Logics for Data and Knowledge Representation 5. Reasoning in \mathcal{ALC}

Luciano Serafini

FBK-irst, Trento, Italy

October 14, 2012

The basic inference problems on concepts and T-boxes are the following:

Concept subsumption

C is subsumed by *D*, or equivalently, *D* subsumes *C*, in symbols $\models C \sqsubseteq D$, if and only if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all interpretations \mathcal{I}

The basic inference problems on concepts and T-boxes are the following:

Concept subsumption

C is subsumed by *D*, or equivalently, *D* subsumes *C*, in symbols $\models C \sqsubseteq D$, if and only if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all interpretations \mathcal{I}

Concept Subsumption w.r.t. T-Box C is subsumed by D w.r.t., T-box \mathcal{T} , or

equivalently, D subsumes C in \mathcal{T} , in symbols $\models C \sqsubseteq_{\mathcal{T}} D$, (an alternative notation $\mathcal{T} \models C \sqsubseteq D$) if and only if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all interpretations \mathcal{I} that satisfies \mathcal{T} .

The basic inference problems on concepts and T-boxes are the following:

Concept subsumption

C is subsumed by D, or equivalently, D subsumes C, in symbols $\models C \sqsubseteq D$, if and only if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all interpretations \mathcal{I}

Concept consistency

C is consistent if and only if there exists an interpretation \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$.

Concept Subsumption w.r.t. T-Box *C* is subsumed by *D* w.r.t., T-box \mathcal{T} , or equivalently, *D* subsumes *C* in \mathcal{T} , in symbols $\models C \sqsubseteq_{\mathcal{T}} D$, (an alternative notation $\mathcal{T} \models C \sqsubseteq D$) if and only if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all interpretations \mathcal{I} that satisfies \mathcal{T} .

The basic inference problems on concepts and T-boxes are the following:

Concept subsumption

C is subsumed by *D*, or equivalently, *D* subsumes *C*, in symbols $\models C \sqsubseteq D$, if and only if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all interpretations \mathcal{I}

Concept Subsumption w.r.t. T-Box

C is subsumed by *D* w.r.t., *T*-box \mathcal{T} , or equivalently, *D* subsumes *C* in \mathcal{T} , in symbols $\models C \sqsubseteq_{\mathcal{T}} D$, (an alternative notation $\mathcal{T} \models C \sqsubseteq D$) if and only if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all interpretations \mathcal{I} that satisfies \mathcal{T} .

Concept consistency

C is consistent if and only if there exists an interpretation \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$.

Concept consistency w.r.t a Tbox

C is consistent w.r.t. \mathcal{T} if and only if there a model \mathcal{I} of \mathcal{T} with $C^{\mathcal{I}} \neq \emptyset$

The basic inference problems on concepts and T-boxes are the following:

Concept subsumption

C is subsumed by D, or equivalently, D subsumes C, in symbols $\models C \sqsubseteq D$, if and only if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all interpretations \mathcal{I}

Concept Subsumption w.r.t. T-Box

C is subsumed by *D* w.r.t., T-box \mathcal{T} , or equivalently, *D* subsumes *C* in \mathcal{T} , in symbols $\models C \sqsubseteq_{\mathcal{T}} D$, (an alternative notation $\mathcal{T} \models C \sqsubseteq D$) if and only if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all interpretations \mathcal{I} that satisfies \mathcal{T} .

Concept consistency

C is consistent if and only if there exists an interpretation \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$.

Concept consistency w.r.t a Tbox

C is consistent w.r.t. \mathcal{T} if and only if there a model \mathcal{I} of \mathcal{T} with $C^{\mathcal{I}} \neq \emptyset$

Consistency of a T-box

A T-box \mathcal{T} is consistent, if there is an interpretation \mathcal{I} that satisfies \mathcal{T} , i.e., $\mathcal{I} \models \mathcal{T}$.

\mathcal{ALC} Dependencies between basic inference problems

Concept subsumption \Leftrightarrow concept consistency

$$\models C \sqsubseteq D \iff C \sqcap \neg D \text{ is not consistent}$$
(1)
$$\mathcal{T} \models C \sqsubseteq D \iff C \sqcap \neg D \text{ is not consistent w.r.t., } \mathcal{T}$$
(2)

Proof.

We prove property (2). Indeed (1) is a special case of (2) with $\mathcal{T} = \emptyset$.

$$\mathcal{T} \models C \sqsubseteq D \iff \text{ for all } \mathcal{I} \text{ such that } \mathcal{I} \models \mathcal{T}, \ \mathcal{C}^{\mathcal{I}} \subseteq D^{\mathcal{I}}$$
$$\iff \text{ for all } \mathcal{I} \text{ s.t. } \mathcal{I} \models \mathcal{T}, \ (\mathcal{C} \sqcap \neg D)^{\mathcal{I}} = \emptyset$$
$$\iff \text{ there is no } \mathcal{I} \models \mathcal{T}, \ (\mathcal{C} \sqcap \neg D)^{\mathcal{I}} \neq \emptyset$$
$$\iff \mathcal{C} \sqcap \neg D \text{ is not satisfiable in } \mathcal{T}$$

Dependencies between basic inference problems

Concept consistency w.r.t., T-box ⇔ T-box consistency

C is consistent w.r.t. $\mathcal{T} \iff \mathcal{T} \cup \{\exists P_{new}.C\}$ is consistent (3)

Where P_{new} is a "fresh" role, i.e., a role symbol not appearing in \mathcal{T}

Proof.

 $\implies \text{ If } C \text{ is consistent w.r.t. } \mathcal{T}, \text{ there is an interpretation } \mathcal{I} \text{ that satisfies } C \text{ and such that } C^{\mathcal{I}} \neq \emptyset. \text{ Let } \mathcal{I}' \text{ be the extension of } \mathcal{I} \text{ where } (P_{new}) = \Delta \times C^{\mathcal{I}}. \text{ Since } C^{\mathcal{I}} \text{ is not empty we have that for all } d \in \Delta^{\mathcal{I}} \text{ there is a } d' \in C^{\mathcal{I}} \text{ such that } (d, d') \in (P_{new})^{\mathcal{I}}, \text{ this implies that } d \in (\exists P_{new}.C. \text{ Since this holds for every } d \in \Delta^{\mathcal{I}}, \text{ we have that } \mathcal{I} \models \top \sqsubseteq \exists P_{new}.C, \text{ and therefore } \mathcal{I} \text{ is a model for } \mathcal{T} \cup \{\top \sqsubseteq \exists P_{new}.C\}.$

 $\leftarrow \quad \text{If } \mathcal{T} \cup \{\top \sqsubseteq \exists P_{new}.C\} \text{ is consistent then there is a model } \mathcal{I} \text{ that satisfies} \\ \top \sqsubseteq \exists P_{new}.C. \text{ Since } \top^{\mathcal{I}} \text{ is not empty, this implies that there is a } d \in \exists P_{new}.C, \\ \text{which implies that there is a } d', \text{ with } (d, d') \in P_{new} \text{ and } d' \in C^{\mathcal{I}}, \text{ i.e., } C \text{ is consistent.}$

Dependencies between basic inference problems

(un)satisfiability general properties - exercises

Exercise

Show that $\models C \sqsubseteq D$ implies $\models \exists R.C \sqsubseteq \exists R.D$

(un)satisfiability general properties - exercises

Exercise

Show that $\models C \sqsubseteq D$ implies $\models \exists R.C \sqsubseteq \exists R.D$

Solution

We have to prove that for all \mathcal{I} , $(\exists R.C)^{\mathcal{I}} \subseteq (\exists R.C)^{\mathcal{I}}$ under the hypothesis that for all \mathcal{I} , $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.

- Let $x \in (\exists R.C)^{\mathcal{I}}$, we want to show that x is also in $(\exists R.D)^{\mathcal{I}}$.
- If $x \in (\exists R.C)^{\mathcal{I}}$, then by the interpretation of $\exists R$ there must be an y with $(x, y) \in R^{\mathcal{I}}$ such that $y \in C^{\mathcal{I}}$.
- By the hypothesis that $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for all \mathcal{I} , we have that $y \in D^{\mathcal{I}}$.
- The fact that $(x, y) \in R^{\mathcal{I}}$ and $y \in D^{\mathcal{I}}$ implies that $x \in (\exists R.D)^{\mathcal{I}}$.

Exercise

For each of the following formula say if it is valid, satisfiable or unsatisfiable. If it is not valid provide a model that falsify it.

 $\forall R(A \sqcap B) \equiv \forall RA \sqcap \forall RB$ $\forall R(A \sqcup B) \equiv \forall RA \sqcup \forall RB$ $\exists R(A \sqcap B) \equiv \exists RA \sqcap \exists RB$ $\exists R(A \sqcup B) \equiv \exists RA \sqcup \exists RB$

Exercise

For each of the following formula say if it is valid, satisfiable or unsatisfiable. If it is not valid provide a model that falsify it.

 $\forall R(A \sqcap B) \equiv \forall RA \sqcap \forall RB$ $\forall R(A \sqcup B) \equiv \forall RA \sqcup \forall RB$ $\exists R(A \sqcap B) \equiv \exists RA \sqcap \exists RB$ $\exists R(A \sqcup B) \equiv \exists RA \sqcup \exists RB$

Solution

 $\forall R(A \sqcap B) \equiv \forall RA \sqcup \forall RB \text{ is valid and we can prove that} (\forall R(A \sqcap B))^{\mathcal{I}} = (\forall R.A \sqcap \forall R.B)^{\mathcal{I}} \text{ for all interpretations } \mathcal{I}.$

$$(\forall R(A \sqcap B))^{\mathcal{I}} = \{(x, y) \in R^{\mathcal{I}} \mid y \in (A \sqcap B)^{\mathcal{I}}\}\$$

$$= \{(x, y) \in R^{\mathcal{I}} \mid y \in A^{\mathcal{I}} \cap B^{\mathcal{I}}\}\$$

$$= \{(x, y) \in R^{\mathcal{I}} \mid y \in A^{\mathcal{I}}\} \cap \{(x, y) \in R^{\mathcal{I}} \mid y \in B^{\mathcal{I}}\}\$$

$$= (\forall R.A)^{\mathcal{I}} \cap (\forall R.B)^{\mathcal{I}}\$$

$$= (\forall R.A \sqcap \forall R.B)^{\mathcal{I}}\$$

$$= (\forall R.A \sqcap \forall R.B)^{\mathcal{I}}\$$

$$= (\forall R.A \sqcap \forall R.B)^{\mathcal{I}}\$$

Exercise

For each of the following formula say if it is valid, satisfiable or unsatisfiable. If it is not valid provide a model that falsify it.

 $\forall R(A \sqcap B) \equiv \forall RA \sqcap \forall RB$ $\forall R(A \sqcup B) \equiv \forall RA \sqcup \forall RB$ $\exists R(A \sqcap B) \equiv \exists RA \sqcap \exists RB$ $\exists R(A \sqcup B) \equiv \exists RA \sqcup \exists RB$

Solution

Exercise

For each of the following formula say if it is valid, satisfiable or unsatisfiable. If it is not valid provide a model that falsify it.

 $\forall R(A \sqcap B) \equiv \forall RA \sqcap \forall RB$ $\forall R(A \sqcup B) \equiv \forall RA \sqcup \forall RB$ $\exists R(A \sqcap B) \equiv \exists RA \sqcap \exists RB$ $\exists R(A \sqcup B) \equiv \exists RA \sqcup \exists RB$

Solution

Exercise

For each of the following formula say if it is valid, satisfiable or unsatisfiable. If it is not valid provide a model that falsify it.

 $\forall R(A \sqcap B) \equiv \forall RA \sqcap \forall RB$ $\forall R(A \sqcup B) \equiv \forall RA \sqcup \forall RB$ $\exists R(A \sqcap B) \equiv \exists RA \sqcap \exists RB$ $\exists R(A \sqcup B) \equiv \exists RA \sqcup \exists RB$

Solution

 $\exists R(A \sqcup B) \equiv \exists RA \sqcup \exists RB$ is valid. We can provide a proof similar to the case of $\forall R.(A \sqcap B) \equiv \forall R.A \sqcap \forall R.B$, but in the following we provide an alternative proof, which is based on other equivalences:

$$\exists R(A \sqcup B) \equiv \neg \forall R(\neg (A \sqcup B))$$
$$\equiv \neg \forall R.(\neg A \sqcap \neg B)$$
$$\equiv \neg (\forall R.(\neg A) \sqcap \forall R.(\neg B))$$
$$\equiv \neg (\forall R.(\neg A) \sqcup \neg \forall R.(\neg B))$$
L. Serafini LDKR

Exercise

For each of the following concept say if it is valid, satisfiable or unsatisfiable. If it is valid, or unsatisfiable, provide a proof. If it is satisfiable (and not valid) then exhibit a model that interprets the concept in a non-empty set

- $\exists R.(\forall S.C) \sqcap \forall R.(\exists S.\neg C)$
- $(\exists S.C \sqcap \exists S.D) \sqcap \forall S.(\neg C \sqcup \neg D)$
- $\exists S.(C \sqcap D) \sqcap (\forall S. \neg C \sqcup \exists S. \neg D)$

Solution

$$s_0 \xrightarrow{R} s_1 \neg A, B$$

 $s_0 \in (\neg(\forall R.A \sqcup \exists R.(\neg A \sqcap \neg B))^{\mathcal{I}}$ $s_1 \notin (\neg(\forall R.A \sqcup \exists R.(\neg A \sqcap \neg B))^{\mathcal{I}}$

- ② $\exists R.(\forall S.C) \sqcap \forall R.(\exists S.\neg C)$ unsatisfiable, since $\exists R.\forall S.C \equiv \neg \forall R.\neg \forall S.C \equiv \neg \forall R.\exists S.\neg C$. This implies that $\exists R.(\forall S.C) \sqcap \forall R.(\exists S.\neg C)$ is equivalent to $\neg(\forall R.\exists S.\neg C) \sqcap (\forall R.\exists S.\neg C)$, which is a concept of the form $\neg B \sqcap B$ which is always unsatisfiable.
- $(\exists S.C \sqcap \exists S.D) \sqcap \forall S.(\neg C \sqcup \neg D) \text{ satisfiable}$
- $\exists S.(C \sqcap D) \sqcap (\forall S. \neg C \sqcup \exists S. \neg D) \text{ unsatisfiable}$

\mathcal{ALC} Basic Inference problems with A-boxes

Consistency of an A-Box \mathcal{A}

The A-box \mathcal{A} is consistent if and only if is there a model \mathcal{I} that satisfies \mathcal{A} , i.e., $\mathcal{I} \models \mathcal{A}$.

${\cal ALC}$ Basic Inference problems with A-boxes

Consistency of an A-Box ${\mathcal A}$

The A-box \mathcal{A} is consistent if and only if is there a model \mathcal{I} that satisfies \mathcal{A} , i.e., $\mathcal{I} \models \mathcal{A}$.

Consistency of a knowledge base $\ensuremath{\mathcal{K}}$

The A-box \mathcal{A} is consistent w.r.t., the T-box \mathcal{T} if and only if is there a model \mathcal{I} of \mathcal{T} that satisfies \mathcal{A} , i.e., there is a \mathcal{I} such that $\mathcal{I} \models \mathcal{T}$ and $\mathcal{I} \models \mathcal{A}$.

Consistency of a knowledge base ${\mathcal K}$

The assertion C(a) (resp, R(a, b)) is a logical consequence of the knowledge base \mathcal{K} , in symbols $\mathcal{K} \models C(a)$ if for all interpretations \mathcal{I} that satisfies \mathcal{K} , then $\mathcal{I} \models C(a)$ (resp, $\mathcal{I} \models R(a, b)$

\mathcal{ALC} Complex Inference Tasks

Concept hierarchy

The subsumption hierarchy of \mathcal{T} , is a partial order on the set of primitive concepts defined as follows:

 $\{A \prec B | A, B \in \Sigma_{\mathcal{C}} \text{ and } A \sqsubseteq_{\mathcal{T}} B\}$

Individual classification

For all individual $o \in \Sigma_I$ determine all the primitive concepts $A \in \Sigma_C$, such that $\mathcal{T} \models A(o)$.

Negation Normal Form

Definition

A concept C is in negation normal form (NNF) if the \neg operator is applied only to atomic concepts

Lemma

Every concept C can be reduced in an equivalent concept in NNF.

proof

A concept C can be reduced in NNF by the following rewriting rules that push inside the \neg operator:

$$\neg (C \sqcap D) \equiv \neg C \sqcup \neg D$$

$$\neg (C \sqcup D) \equiv \neg C \sqcap \neg D$$

$$\neg (\neg C) \equiv C$$

$$\neg \forall R.C \equiv \exists R.\neg C$$

$$\neg \exists R.C \equiv \forall R.\neg C$$

Checking satisfiability of a concept in \mathcal{ALC}

Tableaux

Let C_0 be an ALC-concept in NNF. In order to test satisfiability of C_0 , the algorithm starts with $A_0 := \{C_0(x_0)\}$, and applies the following rules:

Rule	Condition	\longrightarrow	Effect
$\rightarrow \square$	$C_1 \sqcap C_2(x) \in \mathcal{A}$	\longrightarrow	$\mathcal{A} := \mathcal{A} \cup \{C_1(x), C_2(x)\}$
\rightarrow_{\sqcup}	$C_1 \sqcup C_2(x) \in \mathcal{A}$	\longrightarrow	$\mathcal{A} := \mathcal{A} \cup \{C_1(x)\} \text{ or } \mathcal{A} \cup \{C_2(x)\}$
\rightarrow_\exists	$\exists R.C(x) \in \mathcal{A}$	\longrightarrow	$\mathcal{A} := \mathcal{A} \cup \{R(x, y), C(y)\}$
\rightarrow_{\forall}	$\forall R.C(x), R(x,y) \in \mathcal{A}$	\longrightarrow	$\mathcal{A} := \mathcal{A} \cup \{\mathcal{C}(y)\}$

Every rule is applicable only if it has an effect on \mathcal{A} , i.e., if it adds some new assertion; otherwise it's not applicable.

Checking satisfiability of a concept in \mathcal{ALC}

Definition

An ABox ${\mathcal A}$

- is complete iff none of the transformation rules applies to it.
- has a clash iff $\{C(x), \neg C(x)\} \subseteq \mathcal{A}$
- is closed if it contains a clash
- is open if it is not closed

Checking satisfiability of a concept in \mathcal{ALC}

Lemma

• There cannot be an infinite sequence of rule applications

$$\{C_0(x_0)\} \rightarrow \mathcal{A}_1 \rightarrow \mathcal{A}_2 \rightarrow \dots$$

- If A' is obtained by applying a deterministic rule to A, then A is consistent iff A' is consistent
- If A' and A'' can be obtained by applying a non-deterministic rule to A, then
 A is consistent iff either A' or A'' are consistent
- Any closed ABox A is inconsistent.
- Any complete and open ABox A is consistent.

Canonical model

Satisfiability of complete and open A-box

To show item 5 of previous lemma, we describe a method for generating an interpretation $\mathcal{I}_{\mathcal{A}}$ starting from a complete and closed A-box \mathcal{A} . This model is called Canonical interpretation

Canonical interpretation $\mathcal{I}_\mathcal{A}$

•
$$\Delta^{\mathcal{I}_{\mathcal{A}}} = \{x | \text{either } C(x), r(x, y), \text{ or } r(y, x) \in \mathcal{A}\}$$

• $A^{\mathcal{I}_{\mathcal{A}}} = \{x | A(x) \in \mathcal{A}\}$

Theorem

It is decidable whether or not an $\mathcal{ALC}\text{-}\mathsf{concept}$ is satisfiable

Complexity of reasoning in \mathcal{ALC}

Exercise

Consider the concept C_n inductively defined as follows;

$$C_1 = \exists R.A \sqcup \exists R.\neg A$$
$$C_{n+1} = \exists R.A \sqcup \exists R.\neg A \sqcap \forall R.C_n$$

Check the form of the canonical interpretation of the A-box generated starting form $\{C_n(x_0)\}$.

Solution

Given the input description C_n the satisfiability algorithm generates a complete and open ABox whose canonical interpretation is a binary tree of depth n, and thus consists of $2^{n+1} - 1$ individuals.

So in principle the complexity of checking sat in \mathcal{ALC} is exponential in space

Complexity of reasoning in \mathcal{ALC}

Theorem

Satisfiability of ALC concepts is PSPACE-complete.

Proof sketch of membership in $\ensuremath{\operatorname{PSPACE}}$.

We show that if an \mathcal{ALC} -concept is satisfiable, we can construct a model using only polynomial space.

- Since $\mathrm{PSSPACE}=\mathrm{NPSPACE},$ we consider a non-deterministic algorithm that for each application of the $\rightarrow_{\sqcup}\text{-rule},$ chooses the "correct" direction
- Then, the tree model property of \mathcal{ALC} implies that the different branches of the tree model to be constructed by the algorithm can be explored separately as follows:
 - $\textbf{O} Apply the \rightarrow_{\sqcap} and \rightarrow_{\sqcup} rules exhaustively, and check for clashes.$
 - Oboose a node x and exhaustively apply the →∃-rule to generate all necessary direct successors of x.
 - $\textcircled{0} Exhaustively apply the \rightarrow_\forall rule to propagate concepts to the newly$

Exercises: Satisfiability in \mathcal{ALC}

Exercise

Check the satisfiability of the following concepts:

 $\exists R.(\forall S.C) \sqcap \forall R.(\exists S.\neg C)$

$$(\exists S.C \sqcap \exists S.D) \sqcap \forall S.(\neg C \sqcup \neg D)$$

$$\exists S.(C \sqcap D) \sqcap (\forall S.\neg C \sqcup \exists S.\neg D)$$

$$C \sqcap \exists R.A \sqcap \exists R.B \sqcap \neg \exists R.(A \sqcap B)$$

Exercise

Check by means of tableaux, if the following subsumption is valid

 $\neg \forall R.A \sqcap \forall R((\forall R.B) \sqcup A) \sqsubseteq \forall R.\neg(\exists R.A) \sqcup \exists R.(\exists R.B)$

Solution

• to check subsumption of $C \sqsubseteq D$, we check inconsistency of $C \sqcup \neg D$, *i.e.*, inconsistency of

 $\neg \forall R.A \sqcap \forall R((\forall R.B) \sqcup A) \sqcap \neg (\forall R.\neg(\exists R.A) \sqcup \exists R.(\exists R.B))$ (4)

• First we transform (4) in NNF, as follows:

 $\exists R.\neg A \sqcap \forall R(\forall R.B \sqcup A) \sqcap (\exists R.\exists R.A \sqcap \forall R.\forall R.\neg B)$

Solution

$\exists R. \neg A \sqcap$	$\forall R(\forall R.B \sqcup A) \sqcap$		(15), (
(∃ <i>R</i> .∃ <i>I</i>	$R.A \sqcap \forall R.\forall R.\neg B)(x_0)$	(5)	(1
$(5) ightarrow \square$	$\exists R. \neg A(x_0)$	(6)	(15), (
	$\forall R(\forall R.B \sqcup A)(x_0)$	(7)	(1
	$\exists R. \exists R. A(x_0)$	(8)	
	$\forall R. \forall R. \neg B(x_0)$	(9)	(20), (1
(6) \rightarrow_\exists	$R(x_0, x_1)$	(10)	(20), (1
	$\neg A(x_1)$	(11)	(2
10), (7) \rightarrow_{\forall}	$(\forall R.B \sqcup A)(x_1)$	(12)	
$(10), (9) \rightarrow_{\forall}$	$\forall R \neg B(x_1)$	(13)	
$(12) ightarrow \sqcup$	$\forall R.B(x_1)$	(14)	
$(8) \rightarrow_\exists$	$R(x_0, x_2)$	(15)	
	$\exists R.A(x_2)$	(16)	

$$\begin{array}{c} (15), (7) \to_{\forall} (\forall R.B \sqcup A)(x_2) & (17) \\ \hline (17) \to_{\sqcup} \forall R.B(x_2) & (18) \\ (15), (9) \to_{\forall} \forall R \neg B(x_2) & (19) \\ \hline (16) \to_{\exists} R(x_2, x_3) & (20) \\ A(x_3) & (21) \\ (20), (18) \to_{\forall} B(x_3) & (22) \\ (20), (19) \to_{\forall} \neg B(x_3) & (23) \\ (22), (23) CLASH & (24) \\ \end{array}$$

Solution

$\exists R.\neg A \sqcap \forall R(\forall R.B \sqcup A) \sqcap$		$(15),(7) \rightarrow_{orall} (orall R.B \sqcup A)(x_2)$
$(\exists R.\exists R.A \sqcap \forall R.\forall R.\neg B)(x_0)$	(5)	$(17) ightarrow \sqcup A(x_2)$
$(5) \rightarrow_{\sqcap} \exists R. \neg A(x_0)$	(6)	
$\forall R(\forall R.B \sqcup A)(x_0)$	(7)	
$\exists R. \exists R. A(x_0)$	(8)	
$\forall R. \forall R. \neg B(x_0)$	(9)	
$(6) \rightarrow_\exists R(x_0, x_1)$	(10)	
$\neg A(x_1)$	(11)	
$(10),(7) \rightarrow_{orall} (orall R.B \sqcup A)(x_1)$	(12)	
$(10),(9)\rightarrow_\forall\forall R\neg B(x_1)$	(13)	
$(12) \rightarrow_{\sqcup} \forall R.B(x_1)$	(14)	
$(8) \rightarrow_\exists R(x_0, x_2)$	(15)	
$\exists R.A(x_2)$	(16)	

(17)

Solution

$\exists R. \neg A \sqcap \forall R(\forall R. B \sqcup$	⊥ <i>A</i>) ⊓
$(\exists R. \exists R. A \sqcap \forall R. \forall R)$	$R.\neg B)(x_0) (5)$
$(5) \rightarrow_{\sqcap} \exists R. \neg A(x_0)$	(6)
$\forall R(\forall R.B \sqcup$	$(A)(x_0)$ (7)
$\exists R. \exists R. A(x)$	⁰) (8)
$\forall R. \forall R. \neg B$	(x_0) (9)
$(6) \rightarrow_\exists R(x_0, x_1)$	(10)
$\neg A(x_1)$	(11)
(10), (7) \rightarrow_{\forall} ($\forall R.B \sqcup A$)	(x_1) (12)
$(10), (9) \rightarrow_{\forall} \forall R \neg B(x_1)$	(13)
$(12) \rightarrow_{\sqcup} \forall R.B(x_1)$	(14)
$(8) \rightarrow_\exists R(x_0, x_2)$	(15)
$\exists R.A(x_2)$	(16)

Consistency of \mathcal{ALC} A-boxes

Consistency of \mathcal{ALC} -ABoxe

Let A_0 be an ALC-ABox in NNF. To test A_0 for consistency, we simply apply the rules given above to A_0 .

Theorem

Consistency of ALC ABoxes is **PSPACE-COMPLETE**.

Exercise

Which of the following statements are true? Explain your answer.

- $\forall R.(A \sqcup B) \sqsubseteq \forall R.A \sqcup \forall R.B$

- $\exists R.A \sqcap \exists R.B \sqsubseteq \exists R.(A \sqcap B)$

Exercise

Which of the following statements are true? Explain your answer.

- $\forall R.(A \sqcup B) \sqsubseteq \forall R.A \sqcup \forall R.B$ $R^{\mathcal{I}} = \{(x, y), (x, z)\}, A' = \{y\}, B^{\mathcal{I}} = \{z\}$

$$\exists R.A \sqcap \exists R.B \sqsubseteq \exists R.(A \sqcap B) \\ R^{\mathcal{I}} = \{(x, y), (x, z)\}, \ A' = \{y\}, \ B^{\mathcal{I}} = \{z\}$$

Reasoning in \mathcal{ALC} with T-box

Subsumption w.r.t. TBoxes A subsumption $C \sqsubseteq D$ follows from a TBox \mathcal{T} , in symbols $\mathcal{T} \models C \sqsubseteq D$, if for every interpretation \mathcal{I} , if $\mathcal{I} \models \mathcal{T}$ then $\mathcal{I} \models C \sqsubseteq D$

Concept satisfiability w.r.t. TBoxes A concept C is satisfiable w.r.t. a TBox \mathcal{T} if there exists an interpretation $\mathcal{I} \models \mathcal{T}$ and such that $C^{\mathcal{I}} \neq \emptyset$.

TBox satisfiability A TBox ${\mathcal T}$ is satisfiable if, there is a model of ${\mathcal T}$.

We have the following reductions to concept satisfiability w.r.t. T-Boxes:

- $\mathcal{T} \models C \sqsubseteq D$ if and only if $C \sqcap \neg D$ is not consistent w.r.t. \mathcal{T} .
- \mathcal{T} is satisfiable if \top is consistent w.r.t. \mathcal{T} .

Definition (Acyclic T-box)

A TBox is acyclic if it is a set of concept definitions that neither contains multiple definitions nor cyclic definitions.

Multiple definitions are of the form $A \doteq C$ and $A \doteq D$ for distinct concept descriptions C and D

cyclic definitions are of the form

$$A_1 \doteq C_1[A_2], \ A_2 \doteq C_2[A_3], \ \dots, \ A_n \doteq C_n[A_1]$$

where C[A] means that the atomic concept A occurs in the complex concept description C.

Unfolding w.r.t. an acyclic T-Box

Naive reduction to \mathcal{ALC} satisfiability

Satisfiability w.r.t. acyclic T-box can be reduced to \mathcal{ALC} satisfiability without T-Boxes by unfolding the definitions

Unfolding: recursively replacing defined names by their defining concepts until no more defined names occur.

Definition (unfolding C w.r.t. T)

If \mathcal{T} is an acyclic T-box that does not contain multiple definitions, then the unfolding of C w.r.t. \mathcal{T} , is a concept denoted $unfold_{\mathcal{T}}(C)$ recursively defined as follows:

- $unfold_{\mathcal{T}}(A) = A$ if \mathcal{T} does not contain any definition for A
- $unfold_{\mathcal{T}}(A) = unfold(C)$ if \mathcal{T} contains the definition $A \equiv C$
- $unfold_{\mathcal{T}}(C \circ D) = unfold_{\mathcal{T}}(C) \circ unfold_{\mathcal{T}}(D)$ for $\circ = \sqcap, \sqcup$
- $unfold_{\mathcal{T}}(\circ C) = \circ unfold_{\mathcal{T}}(C)$ for $\circ = \neg, \exists R, \forall R$.

Theorem

C is satisfiable w.r.t. T iff unfold_T(C) is satisfiable.

Exponential blow up

Unfolding may lead to an exponential blow-up,

 $A_{0} \doteq \forall R.A_{1} \sqcap \forall S.A_{1}$ $A_{1} \doteq \forall R.A_{2} \sqcap \forall S.A_{2}$ \vdots $A_{n-1} \doteq \forall R.A_{n} \sqcap \forall S.A_{n}$

One can easily check that the unfold of A_0 generats a concept of length 2^n , and therefore the unfolding of a concept can grow exponentially

Smarter strategy - Unfolding on demand

We adopt a smarter strategy: unfold only when a concept effectively appear in the tree, and apply only one unfold step. Do not unfold completely.

Rule	Condition	\longrightarrow	Effect
\rightarrow_{\Box}	$C_1 \sqcap C_2(x) \in \mathcal{A}$	\rightarrow	$\mathcal{A} := \mathcal{A} \cup \{C_1(x), C_2(x)\}$
\rightarrow	$C_1 \sqcup C_2(x) \in \mathcal{A}$	\longrightarrow	$\mathcal{A} := \mathcal{A} \cup \{C_1(x)\} \text{ or } \mathcal{A} \cup \{C_2(x)\}$
$\rightarrow \exists$	$\exists R.C(x) \in \mathcal{A}$	\longrightarrow	$\mathcal{A} := \mathcal{A} \cup \{ R(x, y), C(y) \}$
\rightarrow_{\forall}	$\forall R.C(x), R(x, y) \in \mathcal{A}$	\longrightarrow	$\mathcal{A} := \mathcal{A} \cup \{\mathcal{C}(y)\}$
$\rightarrow_{\mathcal{T}}$	$A(x) \in \mathcal{A}$ and $A \doteq C \in \mathcal{T}$	\longrightarrow	$\mathcal{A} := \mathcal{A} \cup NNF(C)(x)$

Theorem

Satisfiability w.r.t. acyclic terminologies is **PSPACE-COMPLETE** in ALC.

Intuition

- $C \sqsubseteq D$ is equivalent to $\top \sqsubseteq \neg C \sqcup D$
- **②** The set of axioms { $\top \sqsubseteq \neg C_1 \sqcup D_1, ..., \top \sqsubseteq \neg C_n \sqcup D_n$ } can be compressed in one single axiom $\top \sqsubseteq C_T$, where

$$C_{\mathcal{T}} = (\neg C_1 \sqcup D_1) \sqcap \cdots \sqcap (\neg C_N \sqcup D_n)$$

- For every individual x that is generated in the A-box A, we have to add also the fact that it is of type C_T.
- We extend the set of rules as follows:

Rule	Condition	\longrightarrow	Effect
\rightarrow \Box	$C_1 \sqcap C_2(x) \in \mathcal{A}$	\longrightarrow	$\mathcal{A} := \mathcal{A} \cup \{C_1(x), C_2(x)\}$
\rightarrow	$C_1 \sqcup C_2(x) \in \mathcal{A}$	\longrightarrow	$\mathcal{A} := \mathcal{A} \cup \{C_1(x)\} \text{ or } \mathcal{A} \cup \{C_2(x)\}$
\rightarrow_\exists	$\exists R.C(x) \in \mathcal{A}$	\longrightarrow	$\mathcal{A} := \mathcal{A} \cup \{ R(x, y), C(y) \}$
\rightarrow_{\forall}	$\forall R.C(x), R(x, y) \in \mathcal{A}$	\longrightarrow	$\mathcal{A} := \mathcal{A} \cup \{\mathcal{C}(\mathbf{y})\}$
$\rightarrow_{\mathcal{T}}$	x occurs in $\mathcal A$	\rightarrow	$\mathcal{A} := \mathcal{A} \cup NNF(\mathcal{C}_{\mathcal{T}})(x)$

Exercise

Check if *C* is satisfiable w.r.t. the T-box $\{C \sqsubseteq \exists R.C\}$

Solution

 $\{C(x_0)\}$

termination is no longaer guaranteed

Exercise

Check if *C* is satisfiable w.r.t. the T-box $\{C \sqsubseteq \exists R.C\}$

Solution

$$\{C(x_0)\} \longrightarrow_{\mathcal{T}} \{C(x_0), \neg C \sqcup \exists R.C(x_0)\}$$

termination is no longaer guaranteed

Exercise

Check if *C* is satisfiable w.r.t. the T-box $\{C \sqsubseteq \exists R.C\}$

Solution

$$\{C(x_0)\} \quad \rightarrow_{\mathcal{T}} \{C(x_0), \neg C \sqcup \exists R.C(x_0)\} \\ \rightarrow_{\sqcup} \{C(x_0), \exists R.C(x_0)\}$$

termination is no longaer guaranteed

Exercise

Check if *C* is satisfiable w.r.t. the T-box $\{C \sqsubseteq \exists R.C\}$

Solution

$$\begin{array}{ll} \{C(x_0)\} & \rightarrow_{\mathcal{T}} \{C(x_0), \neg C \sqcup \exists R.C(x_0)\} \\ & \rightarrow_{\sqcup} \{C(x_0), \exists R.C(x_0)\} \\ & \rightarrow_{\exists} \{C(x_0), R(x_0, x_1), C(x_1)\} \end{array}$$

termination is no longaer guaranteed

Exercise

Check if *C* is satisfiable w.r.t. the T-box $\{C \sqsubseteq \exists R.C\}$

Solution

$$\begin{aligned} \{C(x_0)\} & \rightarrow_{\mathcal{T}} \{C(x_0), \neg C \sqcup \exists R.C(x_0)\} \\ & \rightarrow_{\sqcup} \{C(x_0), \exists R.C(x_0)\} \\ & \rightarrow_{\exists} \{C(x_0), R(x_0, x_1), C(x_1)\} \\ & \rightarrow_{\mathcal{T}} \{C(x_0), R(x_0, x_1), C(x_1), \neg C \sqcup \exists R.C(x_1)\} \end{aligned}$$

termination is no longaer guaranteed

Exercise

Check if *C* is satisfiable w.r.t. the T-box $\{C \sqsubseteq \exists R.C\}$

Solution

$$\begin{aligned} \{C(x_0)\} & \to_{\mathcal{T}} \{C(x_0), \neg C \sqcup \exists R.C(x_0)\} \\ & \to_{\sqcup} \{C(x_0), \exists R.C(x_0)\} \\ & \to_{\exists} \{C(x_0), R(x_0, x_1), C(x_1)\} \\ & \to_{\mathcal{T}} \{C(x_0), R(x_0, x_1), C(x_1), \neg C \sqcup \exists R.C(x_1)\} \\ & \to_{\sqcup} \{C(x_0), R(x_0, x_1), C(x_1), \exists R.C(x_1)\} \end{aligned}$$

termination is no longaer guaranteed

Exercise

Check if *C* is satisfiable w.r.t. the T-box $\{C \sqsubseteq \exists R.C\}$

Solution

$$\begin{aligned} \{C(x_0)\} & \to_{\mathcal{T}} \{C(x_0), \neg C \sqcup \exists R.C(x_0)\} \\ & \to_{\sqcup} \{C(x_0), \exists R.C(x_0)\} \\ & \to_{\exists} \{C(x_0), R(x_0, x_1), C(x_1)\} \\ & \to_{\mathcal{T}} \{C(x_0), R(x_0, x_1), C(x_1), \neg C \sqcup \exists R.C(x_1)\} \\ & \to_{\sqcup} \{C(x_0), R(x_0, x_1), C(x_1), \exists R.C(x_1)\} \\ & \to_{\exists} \{C(x_0), R(x_0, x_1), C(x_1), R(x_1, x_2), C(x_2)\} \end{aligned}$$

termination is no longaer guaranteed

Exercise

Check if *C* is satisfiable w.r.t. the T-box $\{C \sqsubseteq \exists R.C\}$

Solution

$$\begin{aligned} \{C(x_0)\} & \to_{\mathcal{T}} \{C(x_0), \neg C \sqcup \exists R.C(x_0)\} \\ & \to_{\sqcup} \{C(x_0), \exists R.C(x_0)\} \\ & \to_{\exists} \{C(x_0), R(x_0, x_1), C(x_1)\} \\ & \to_{\mathcal{T}} \{C(x_0), R(x_0, x_1), C(x_1), \neg C \sqcup \exists R.C(x_1)\} \\ & \to_{\sqcup} \{C(x_0), R(x_0, x_1), C(x_1), \exists R.C(x_1)\} \\ & \to_{\exists} \{C(x_0), R(x_0, x_1), C(x_1), R(x_1, x_2), C(x_2)\} \\ & \to_{\mathcal{T}} \ldots \end{aligned}$$

termination is no longaer guaranteed

Blocking

• y is an ancestor of y in an A-box A, if A contains

$$R_0(y, x_1), R_1(x_1, x_2), \ldots, R_n(x_n, x)$$

•
$$L(x) = \{C | C(x) \in A\}$$

- x is directly blocked in A if it has an ancestor y with $L(x) \subseteq L(y)$
- if y is the closest such node to x, we say that x is blocked by y
- A node is blocked if it is directly blocked or one of its ancestors is blocked

Restriction

Restrict the application of all rules to nodes which are not blocked

Exercise

Check if *C* is satisfiable w.r.t. the T-box $\{C \sqsubseteq \exists R.C\}$

Solution

$$\begin{array}{ll} \{C(x_0)\} & \rightarrow_{\mathcal{T}} \{C(x_0), \neg C \sqcup \exists R.C(x_0)\} \\ & \rightarrow_{\sqcup} \{C(x_0), \exists R.C(x_0)\} \\ & \rightarrow_{\exists} \{C(x_0), R(x_0, x_1), C(x_1)\} \end{array}$$

Termination

With blocking strategy the algorithm is guaranteed to terminate

L. Serafini LDKR

Exercise

Check if *C* is satisfiable w.r.t. the T-box $\{C \sqsubseteq \exists R.C\}$

Solution

$$\begin{array}{ll} \{C(x_0)\} & \rightarrow_{\mathcal{T}} \{C(x_0), \neg C \sqcup \exists R.C(x_0)\} \\ & \rightarrow_{\sqcup} \{C(x_0), \exists R.C(x_0)\} \\ & \rightarrow_{\exists} \{C(x_0), R(x_0, x_1), C(x_1)\} \end{array}$$

 x_1 is blocked by x_0 since

$$\pounds(x_1) = \{C\} \subseteq \pounds(x_0) = \{C, \exists R.C\}$$

Termination

With blocking strategy the algorithm is guaranteed to terminate

L. Serafini LDKR

Cyclic interpretations

The interpretation $\mathcal{I}_{\mathcal{A}}$ generated from an A-box \mathcal{A} obtained by the tableaux algorithm with blocking strategy is defined as follows:

• $\Delta^{\mathcal{I}_{\mathcal{A}}} = \{x \mid \mathcal{C}(x) \in \mathcal{A} \text{ and } x \text{ is not blocked}\}$

•
$$\mathcal{A}^{\mathcal{I}_{\mathcal{A}}} = \{x \in \Delta^{\mathcal{I}_{\mathcal{A}}} \mid \mathcal{A}(x) \in \mathcal{A}\}$$

•
$$R^{\mathcal{I}_{\mathcal{A}}} = \{(x, y) \in \Delta^{\mathcal{I}_{\mathcal{A}}} \times \Delta^{\mathcal{I}_{\mathcal{A}}} \mid R(x, y) \in \mathcal{A}\} \cup \{(x', x) \mid x' \in \Delta^{\mathcal{I}_{\mathcal{A}}}, R(x', x) \in \mathcal{A}, \text{and } x \text{ is blocked by } y\}$$

Complexity

The algorithm is no longer in PSPACE since it may generate role paths of exponential length before blocking occurs. S

Theorem

Satisfiability of an ALC concept w.r.t. general T-box is EXPTIME-COMPLETE

Finite model property

Theorem

A consistent T-box in \mathcal{ALC} has a finite model

proof

The model constructed via tableaux is finite. Completeness of the tableaux procedure implies that if a T-box is consistent, then the algorithm will find a model, which is indeed finite

Exercise

Transform $\neg (A \cup (\neg B \cap E) \cup (\exists R.(C \cup \forall P.(\neg D \cup (\exists P.\neg D)))))$ in negation normal form. Show that $\mathcal{K} \models A(a)$

Exercise

Let
$$\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$$
 with $\mathcal{T} = \{\top \sqsubseteq \forall R.C, \ C \sqcap A \sqsubseteq \bot$, and $\mathcal{A} = \{\exists R.A\}$