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Reasoning in FOL
General concepts
FOL Tableau reasoning

Reasoning tasks in FOL

.
Model checking
..
......Check if I |= ϕ

.
Satisfiability
..
......Find a model for a formula ϕ

.
Validity
..
......Check if a formula ϕ is valid, i.e., if it is true in all the interpretations.
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General concepts
FOL Tableau reasoning

Reasoning tasks in FOL

.
Logical consequence
..

......

Check if a formula ϕ is a logical consequence of a set of formulas Γ, i.e.,
Γ |= ϕ

.
Instance checking
..

......

Given a set of formulas Γ (a Knowledge Base) check if a constant c is an
instance of a formula ϕ(x), i.e., if Γ |= ϕ(c).

.
Query answering
..

......

Given a set of formulas Γ (a Knowledge Base) list all the constants c
such that Γ |= ϕ(c).
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Deciding logical consequence

.
Problem
..

......

Is there an algorithm to determine whether a formula ϕ is the logical
consequence of a set of formulas Γ?

.
Näıve solution
..

......

Apply directly the definition of logical consequence. That is:

build all the possible interpretations I;
determine for which interpretations I |= Γ;
for those interpretations check if I |= A

This solution can be used when Γ is finite, and there is a finite
number of relevant interpretations.
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Deciding logical consequence, is not always possible

.
Propositional Logics
..

......

The truth table method enumerates all the possible interpretations of a formula
and, for each formula, it computes the relation |=.

.
Other logics
..

......

For first order logic there no general algorithm to compute the logical
consequence. This because there may be an infinite number of relevant
interpretations.
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The Näıve solution in Propositional logic

.
Exercise
..

......

Determine, via truth table, if the following statements about logical
consequence holds

p |= q

p ⊃ q |= q ⊃ p

p,¬q ⊃ ¬p |= q

¬q ⊃ ¬p |= p ⊃ q
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Reasoning in FOL

Instead of building all possible interpretations of Γ and check whether
Γ |= ϕ build a proof of ϕ from Γ (in symbols, Γ ⊢ ϕ)

...1 Direct method: Try to build a proof of ϕ from Γ using axioms and
syntactic manipulation rules (reasoning rules). If I’m able to find a
proof then Γ |= ϕ holds.

...2 Refutation method: Try to derive a contradiction from Γ,¬ϕ using
axioms and syntactic manipulation rules (reasoning rules). If I’m
able to derive the contradiction then Γ |= ϕ holds.

...3 Semantic method: Try to build an interpretation for Γ,¬ϕ using
axioms and syntactic manipulation rules (reasoning rules). If I’m not
able to build this interpretation then Γ |= ϕ hold.
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Soundness & Completeness

How can we be sure that we derive exactly what we can logically infer?

.
Theorem (Soundness)
..

......

The syntactic manipulation rules are such that we do not derive “wrong”
logical consequences.
If Γ ⊢ A then Γ |= A.

.
Theorem (Completeness)
..

......

The syntactic manipulation rules are such that we can derive all logical
consequences.
If Γ |= A then Γ ⊢ A.

Different proof methods, but all need to be sound and complete!
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Decidability of FOL

.
Definition
..

......

A logical system is decidable if there is an effective method for
determining whether arbitrary formulas are logically valid.

Propositional logic is decidable, because the truth-table method can
be used to determine whether an arbitrary propositional formula is
logically valid.

First-order logic is not decidable in general; in particular, the set of
logical validities in any signature that includes equality and at least
one other predicate with two or more arguments is not decidable.
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Tableaux Calculus

The Tableaux Calculus is an algorithm solving the problem of
satisfiability.

If a formula is satisfiable, then there exists an open branch in the
tableaux of this formula.

the procedure attempts to construct the tableaux for a formula.
Sometimes it’s not possible since the model of the formula is infinite.

The basic idea is to incrementally build the model by looking at the
formula, by decomposing it in a top/down fashion. The procedure
exhaustively looks at all the possibilities, so that it can possibly
prove that no model could be found for unsatisfiable formulas.
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Tableaux method: Simple example
.
A model I for . . .
..

...... ∃xP(x) ∧ ∀x(P(x) ⊃ Q(a, f (x)))

.
must be such that . . .
..

...... I |= ∃xP(x) and I |= ∀x(P(x) ⊃ Q(a, f (x)))

.

. . . which implies that there is a c s.t.. . .

..

...... I |= P(c)

.

. . . furthermore, whe have that . . .

..

...... I |= P(c) ⊃ Q(a, f (c))

.

. . . which implies that either . . .

..

...... I ̸|= P(c)

.. . . or . . .

..

...... I |= Q(a, f (c))
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Tableaux production rules

.

. . . for propositional connectives

..

......

α rules
ϕ ∧ ψ
ϕ
ψ

¬(ϕ ∨ ψ)
¬ϕ
¬ψ

¬¬ϕ
ϕ

¬(ϕ ⊃ ψ)
ϕ
¬ψ

β rules
ϕ ∨ ψ
ϕ ψ

¬(ϕ ∧ ψ)
¬ϕ ¬ψ

ϕ ≡ ψ
ϕ ¬ϕ
ψ ¬ψ

¬(ϕ ≡ ψ)
ϕ ¬ϕ
¬ψ ψ

ϕ ⊃ ψ
¬ϕ ψ
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Tableaux production rules

.

. . . for quantifiers

..

......

γ rules
∀x .ϕ(x)
ϕ[x/t]

¬∃x .ϕ(x)
¬ϕ[x/t]

Where t is a term free
for x in ϕ

δ rules
¬∀x .ϕ(x)
¬ϕ[x/c]

∃x .ϕ(x)
ϕ[x/c]

where c is a new
constant not previ-
ously appearing in the
tableaux
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Substitution ϕ[x/t]

.
Substitution
..

......

ϕ[x/t] denotes the formula we get by replacing each free occurrence of
the variable x in the formula ϕ by the term t
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Substitution ϕ[x/t]

.
Example (of substitution)
..

......

P(x , y , f (x))[x/a] = P(a, y , f (a))

∀xP(x , y)[x/b] = ∀xP(x , y)
∃xP(x , x) ∧ Q(x)[x/c] = ∃xP(x , x) ∧ Q(c)

P(x , g(y))[y/f (x)] = P(x , g(f (x)))

∀x .P(x , y)[y/f (x)] = Not allowed since f (x) is not free for
y in ∀x .P(x , y)
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Example of tableaux

∃x(P(x) ∧ ¬Q(x)) ∧ ∀y(P(y) ∨ Q(y))

∃x(P(x) ∧ ¬Q(x))
∀y(P(y) ∨ Q(y))

P(a) ∧ ¬Q(a)

P(a)
¬Q(a)

P(a) ∨ Q(a)

P(a)

OPEN

Q(a)

CLASH
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Termination

For certain formulas the tableaux
can go on for ever generating an
infinite tree.

Example:
∃x .P(x) ∧ (∀xP(x) ⊃ P(f (x)))

∃x .P(x) ∧ ∀x(P(x) ⊃ P(f (x)))

∃x .P(x)
∀xP(x) ⊃ P(f (x))

P(a)

P(a) ⊃ P(f (a))

¬P(a)

CLASH

P(f (a))

P(f (a)) ⊃ P(f (f (a)))

¬P(f (a))

CLASH

P(f (f (a)))

...
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Some definition for tableaux

.
Definition (Closed branch)
..
......A closed branch is a branch which contains a formula and its negation.

.
Definition (Open branch)
..
......An open branch is a branch which is not closed

.
Definition (Closed tableaux)
..
......A tableaux is closed if all its branches are closed.

.
Definition
..

......

Let ϕ be a first-order formula and Γ a finite set of such formulas. We
write Γ ⊢ ϕ to say that there exists a closed tableau for Γ ∪ {¬ϕ}
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Tableaux

.
Exercise
..

......

Give a tableau proof for the following logical consequence:

∀x .P(x) ∨ ∀x .Q(x) |= ¬∃x(¬P(x) ∧ ¬Q(x))

.
Hint for solution
..

......

Try to build a closed tableau for

{∀x .P(x) ∨ ∀x .Q(x)} ∪ {¬¬∃x(¬P(x) ∧ ¬Q(x))}
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Tableaux

.
Solution
..

......

∀x .P(x) ∨ ∀x .Q(x) ∧ ∃x(¬P(x) ∧ ¬Q(x))

∀x .P(x) ∨ ∀x .Q(x)
∃x(¬P(x) ∧ ¬Q(x))

¬P(a) ∧ ¬Q(a)

¬P(a)
¬Q(a))

∀xP(x)

P(a)

CLASH

∀xQ(x)

Q(a)

CLASH
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Homework

.
Exercise
..

......

Give tableau proofs for the following logical consequence:

|= ∃x .(P(x) ∨ Q(x)) ≡ ∃x .P(x) ∨ ∃x .Q(x)
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Soundness and completeness

.
Theorem (Soundness)
..

...... Γ ⊢ ϕ =⇒ Γ |= ϕ

.
Theorem (Completeness)
..

...... Γ |= ϕ =⇒ Γ ⊢ ϕ

.
Remark
..

......

The mere existence of a closed tableau does not mean that we have an
effective method to build it! Concretely: we don’t know how often and in
which way we have to apply the γ-rules (∀xϕ(x) ⇒ ϕ[x/t]), and what
term to use in the substitution.
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Apply the γ-rules

.
Example
..
......Show that ∀x , y(P(x) ⊃ Q(y)) ⊃ (∃xP(x) ⊃ ∀yQ(y)) is valid:

.
Solution
..

......

¬(∀x , y(P(x) ⊃ Q(y)) ⊃ (∃xP(x) ⊃ ∀yQ(y)))

∀x , y(P(x) ⊃ Q(y))
¬(∃xP(x) ⊃ ∀yQ(y))

∃xP(x)
¬∀yQ(y)

P(a)

¬Q(b)

P(a) ⊃ Q(a) P(b) ⊃ Q(a) P(b) ⊃ Q(b) P(a) ⊃ Q(b) . . .
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Apply the γ-rules

.
Example
..
......Show that ∀x , y(P(x) ⊃ Q(y)) ⊃ (∃xP(x) ⊃ ∀yQ(y)) is valid:

.
Solution
..

......

¬(∀x , y(P(x) ⊃ Q(y)) ⊃ (∃xP(x) ⊃ ∀yQ(y)))

∀x , y(P(x) ⊃ Q(y))
¬(∃xP(x) ⊃ ∀yQ(y))

∃xP(x)
¬∀yQ(y)

P(a)

¬Q(b)

P(a) ⊃ Q(b)

¬P(a)

CLASH

Q(b)

CLASH
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Construction Strategies and Termination

From the example in the previous slide we can understand that
strategies to expand the tableau are important;

Nevertheless, because of γ-rules we cannot guarantee the existence
of an effective procedure to construct a closed tableau. Thus we
may not be able to build a counter-model for a formula in a finite
number of steps.

There are fragments of FOL for which you can guarantee
termination. These are for instance Description Logics and you will
see them later during the course.
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