solution

Lonely people do not have friends and are not friends of anybody

lonely_person \equiv *person* $\sqcap \neg \exists has_friend^-$. $\top \sqcap \neg \exists has_friend$. \top

An intermediate stop is a stop which has a predecessor stop and a successor stop

 $Intermediate_stop \equiv Stop \sqcap \exists next.Stop \sqcap \exists next^-.Stop$

3 A person is a child of his father

non modellable Person ⊑ ∀has_father(∀has_father⁻.Person) is not enough

Exercise

Prove that the inverse role primitive constitutes an effective extension of the expressivity of \mathcal{ALC} , i.e., show that that \mathcal{ALC} is strictly less expressive than \mathcal{ALCI} .

Exercise

Prove that the inverse role primitive constitutes an effective extension of the expressivity of \mathcal{ALC} , i.e., show that that \mathcal{ALC} is strictly less expressive than \mathcal{ALCI} .

Solution

Suggestion: do it via bisimulation. I.e., show that there are two models that bisimulate which are distinguishable in *ALCI*.

Exercise

Prove that the inverse role primitive constitutes an effective extension of the expressivity of \mathcal{ALC} , i.e., show that that \mathcal{ALC} is strictly less expressive than \mathcal{ALCI} .

Solution

Suggestion: do it via bisimulation. I.e., show that there are two models that bisimulate which are distinguishable in *ALCI*.

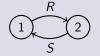
Exercise

Prove that the inverse role primitive constitutes an effective extension of the expressivity of \mathcal{ALC} , i.e., show that that \mathcal{ALC} is strictly less expressive than \mathcal{ALCI} .

Solution

Suggestion: do it via bisimulation. I.e., show that there are two models that bisimulate which are distinguishable in *ALCI*.

R

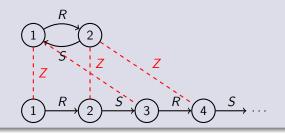


Exercise

Prove that the inverse role primitive constitutes an effective extension of the expressivity of \mathcal{ALC} , i.e., show that that \mathcal{ALC} is strictly less expressive than \mathcal{ALCI} .

Solution

Suggestion: do it via bisimulation. I.e., show that there are two models that bisimulate which are distinguishable in *ALCI*.

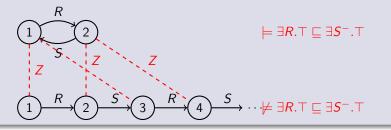


Exercise

Prove that the inverse role primitive constitutes an effective extension of the expressivity of \mathcal{ALC} , i.e., show that that \mathcal{ALC} is strictly less expressive than \mathcal{ALCI} .

Solution

Suggestion: do it via bisimulation. I.e., show that there are two models that bisimulate which are distinguishable in *ALCI*.



Theorem (Tree model property)

If C is satisfiable w.r.t. a T-box T, then it is satisfiable w.r.t. T by a tree-shaped model with root an element of C.

Proof.

Theorem (Tree model property)

If C is satisfiable w.r.t. a T-box T, then it is satisfiable w.r.t. T by a tree-shaped model with root an element of C.

Proof.

O extend the notion of bisimulation for \mathcal{ALCI}

Theorem (Tree model property)

If C is satisfiable w.r.t. a T-box T, then it is satisfiable w.r.t. T by a tree-shaped model with root an element of C.

Proof.

- 0 extend the notion of bisimulation for \mathcal{ALCI}
- Show that if $(\mathcal{I}, d) \sim_{\mathcal{ALCI}} (\mathcal{J}, e)$, then $d \in C^{\mathcal{I}}$ iff $e \in C^{\mathcal{J}}$ for any \mathcal{ALCI} concept C

Theorem (Tree model property)

If C is satisfiable w.r.t. a T-box T, then it is satisfiable w.r.t. T by a tree-shaped model with root an element of C.

Proof.

- ${\small \textcircled{0}}$ extend the notion of bisimulation for \mathcal{ALCI}
- Show that if (𝒯, d) ∼_{𝔅𝔅𝔅𝔅𝔅} (𝔅, e), then d ∈ C^𝔅 iff e ∈ C^𝔅 for any 𝔅𝔅𝔅𝔅𝔅𝔅𝔅𝔅𝔅

For a non tree-shaped model *I* and any element *d*, generate a tree-shaped model *J* rooted at *e* and show that (*I*, *d*) ~_{*ALCI*} (*J*, *e*).

Bisimulation for \mathcal{ALCI}

Definition (\mathcal{ALCI} -Bisimulation)

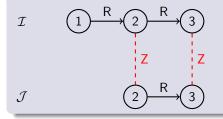
A \mathcal{ALCI} -bisimulation ρ between two \mathcal{ALCI} interpretations \mathcal{I} and \mathcal{J} is a bisimulation ρ , that satisfies the following additional condition when $d\rho e$: Inverse relation equivalence

- for all d' such that $(d', d) \in R^{\mathcal{I}}$, there is an $e' \in \Delta^{\mathcal{J}}$ such that $(e', e) \in R^{\mathcal{J}}$ and $d'\rho e'$.
- Same property in the opposite direction

 $(\mathcal{I}, d) \sim_{\mathcal{ALCI}} (\mathcal{J}, e)$ means that there is a \mathcal{ALCI} -bisimulation ρ between \mathcal{I} and \mathcal{J} such that $e\rho e$.

$\mathcal{ALCI}\text{-}\mathsf{bisimulation}$

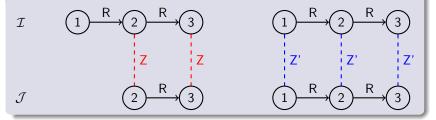
Example of bisimulation which is **not** a \mathcal{ALCI} -bisimulation, and how should be



 $(\mathcal{I},2)\sim (\mathcal{J},2)$ but not $(\mathcal{I},1)\sim_{\mathcal{ALCI}}(\mathcal{J},1)$

$\mathcal{ALCI}\text{-}\mathsf{bisimulation}$

Example of bisimulation which is not a $\mathcal{ALCI}\xspace$ -bisimulation, and how should be



 $(\mathcal{I},2)\sim (\mathcal{J},2)$ but not $(\mathcal{I},1)\sim_{\mathcal{ALCI}}(\mathcal{J},1)$

Invariance under \mathcal{ALCI} -bisimulation

Theorem

If $(\mathcal{I}, d) \sim_{\mathcal{ALCI}} (\mathcal{J}, e)$, then $d \in C^{\mathcal{I}}$ iff $e \in C^{\mathcal{J}}$ for any \mathcal{ALCI} concept C

Proof.

by induction on the complexity of C. All the cases as in \mathcal{ALC} , in addition we have the following step cases

• if C is $\exists R^-.C$

$$\begin{split} \mathcal{I}, d \models \exists R^{-}.C & i\!f\!f \quad \mathcal{I}, d' \models C \text{ for some } d' \text{ with } (d', d) \in R^{\mathcal{I}} \\ & i\!f\!f \quad \mathcal{J}, e' \models C \text{ for some } e' \text{ with } (e', e) \in R^{J} \\ & \text{ and } (\mathcal{I}, d') \sim_{\mathcal{ALCI}} (\mathcal{J}, e') \\ & i\!f\!f \quad \mathcal{J}, e \models \exists R^{-}.C \end{split}$$

Theorem

If \mathcal{I} is a non tree-shaped model, and d any element of \mathcal{I} , then there is a model \mathcal{J} which is tree-shaped such that $(\mathcal{I}, d) \sim_{\mathcal{ALCI}} (\mathcal{J}, d)$.

Proof.

We define \mathcal{J} as follows:

Theorem

If \mathcal{I} is a non tree-shaped model, and d any element of \mathcal{I} , then there is a model \mathcal{J} which is tree-shaped such that $(\mathcal{I}, d) \sim_{\mathcal{ALCI}} (\mathcal{J}, d)$.

Proof.

We define ${\mathcal J}$ as follows:

• $\Delta_{\mathcal{J}}$ is the set of paths $\pi = (d_1, d_2, \dots, d_n)$ such that $d_1 = d$, and $(d_i, d_{i+1}) \in R_i$ or $(d_{i+1}, d_i) \in R_i^{\mathcal{I}}$ for $(1 \le i \le n-1)$.

•
$$A^{\mathcal{J}} = \{\pi d_n | d_n \in A^{\mathcal{I}}\}$$

•
$$R^{\mathcal{J}} = \{ (\pi d_n , \pi d_n d_{n+1}) | (d_n, d_{n+1}) \in R^{\mathcal{I}} \} \cup \{ (\pi d_n d_{n+1} , \pi d_n) | (d_{n+1}, d_n) \in R^{\mathcal{I}} \}$$

Theorem

If \mathcal{I} is a non tree-shaped model, and d any element of \mathcal{I} , then there is a model \mathcal{J} which is tree-shaped such that $(\mathcal{I}, d) \sim_{\mathcal{ALCI}} (\mathcal{J}, d)$.

Proof.

We define ${\mathcal J}$ as follows:

• $\Delta_{\mathcal{J}}$ is the set of paths $\pi = (d_1, d_2, \dots, d_n)$ such that $d_1 = d$, and $(d_i, d_{i+1}) \in R_i$ or $(d_{i+1}, d_i) \in R_i^{\mathcal{I}}$ for $(1 \le i \le n-1)$.

•
$$A^{\mathcal{J}} = \{\pi d_n | d_n \in A^{\mathcal{I}}\}$$

•
$$R^{\mathcal{J}} = \{ (\pi d_n , \pi d_n d_{n+1}) | (d_n, d_{n+1}) \in R^{\mathcal{I}} \} \cup \{ (\pi d_n d_{n+1} , \pi d_n) | (d_{n+1}, d_n) \in R^{\mathcal{I}} \}$$

It's easy to show that ${\mathcal J}$ is a tree-shaped model rooted at d

Theorem

If \mathcal{I} is a non tree-shaped model, and d any element of \mathcal{I} , then there is a model \mathcal{J} which is tree-shaped such that $(\mathcal{I}, d) \sim_{\mathcal{ALCI}} (\mathcal{J}, d)$.

Proof.

We define $\mathcal J$ as follows:

• $\Delta_{\mathcal{J}}$ is the set of paths $\pi = (d_1, d_2, \dots, d_n)$ such that $d_1 = d$, and $(d_i, d_{i+1}) \in R_i$ or $(d_{i+1}, d_i) \in R_i^{\mathcal{I}}$ for $(1 \le i \le n-1)$.

•
$$A^{\mathcal{J}} = \{\pi d_n | d_n \in A^{\mathcal{I}}\}$$

•
$$R^{\mathcal{J}} = \{ (\pi d_n , \pi d_n d_{n+1}) | (d_n, d_{n+1}) \in R^{\mathcal{I}} \} \cup \{ (\pi d_n d_{n+1} , \pi d_n) | (d_{n+1}, d_n) \in R^{\mathcal{I}} \}$$

It's easy to show that \mathcal{J} is a tree-shaped model rooted at dThe \mathcal{ALCI} bisimulation ρ between \mathcal{I} and \mathcal{J} is defined as $(d_i), \pi d_i) \in \rho$

Number restriction

Exercise

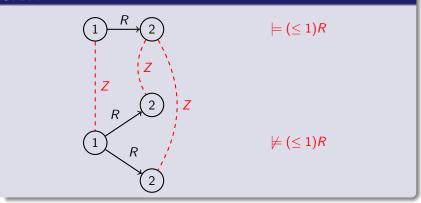
Prove that number restriction is an effective extension of the expressivity of \mathcal{ALC} , i.e., show that that \mathcal{ALC} is strictly less expressive than \mathcal{ALCN} .

Number restriction

Exercise

Prove that number restriction is an effective extension of the expressivity of ALC, i.e., show that that ALC is strictly less expressive than ALCN.

Solution



Qualified number restriction

Exercise

Prove that qualified number restriction is an effective extension of the expressivity of \mathcal{ALCN} , i.e., show that that \mathcal{ALCN} is strictly less expressive than \mathcal{ALCQ} .

Solution (outline)

- **1** Extend the notion of bisimulation relation to ALCN.
- Prove that ALCN is bisimulation invariant for the bisimulation relation defined in 1
- **•** Prove that ALCQ is more expressive than ALCN.

Bisimulation for \mathcal{ALCN}

Definition (\mathcal{ALCN} -Bisimulation)

A \mathcal{ALCN} -bisimulation ρ between two \mathcal{ALCN} interpretations \mathcal{I} and \mathcal{J} is a bisimulation ρ , that satisfies the following additional condition when $d\rho e$:

relation (cardinality) equivalence

if d₁,..., d_n are all the distinct elemnts of Δ^T such that ⟨d, d_i⟩ ∈ R^T for 1 ≤ i ≤ n, then there are exactly n, e₁,..., e_n elements of Δ^T such that (e, e_i) ∈ R^T for all 1 ≤ i ≤ n

• Same property in the opposite direction

 $(I, d) \sim (J, e)$ means that there is a bisimulation ρ between I and J such that $e\rho e$.

Invariance w.r.t. \mathcal{ALCN}

Theorem

If $(\mathcal{I}, d) \sim (\mathcal{J}, e)$ then for every ALCN concept C $(\mathcal{I}, d) \models C$ if and only if $(\mathcal{J}, e) \models C$

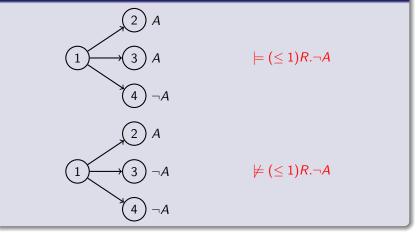
Proof.

By induction on the complexity of C, similar as for ALC bisimulation with the following additional base step:

If C is $(\leq n)R$ If $(\mathcal{I}, d) \models (\leq n)R$, then there are $m \leq n$ elements d_1, \ldots, d_m with $R(d, d_i)$. The additional condition on \mathcal{ALCI} -bisimulation implies that, there are exactly m elements e_1, \ldots, e_m , of $\Delta^{\mathcal{J}}$ such that $(e, e_i) \in R^{\mathcal{J}}$. which implies that $(\mathcal{J}, e) \models (\leq n)R$.

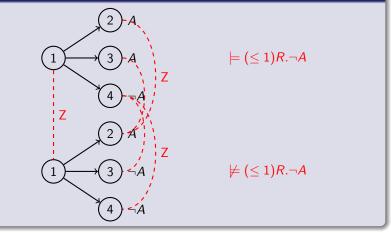
\mathcal{ALCQ} is more expressive than \mathcal{ALCN}

We show that in \mathcal{ALCQ} we can distinguish]two models which are not distinguishable in \mathcal{ALCN}



\mathcal{ALCQ} is more expressive than \mathcal{ALCN}

We show that in \mathcal{ALCQ} we can distinguish]two models which are not distinguishable in \mathcal{ALCN}



Representing number restriction with inverse and functional roles

Exercise

Suppose that the concept *C* and T-box \mathcal{T} contains number restrictions only on a single role *R*. Define set of axioms \mathcal{T}_R such and a transformation τ from concepts of \mathcal{ALCN} and \mathcal{ALCIF} such that the following fact holds: *C* is satisfiable w.r.t. \mathcal{T} in \mathcal{ALCN} iff $\tau(C)$ is satisfiable w.r.t. $\tau(\mathcal{T}) \cup \mathcal{T}_R$ in \mathcal{ALCIF}

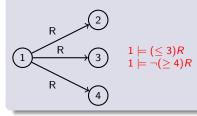
Representing number restriction with inverse and functional roles

Exercise

Suppose that the concept C and T-box \mathcal{T} contains number restrictions only on a single role R. Define set of axioms \mathcal{T}_R such and a transformation τ from concepts of \mathcal{ALCN} and \mathcal{ALCIF} such that the following fact holds: C is satisfiable w.r.t. \mathcal{T} in \mathcal{ALCN} iff $\tau(C)$ is satisfiable w.r.t. $\tau(\mathcal{T}) \cup \mathcal{T}_R$ in \mathcal{ALCIF}

Intuitive solution

Replace the role R with R_1, \ldots, R_n used for counting the number of R's successors.



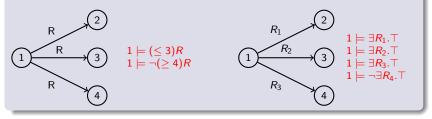
Representing number restriction with inverse and functional roles

Exercise

Suppose that the concept C and T-box \mathcal{T} contains number restrictions only on a single role R. Define set of axioms \mathcal{T}_R such and a transformation τ from concepts of \mathcal{ALCN} and \mathcal{ALCIF} such that the following fact holds: C is satisfiable w.r.t. \mathcal{T} in \mathcal{ALCN} iff $\tau(C)$ is satisfiable w.r.t. $\tau(\mathcal{T}) \cup \mathcal{T}_R$ in \mathcal{ALCIF}

Intuitive solution

Replace the role R with R_1, \ldots, R_n used for counting the number of R's successors.



Encoding number restriction with inverse and functional roles

Solution (Formal)

- In is the maximum number occurring in a number restriction of C
- for every role R introduce R_1, \ldots, R_{n+1}
- for every role R_i , T_R contains the axioms:

•
$$\exists R_{i+1}$$
. $\top \sqsubseteq \exists R_i$. \top for $1 \le i \le n$

③
$$\top \sqsubseteq \forall R_i.(\forall R_j^-.⊥)$$
 for $1 \le i \ne j \le n$

$$(\geq m) R) = \exists R_m . \tau(A)$$

Solution (Formal (cont'd))

We have to prove that if C is satisfiable, then $\tau(C)$ is satisfiable in \mathcal{T}_R .

() If C is satisfiable in \mathcal{ALCN} , then it has a tree-shaped model \mathcal{I}

Solution (Formal (cont'd))

We have to prove that if C is satisfiable, then $\tau(C)$ is satisfiable in \mathcal{T}_R .

- **()** If C is satisfiable in ALCN, then it has a tree-shaped model I
- Extend I into J with the interpretation of R₁,..., R_{n+1} as follows. For all d ∈ Δ^I, let R^I(d) = {d₁,..., d_m,...} is the set of R-successors of d in I, then

Solution (Formal (cont'd))

We have to prove that if C is satisfiable, then $\tau(C)$ is satisfiable in \mathcal{T}_R .

- **()** If C is satisfiable in ALCN, then it has a tree-shaped model I
- Extend I into J with the interpretation of R₁,..., R_{n+1} as follows. For all d ∈ Δ^I, let R^I(d) = {d₁,..., d_m,...} is the set of R-successors of d in I, then

• if |D| < n, then add (d, d_i) to $R_i^{\mathcal{J}}$ for $1 \le i \le |D|$

Solution (Formal (cont'd))

We have to prove that if C is satisfiable, then $\tau(C)$ is satisfiable in \mathcal{T}_R .

- If C is satisfiable in ALCN, then it has a tree-shaped model I
- Extend I into J with the interpretation of R₁,..., R_{n+1} as follows. For all d ∈ Δ^I, let R^I(d) = {d₁,..., d_m,...} is the set of R-successors of d in I, then
 - if |D| < n, then add (d, d_i) to $R_i^{\mathcal{J}}$ for $1 \le i \le |D|$
 - if $|D| \ge n$, then add (d, d_i) to $R_i^{\mathcal{I}}$ for $1 \le i \le n$ and also add (d, d_j) to $R_{n+1}^{\mathcal{I}}$ for $j \ge n+1$

Solution (Formal (cont'd))

We have to prove that if C is satisfiable, then $\tau(C)$ is satisfiable in \mathcal{T}_R .

- If C is satisfiable in ALCN, then it has a tree-shaped model I
- Extend I into J with the interpretation of R₁,..., R_{n+1} as follows. For all d ∈ Δ^I, let R^I(d) = {d₁,..., d_m,...} is the set of R-successors of d in I, then
 - if |D| < n, then add (d, d_i) to $R_i^{\mathcal{J}}$ for $1 \le i \le |D|$
 - if $|D| \ge n$, then add (d, d_i) to $R_i^{\mathcal{I}}$ for $1 \le i \le n$ and also add (d, d_j) to $R_{n+1}^{\mathcal{I}}$ for $j \ge n+1$

O Prove that \mathcal{J} is a model of \mathcal{T}_R

Solution (Formal (cont'd))

We have to prove that if C is satisfiable, then $\tau(C)$ is satisfiable in \mathcal{T}_R .

- If C is satisfiable in ALCN, then it has a tree-shaped model I
- Extend I into J with the interpretation of R₁,..., R_{n+1} as follows. For all d ∈ Δ^I, let R^I(d) = {d₁,..., d_m,...} is the set of R-successors of d in I, then
 - if |D| < n, then add (d, d_i) to $R_i^{\mathcal{J}}$ for $1 \le i \le |D|$
 - if $|D| \ge n$, then add (d, d_i) to $R_i^{\mathcal{I}}$ for $1 \le i \le n$ and also add (d, d_j) to $R_{n+1}^{\mathcal{I}}$ for $j \ge n+1$
- **O** Prove that \mathcal{J} is a model of \mathcal{T}_R
- Prove that \mathcal{J} is a model of $\tau(C)$

Solution (Formal (cont'd))

Finally we have to prove that if $\tau(C)$ is satisfiable in \mathcal{T}_R , then C is satisfiable.

- Let \mathcal{J} be a tree-shaped model of \mathcal{T}_R that satisfies C.
- **2** Let \mathcal{I} be obtained by extending \mathcal{J} with the interpretation of R as follows $R^{\mathcal{I}} = R_1^{\mathcal{I}} \cup \cdots \cup R_{n+1}^{\mathcal{I}}$
- **(3)** prove by induction on C, that \mathcal{I} is a model of C.

Role hierarchy \mathcal{H}

Definition

Role Hierarchy A role hierarchy \mathcal{H} is a finite set of role subsumptions, i.e., expressions of the form

 $R \sqsubseteq S$

for role symbols R and S We say that R is a subrole of S

Definition

 $\mathcal{I} \models R \sqsubseteq S$ if and only if $R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$.

Role hierarchy \mathcal{H}

Definition

Role Hierarchy A role hierarchy \mathcal{H} is a finite set of role subsumptions, i.e., expressions of the form

 $R \sqsubseteq S$

for role symbols R and S We say that R is a subrole of S

Definition

 $\mathcal{I} \models R \sqsubseteq S$ if and only if $R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$.

Exercise

Explain why the construct $R \sqsubseteq S$ cannot be axiomatized by the subsumptions

 $\exists R. \top \sqsubseteq \exists S. \top \\ \forall S. \top \sqsubseteq \forall R. \top$

Transitive roles $\ensuremath{\mathcal{S}}$

Semantic condition

 $\mathcal{I} \models tr(R)$ if $R^{\mathcal{I}}$ is a transitive relation.

Exercise

Explain why transitive roles cannot be axiomatized by the axiom

 $\exists R.(\exists R.A) \sqsubseteq \exists R.A$

Transitive roles $\ensuremath{\mathcal{S}}$

Semantic condition

 $\mathcal{I} \models tr(R)$ if $R^{\mathcal{I}}$ is a transitive relation.

Exercise

Explain why transitive roles cannot be axiomatized by the axiom

 $\exists R.(\exists R.A) \sqsubseteq \exists R.A$

Solution



this model satisfies the axiom $\exists R.(\exists R.A) \sqsubseteq \exists R.A$ but R is not transitive

Satisfiability w.r.t. T-box vs. concept satisfiability

Until now we have distinguished between the following two problems:

- Satisfiability of a concept C and
- Satisfiability of a concept C w.r.t. a T-box \mathcal{T} .

Clearly the first problem is a special case of the second, but with expressive languages that support role hierarchy and transitive role satisfiability w.r.t., T-box can be reduced to satisfiability.

This is like in propositional or first order logic where the problem of checking $\Gamma \models \phi$ (validity under a finite set of axioms Γ) reduces to the problem of checking the validity of a single formula. I.e., $\bigwedge \Gamma \rightarrow \phi$.

T-box internalization for logics stronger than \mathcal{SH}

Lemma

Representing the whole t-box in a single concept Let C a concept and $\mathcal{T} = \{A_1 \sqsubseteq B_1, \dots, A_n \sqsubseteq B_n\}$ be a finite set of GCI.

$$C_{\mathcal{T}} = \sqcap_{i=1}^n \neg A_i \sqcup B_i$$

Let U be a new transitive role, and let

 $\mathcal{R}_U = \{ R \sqsubseteq U | \text{for all role } R \text{ appearing in } C \text{ and } \mathcal{T} \}$

C is satisfiable w.r.t., \mathcal{T} iff $C \sqcap C_{\mathcal{T}} \sqcap \forall U.C_{\mathcal{T}}$ is satisfiable w.r.t. \mathcal{R}_U