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Why First Order Logic?
Syntax and Semantics of FOL

Reasoning in FOL

Expressivity of propositional logic - I

Question

Try to express in Propositional Logic the following statements:

Mary is a person

John is a person

Mary is mortal

Mary and John are siblings

A solution

Through atomic propositions:

Mary-is-a-person

John-is-a-person

Mary-is-mortal

Mary-and-John-are-siblings
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Problem with previous solution
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Why First Order Logic?
Syntax and Semantics of FOL

Reasoning in FOL

Problem with previous solution

Mary-is-a-person

John-is-a-person

Mary-is-mortal

Mary-and-John-are-siblings

How do we link Mary of the first sentence to Mary of the third sentence?
And how we link Mary and Mary-and-John?
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Expressivity of propositional logic - II

Question

Try to express in Propositional Logic the following statements:

All persons are mortal;

There is a person who is a spy.

A solution

We can give all people a name and express this fact through atomic
propositions:

Mary-is-mortal ∧ John-is-mortal ∧ Chris-is-mortal ∧ . . .∧
Michael-is-mortal

Mary-is-a-spy ∨John-is-a-spy ∨Chris-is-a-spy ∨ . . .∨
Michael-is-a-spy
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Problem with previous solution

Mary-is-mortal ∧ John-is-mortal ∧ Chris-is-mortal ∧ . . .∧
Michael-is-mortal

Mary-is-a-spy ∨John-is-a-spy ∨Chris-is-a-spy ∨ . . .∨
Michael-is-a-spy

The representation is not compact and generalization patterns are
difficult to express.
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Problem with previous solution

Mary-is-mortal ∧ John-is-mortal ∧ Chris-is-mortal ∧ . . .∧
Michael-is-mortal

Mary-is-a-spy ∨John-is-a-spy ∨Chris-is-a-spy ∨ . . .∨
Michael-is-a-spy

The representation is not compact and generalization patterns are
difficult to express.
What is we do not know all the people in our “universe”? How can we
express the statement independently from the people in the “universe”?

11 / 120



Why First Order Logic?
Syntax and Semantics of FOL

Reasoning in FOL

Expressivity of propositional logic - III

Question

Try to express in Propositional Logic the following statements:

Every natural number is either even or odd

A solution

We can use two families of propositions eveni and oddi for every i ≥ 1,
and use the set of formulas

{oddi ∨ eveni |i ≥ 1}
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Problem with previous solution

{oddi ∨ eveni |i ≥ 1}

What happens if we want to state this in one single formula? To do this
we would need to write an infinite formula like:

(odd1 ∨ even1) ∧ (odd2 ∨ even2) ∧ . . .

and this cannot be done in propositional logic.
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Expressivity of propositional logic -IV

Question

Express the statements:

the father of Luca is Italian

Solution (Partial)

mario-is-father-of-luca ⊃ mario-is-italian

michele-is-father-of-luca ⊃ michele-is-italian

. . .
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Problem with previous solution

mario-is-father-of-luca ⊃ mario-is-italian

michele-is-father-of-luca ⊃ michele-is-italian

. . .

This statement strictly depend from a fixed set of people. What happens
if we want to make this statement independently of the set of persons we
have in our universe?
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Why first order logic?

Because it provides a way of representing information like the following
one:

1 Mary is a person;

2 John is a person;

3 Mary is mortal;

4 Mary and John are siblings

5 Every person is mortal;

6 There is a person who is a spy;

7 Every natural number is either even or odd;

8 The father of Luca is Italian
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Why first order logic?

Because it provides a way of representing information like the following
one:

1 Mary is a person;

2 John is a person;

3 Mary is mortal;

4 Mary and John are siblings

5 Every person is mortal;

6 There is a person who is a spy;

7 Every natural number is either even or odd;

8 The father of Luca is Italian

and also to infer the third one from the first one and the fifth one.
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Syntax and Semantics
First Order Theories

First order logic

Whereas propositional logic assumes world contains facts, first-order logic
(like natural language) assumes the world contains:

Constants: mary, john, 1, 2, 3, red, blue, world war 1, world war 2,
18th Century. . .

Predicates: Mortal, Round, Prime, Brother of, Bigger than, Inside,
Part of, Has color, Occurred after, Owns, Comes between, . . .

Functions: Father of, Best friend, Third inning of, One more than,
End of, . . .
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Syntax and Semantics
First Order Theories

Constants and Predicates

Mary is a person

John is a person

Mary is mortal

Mary and John are siblings

In FOL it is possible to build an atomic propositions by applying a
predicate to constants

Person(mary)

Person(john)

Mortal(mary)

Siblings(mary , john)
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Quantifiers and variables

Every person is mortal;

There is a person who is a spy;

Every natural number is either even or odd;

In FOL it is possible to build propositions by applying universal
(existential) quantifiers to variables. This allows to quantify to arbitrary
objects of the universe.

∀x .Person(x) ⊃ Mortal(x);

∃x .Person(x) ⊃ Spy(x);

∀x .(Odd(x) ∨ Even(x))
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Syntax and Semantics
First Order Theories

Functions

The father of Luca is Italian.

In FOL it is possible to build propositions by applying a function to a
constant, and then a predicate to the resulting object.

Italian(fatherOf (Mario))
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Syntax of FOL

Logical symbols

the logical constant ⊥
propositional logical connectives ∧, ∨, ⊃, ¬, ≡
the quantifiers ∀, ∃
the set of variable symbols x1, x2, . . .

the equality symbol =. (optional)

Non Logical symbols

a set c1, c2, . . . of constant symbols

a set f1, f2, . . . of functional symbols each of which is associated with
its arity (i.e., number of arguments)

a set P1,P2, . . . of relational symbols each of which is associated
with its arity (i.e., number of arguments)
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Syntax and Semantics
First Order Theories

Terms and formulas of FOL

Terms

every constant ci and every variable xi is a term;

if t1, . . . , tn are terms and fi is a functional symbol of arity equal to
n, then f (t1, . . . , tn) is a term

Well formed formulas

if t1 and t2 are terms then t1 = t2 is a formula

If t1, . . . , tn are terms and Pi is relational symbol of arity equal to n,
then Pi (t1, . . . , tn) is formula

if A and B are formulas then ⊥, A ∧ B, A ⊃ B, A ∨ B ¬A are
formulas

if A is a formula and x a variable, then ∀x .A and ∃x .A are formulas.
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Syntax and Semantics
First Order Theories

Examples of terms and formulas

Example (Terms)

xi ,

ci ,

fi (xj , ck), and

f (g(x , y), h(x , y , z), y)

Example (formulas)

f (a, b) = c ,

P(c1),

∃x(A(x) ∨ B(y)), and

P(x) ⊃ ∃y .Q(x , y).
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Syntax and Semantics
First Order Theories

An example of representation in FOL

Example (Language)

constants functions (arity) Predicate (arity)

Aldo
Bruno
Carlo
MathLogic
DataBase
0, 1, . . . , 10

mark (2)
best-friend (1)

attend (2)
friend (2)
student (1)
course (1)
less-than (2)

Example (Terms)

Intuitive meaning

an individual named Aldo
the mark 1
Bruno’s best friend
anything
Bruno’s mark in MathLogic
somebody’s mark in DataBase
Bruno’s best friend mark in MathLogic

term

Aldo
1
best-friend(Bruno)
x
mark(Bruno,MathLogic)
mark(x,DataBase)
mark(best-friend(Aldo),MathLogic)
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Syntax and Semantics
First Order Theories

An example of representation in FOL (cont’d)

Example (Formulas)

Intuitive meaning

Bob and Roberto are the same person
Carlo is a person and MathLogic is a course
Aldo attends MathLogic
Courses are attended only by students
every course is attended by somebody
every student attends a course
a student who attends all the courses
a course has at least two attenders

Aldo’s best friend attend the same courses
attended by Aldo

best-friend is symmetric
Aldo and his best friend have the same mark

in MathLogic
A student can attend at most two courses

Formula

Bob = Roberto
person(Carlo) ∧ course(MathLogic)
attend(Aldo,MathLogic)
∀x(attend(x, y) ⊃ course(y) ⊃ student(x))
∀x(course(x) ⊃ ∃y attend(y , x))
∀x(student(x) ⊃ ∃y attend(x, y))
∃x(student(x) ∧ ∀y(course(y) ⊃ attend(x, y)))
∀x(course(x) ⊃ ∃y∃z

(attend(y , x) ∧ attend(z, x) ∧ ¬y = z))
∀x(attend(Aldo, x) ⊃

attend(best-friend(Aldo), x))
∀x(best-friend(best-friend(x)) = x)
mark(best-friend(Aldo),MathLogic) =

mark(Aldo,MathLogic)
∀x∀y∀z∀w(attend(x, y) ∧ attend(x, z)∧

attend(x,w) ⊃ (y = z ∨ z = w ∨ y = w))
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Syntax and Semantics
First Order Theories

Common Mistakes

Use of ∧ with ∀

∀xAt(FBK , x) ∧ Smart(x)

means “Everyone is at FBK and everyone
is smart”

“Everyone at FBK is smart” is formalized as
∀xAt(FBK , x) ⊃ Smart(x)

Use of ⊃ with ∃

∃xAt(FBK , x) ⊃ Smart(x)

is true if there is an x who is not at FBK

“There is an FBK smart person” is formalized as
∃xAt(FBK , x) ∧ Smart(x)
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Representing variations of quantifiers in FOL

Example

Represent the statement at most 2 students attend the KR course

∀x1∀x2∀x3(attend(x1,KR) ∧ attend(x2,KR) ∧ attend(x2,KR) ⊃
x1 = x3 ∨ x2 = x3 ∨ x1 = x3)

At most n . . .

∀x1 . . . xn+1

n+1∧
i=1

φ(xi ) ⊃
n+1∨
i 6=j=1

xi = xj
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Syntax and Semantics
First Order Theories

Representing variations quantifiers in FOL

Example

Represent the statement at least 2 students attend the KR course

∃x1∃x2(attend(x1,KR) ∧ attend(x2,KR) ∧ x1 6= x3)

At least n . . .

∃x1 . . . xn

 n∧
i=1

φ(xi ) ∧
n∧

i 6=j=1

xi 6= xj
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Semantics of FOL

FOL interpretation for a language L

A first order interpretation for the language
L = 〈c1, c2, . . . , f1, f2, . . . ,P1,P2, . . . 〉 is a pair 〈∆, I〉 where

∆ is a non empty set called interpretation domain

I is is a function, called interpretation function

I(ci ) ∈ ∆ (elements of the domain)
I(fi ) : ∆n → ∆ (n-ary function on the domain)
I(Pi ) ⊆ ∆n (n-ary relation on the domain)

where n is the arity of fi and Pi .
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Example of interpretation

Example (Of interpretation)

Symbols Constants: alice, bob, carol, robert
Function: mother-of (with arity equal to 1)
Predicate: friends (with arity equal to 2)

Domain ∆ = {1, 2, 3, 4, . . . }
Interpretation I(alice) = 1, I(bob) = 2, I(carol) = 3,

I(robert) = 2

I(mother-of) = M

M(1) = 3
M(2) = 1
M(3) = 4
M(n) = n + 1 for n ≥ 4

I(friends) = F =


〈1, 2〉 , 〈2, 1〉 , 〈3, 4〉 ,
〈4, 3〉 , 〈4, 2〉 , 〈2, 4〉 ,
〈4, 1〉 , 〈1, 4〉 , 〈4, 4〉
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Example (cont’d)

Alice Bob Carol Robert

4

M

M

Syntax
Semantics

M

2

1
M

3

F

FFF

F

Mother Friend
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Interpretation of terms

Definition (Assignment)

An assignment a is a function from the set of variables to ∆.

a[x/d ] denotes the assignment that coincides with a on all the variables
but x , which is associated to d .

Definition

Interpretation of terms The interpretation of a term t w.r.t. the
assignment a, in symbols I(t)[a] is recursively defined as follows:

I(xi )[a] = a(xi )

I(ci )[a] = I(ci )

I(f (t1, . . . , tn))[a] = I(f )(I(t1)[a], . . . , I(tn)[a])
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FOL Satisfiability of formulas

Definition (Satisfiability of a formula w.r.t. an assignment)

An interpretation I satisfies a formula φ w.r.t. the assignment a
according to the following rules:

I |= t1 = t2[a] iff I(t1)[a] = I(t2)[a]

I |= P(t1, . . . , tn)[a] iff 〈I(t1)[a], . . . , I(tn)[a]〉 ∈ I(P)

I |= φ ∧ ψ[a] iff I |= φ[a] and I |= ψ[a]

I |= φ ∨ ψ[a] iff I |= φ[a] or I |= ψ[a]

I |= φ ⊃ ψ[a] iff I 6|= φ[a] or I |= ψ[a]

I |= ¬φ[a] iff I 6|= φ[a]

I |= φ ≡ ψ[a] iff I |= φ[a] iff I |= ψ[a]

I |= ∃xφ[a] iff there is a d ∈ ∆ such thatI |= φ[a[x/d ]]

I |= ∀xφ[a] iff for all d ∈ ∆, I |= φ[a[x/d ]]
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Example (cont’d)

Exercise

Check the satisfiability of the following statements, considering the
interpretation defined few slides ago:

1 I |= Alice = Bob[a]

2 I |= Robert = Bob[a]

3 I |= x = Bob[a[x/2]
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Example (cont.).

I(mother-of(alice))[a] = 3

I(mother-of(x))[a[x/4]] = 5

I(friends(x, y)) =

x := y :=
1 2
2 1
4 1
1 4
4 2
2 4
4 3
3 4
4 4

I(friends(x, x)) =
x :=

4

I(friends(x, y) ∧ x = y) =
x := y :=

4 4

I(∃xfriends(x, y)) =

y :=
2
1
4
3

I(∀xfriends(x, y)) =
y :=

4
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Free variable and free terms

Intuition

A free occurrence of a variable x is an occurrence of x which is not
bounded by a (universal or existential) quantifier.

Definition (Free occurrence)

any occurrence of x in tk is free in P(t1, . . . , tk , . . . , tn)

any free occurrence of x in φ or in ψ is also fee in φ ∧ ψ, ψ ∨ φ,
ψ ⊃ φ, and ¬φ
any free occurrence of x in φ, is free in ∀y .φ and ∃y .φ if y is distinct
from x .

Definition (Ground/Closed Formula)

A formula φ is ground or closed if it does not contain free occurrences of
variables.
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Free variable and free terms

A variable x is free in φ (denote by φ(x)) if there is at least a free
occurrence of x in φ.
Free variables represents individuals which must be instantiated to make
the formula a meaningful proposition.

x is free in friends(alice, x).

x is free in P(x) ⊃ ∀x .Q(x) (the occurrence of x in red is free the
one in green is not free.
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Free variable and free terms - example

Definition (Term free for a variable)

A term is free for x in φ, if all the occurrences of x in φ are not in the
scope of a quantifier for a variable occurring in t.

An occurrence of a variable x can be safely instantiated by a term free
for x in a formula φ,
If you replace x with a terms which is not free for x in φ, you can have
unexpected effects:
E.g., replacing x with mother-of(y) in the formula ∃y .friends(x , y) you
obtain the formula

∃y .friends(mother-of(y), y)
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Satisfiability and Validity

Definition (Model, satisfiability and validity)

An interpretation I is a model of φ under the assignment a, if

I |= φ[a]

A formula φ is satisfiable if there is some I and some assignment a such that I |= φ[a].
A formula φ is unsatisfiable if it is not satisfiable.
A formula φ is valid if every I and every assignment a I |= φ[a]

Definition (Logical Consequence)

A formula φ is a logical consequence of a set of formulas Γ, in symbols Γ |= φ, if for
all interpretations I and for all assignment a

I |= Γ[a] =⇒ I |= φ[a]

where I |= Γ[a] means that I satisfies all the formulas in Γ under a.

Note: Validity of φ can be defined in terms of logical consequence as

∅ |= φ
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Note: Validity of φ can be defined in terms of logical consequence as ∅ |= φ
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Logical Consequence and reasoning

The notion of logical consequence enables us to determine if “Mary is
mortal” is a consequence of the facts that “Mary is a person” and “All
persons are mortal”.
What we need to do is to determine if

Person(mary),∀xPerson(x) ⊃ Mortal(x) |= Mortal(mary)

We’ll come back to this in the next lecture.
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Excercises

Say where these formulas are valid, satisfiable, or unsatisfiable

∀xP(x)

∀xP(x) ⊃ ∃yP(y)

∀x .∀y .(P(x) ⊃ P(y))

P(x) ⊃ ∃yP(y)

P(x) ∨ ¬P(y)

P(x) ∧ ¬P(y)

P(x) ⊃ ∀x .P(x)

∀x∃y .Q(x , y) ⊃ ∃y∀xQ(x , y)

x = x

∀x .P(x) ≡ ∀y .P(y)

x = y ⊃ ∀x .P(x) ≡ ∀y .P(y)

x = y ⊃ (P(x) ≡ P(y))

P(x) ≡ P(y) ⊃ x = y
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Properties of quantifiers

Proposition

The following formulas are valid

∀x(φ(x) ∧ ψ(x)) ≡ ∀xφ(x) ∧ ∀xψ(x)

∃x(φ(x) ∨ ψ(x)) ≡ ∃xφ(x) ∨ ∃xψ(x)

∀xφ(x) ≡ ¬∃x¬φ(x)

∀x∃xφ(x) ≡ ∃xφ(x)

∃x∀xφ(x) ≡ ∀xφ(x)

Proposition

The following formulas are not valid

∀x(φ(x) ∨ ψ(x)) ≡ ∀xφ(x) ∨ ∀xψ(x)

∃x(φ(x) ∧ ψ(x)) ≡ ∃xφ(x) ∧ ∃xψ(x)

∀xφ(x) ≡ ∃xφ(x)

∀x∃yφ(x, y) ≡ ∃y∀xφ(x, y)
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Expressing properties in FOL

For each property write a formula expressing the property, and for each
formula writhe the property it formalises.

Every Man is Mortal

∀x .Man(x) ⊃ Mortal(x)

Every Dog has a Tail

∀x .Dog(x) ⊃ ∃y(PartOf (x , y) ∧ Tail(y))

There are two dogs

∃x , y(Dog(x) ∧ Dog(y) ∧ x 6= y)

Not every dog is white

¬∀x .Dog(x) ⊃White(x)

∃x .Dog(x) ∧ ∃y .Dog(y)

There is a dog

∀x , y(Dog(x) ∧ Dog(y) ⊃ x = y)

There is at most one dog
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Open and Closed Formulas

Note that for closed formulas, satisfiability, validity and logical
consequence do not depend on the assignment of variables.

For closed formulas, we therefore omit the assignment and write
I |= φ.

More in general I |= φ[a] if and only if I |= φ[a′] when [a] and [a′]
coincide on the variables free in φ (they can differ on all the others)
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First order theories

Mathematics focuses on the study of properties of certain structures.
E.g. Natural/Rational/Real/Complex numbers, Algebras, Monoids,
Lattices, Partially-ordered sets, Topological spaces, fields, . . .

In knowledge representation, mathematical structures can be used as
a reference abstract model for a real world feature. e.g.,

natural/rational/real numbers can be used to represent linear time;
trees can be used to represent possible future evolutions;
graphs can be used to represent maps;
. . .

Logics provides a rigorous way to describe certain classes of
mathematical structures.
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First order theory

Definition (First order theory)

A first order theory is a set of formulas of the FOL language closed under
the logical consequence relation. That is, T is a theory iff T |= A implies
that A ∈ T

Remark

A FOL theory always contains an infinite set of formulas. Indeed any
theory T contains at least all the valid formulas (which are infinite).

Definition (Set of axioms for a theory)

A set of formulas Ω is a set of axioms for a theory T if for all φ ∈ T ,
Ω |= φ.
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First order theory (cont’d)

Definition

Finitely axiomatizable theory A theory T is finitely axiomatizable if it has
a finite set of axioms.

Definition (Axiomatizable structure)

Given a class of mathematical structures C for a language L, we say that
a theory T is a sound and complete axiomatization of C if and only if

T |= φ ⇐⇒ I |= φ for all I ∈ C
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Examples of first order theories

Number theory (or Peano Arithmetic) PA L contains the constant symbol 0, the 1-nary function
symbol s, (for successor) and two 2-nary function symbol + and ∗

1 0 6= s(x)

2 s(x) = s(y) ⊃ x = y

3 x + 0 = x

4 x + s(y) = s(x + y)

5 x ∗ 0 = 0

6 x ∗ s(y) = (x ∗ y) + x

7 the Induction axiom schema: φ(0) ∧ ∀x.(φ(x) ⊃ φ(s(x))) ⊃ ∀x.φ(x), for every formula
φ(x) with at least one free variable

K. Gödel 1931 It’s false that I |= PA if and only if I is isomorphic to the standard models for
natural numbers.
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Logical Consequence and reasoning

The notion of logical consequence enables us to determine if “Mary is
mortal” is a consequence of the facts that “Mary is a person” and “All
persons are mortal”.
What we need to do is to determine if

Person(mary),∀xPerson(x) ⊃ Mortal(x) |= Mortal(mary)

Goal of this part: Understand how we determine this.
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Deciding logical consequence

Problem

Is there an algorithm to determine whether a formula φ is the logical
consequence of a set of formulas Γ?

Näıve solution

Apply directly the definition of logical consequence. That is:

build all the possible interpretations I;
determine for which interpretations I |= Γ;
for those interpretations check if I |= A

This solution can be used when Γ is finite, and there is a finite
number of relevant interpretations.
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Deciding logical consequence, is not always possible

Propositional Logics

The truth table method enumerates all the possible interpretations of a formula
and, for each formula, it computes the relation |=.

Other logics

For first order logic There no general algorithm to compute the logical
consequence. This because there may be an infinite number of relevant
interpretations. There are some algorithms computing the logical consequence
for sub-languages of first order logic (e.g., the set of formulas you can build
using only two variables) and for sub-classes of structures (as you will see
further on).

60 / 120



Why First Order Logic?
Syntax and Semantics of FOL

Reasoning in FOL

General concepts
Hilbert style axiomatization
Natural Deduction

The Näıve solution in Propositional logic

Exercise (Logical consequence via truth table)

Determine, Via truth table, if the following statements about logical
consequence holds

p |= q

p ⊃ q |= q ⊃ p

p,¬q ⊃ ¬p |= q

¬q ⊃ ¬p |= p ⊃ q
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Complexity of the propositional logical consequence
problem

The truth table method is Exponential

The problem of determining if a formula A containing n primitive propositions, is a logical
consequence of the empty set, i.e., the problem of determining if A is valid, (|= A), takes an
n-exponential number of steps. To check if A is a tautology, we have to consider 2n interpretations
in the truth table, corresponding to 2n lines.

More efficient algorithms?

Are there more efficient algorithms? That is, is it possible to define an algorithm which takes a
polinomial number of steps in n, to determine the validity of A? This is an unsolved problem

P
?
= NP

The existence of a polinomial algorithm for checking validity is still an open problem, even it there
are a lot of evidences in favor of non-existence
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The Inference approach

Instead of building all possible interpretations of Γ and check
whether Γ |= φ, try to obtain φ from Γ using axioms and reasoning
rules.

Here Hilbert style and Natural Deduction style inference rules.
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Hilbert axiomatization for propositional logic

Axioms

A1 φ ⊃ (ψ ⊃ φ)

A2 (φ ⊃ (ψ ⊃ θ)) ⊃ ((φ ⊃ ψ) ⊃ (φ ⊃ θ))

A3 (¬ψ ⊃ ¬φ) ⊃ ((¬ψ ⊃ φ) ⊃ ψ)

Inference rule(s)

MP
φ φ ⊃ ψ

ψ

Why there are no axioms for ∧ and ∨ and ≡?

The connectives ∧ and ∨ are rewritten into equivalent formulas containing only
⊃ and ¬.

A ∧ B ≡ ¬(A ⊃ ¬B)

A ∨ B ≡ ¬A ⊃ B

A ≡ B ≡ ¬((A ⊃ B) ⊃ ¬(B ⊃ A))
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Hilbert axiomatization for FOL

Add to the axioms and rules for propositional logic the following:

Axioms and rules for quantifiers

A4 ∀x .φ(x) ⊃ φ(t) if t is free for x in φ(x)

A5 ∀x .(φ ⊃ ψ) ⊃ (φ ⊃ ∀x .ψ) if x does not occur free in φ

Gen
φ

∀x .φ

Why there are no axioms for ∃? Left as an excercise.
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Proofs and deductions (or derivations)

proof

A proof of a formula φ is a sequence of formulas φ1, . . . , φn, with φn = φ,
such that each φk is either

an axiom or

it is derived from previous formulas by MP or Gen

φ is provable, in symbols ` φ, if there is a proof for φ.

Deduction of φ from Γ

A deduction of a formula φ from a set of formulas Γ is a sequence of
formulas φ1, . . . , φn, with φn = φ, such that φk

is an axiom or

it is in Γ (an assumption)

it is derived form previous formulas by MP or Gen

φ is derivable from Γ in symbols Γ ` φ if there is a proof for φ.
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The deduction theorem

Theorem

Γ,A ` B if and only if Γ ` A ⊃ B

Proof.

If A and B are equal, then we know that ` A ⊃ B (see previous example), and by monotonicity
Γ ` A ⊃ B.
Suppose that A and B are distinct formulas. Let π = (A1, . . . ,An = B) be a deduction of
Γ,A ` B, we proceed by induction on the length of π.

Base case n = 1 If π = (B), then either B ∈ Γ or B is an axiom If B ∈ Γ, then

Axiom A1 B ⊃ (A ⊃ B)

B ∈ Γ or B is an axiom B

by MP A ⊃ B

is a deduction of A ⊃ B from Γ or from the empty set, and therefore
Γ ` A ⊃ B.
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The deduction theorem

Proof.

Step case If An = B is either an axiom or an element of Γ, then we can reason as the
previous case.
If B is derived by MP form Ai and Aj = Ai ⊃ B. Then, Ai and Aj = Ai ⊃ B,
are provable in less then n steps and, by induction hypothesis, Γ ` A ⊃ Ai and
Γ ` A ⊃ (A1 ⊃ B). Starting from the deductions of these two formulas from
Γ, we can build a deduction of A ⊃ B form Γ as follows:

By induction
.
.
. deduction of A ⊃ (Ai ⊃ B) form Γ

A ⊃ (Ai ⊃ B)

By induction
.
.
. deduction of A ⊃ Ai form Γ

A ⊃ Ai

A2 (A ⊃ (Ai ⊃ B)) ⊃ ((A ⊃ Ai ) ⊃ (A ⊃ B))

MP (A ⊃ Ai ) ⊃ (A ⊃ B)

MP A ⊃ B
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Deduction and proof - example

Example (Proof of A ⊃ A)

1. A1 A ⊃ ((A ⊃ A) ⊃ A)
2. A2 (A ⊃ ((A ⊃ A) ⊃ A)) ⊃ ((A ⊃ (A ⊃ A)) ⊃ (A ⊃ A))
3. MP(1, 2) (A ⊃ (A ⊃ A)) ⊃ (A ⊃ A)
4. A1 (A ⊃ (A ⊃ A))
5. MP(4, 3) A ⊃ A
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Deduction and proof - other examples

Example (proof of ¬A ⊃ (A ⊃ B))

We prove that A,¬A ` B and by deduction theorem we have that
¬A ` A ⊃ B and that ` ¬A ⊃ (A ⊃ B)
We label with Hypothesis the formula on the left of the ` sign.

1. hypothesis A
2. A1 A ⊃ (¬B ⊃ A)
3. MP(1, 2) ¬B ⊃ A
4. hypothesis ¬A
5. A1 ¬A ⊃ (¬B ⊃ ¬A)
6. MP(4, 5) ¬B ⊃ ¬A
7. A3 (¬B ⊃ ¬A) ⊃ ((¬B ⊃ A) ⊃ B)
8. MP(6, 7) (¬B ⊃ A) ⊃ B
9. MP(3, 8) B
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Hilbert axiomatization

Minimality

The main objective of Hilbert was to find the smallest set of axioms and
inference rules from which it was possible to derive all the tautologies.

Unnatural

Proofs and deductions in Hilbert axiomatization are awkward and
unnatural. Other proof styles, such as Natural Deductions, are more
intuitive. As a matter of facts, nobody is practically using Hilbert
calculus for deduction.

Why it is so important

Providing an Hilbert style axiomatization of a logic describes with simple
axioms the entire properties of the logic. Hilbert axiomatization is the
“identity card” of the logic.
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Soundness & Completeness

How can we be sure that we derive exactly what we can logically infer?

Theorem

Soundness We do not prove “wrong” logical consequences.
If Γ ` A then Γ |= A.

Theorem

Completeness We can prove all logical consequences.
If Γ |= A then Γ ` A.
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Soundness & Completeness of the Hilbert
axiomatization

Theorem

Γ ` A if and only if Γ |= A.

Using the Hilbert style axiomatization we can prove all and only the
logical consequences of FOL.
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Decidability of FOL

Definition

A logical system is decidable if there is an effective method for
determining whether arbitrary formulas are logically valid.

Propositional logic is decidable, because the truth-table method can
be used to determine whether an arbitrary propositional formula is
logically valid.

First-order logic is not decidable in general; in particular, the set of
logical validities in any signature that includes equality and at least
one other predicate with two or more arguments is not decidable.
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More efficient reasoning systems

Hilbert style is not easy implementable

Checking if Γ |= φ by searching for a Hilbert-style deduction of φ from Γ is not
an easy task for computers. Indeed, in trying to generate a deduction of φ from
Γ, there are to many possible actions a computer could take:

adding an instance of one of the three axioms (infinite number of
possibilities)

applying MP to already deduced formulas,

adding a formula in Γ

More efficient methods

Resolution to check if a formula is not satisfiable

SAT DP, DPLL to search for an interpretation that satisfies a
formula

Tableaux search for a model of a formula guided by its structure
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Natural Deduction

Historical notes

Natural deduction (ND) was invented by G. Gentzen in 1934. The idea
was to have a system of derivation rules that as closely as possible
reflects the logical steps in an informal rigorous proof.
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Natural Deduction

Introduction and elimination rules

For each connective ◦,
there is an introduction rule (◦I ) which can be seen as a definition
of the truth conditions of a formula with ◦ given in terms of the
truth values of its component(s);

there is an elimination rule (◦E ) that allows to exploit such a
definition to derive truth of the components of a formula whose
main connective is ◦.

Assumptions

In the process of building a deduction one can make new assumptions
and can discharge already done assumptions.
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Natural Deduction

Introduction and elimination rules
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Natural Deduction

Natural deduction Derivation

A derivation is a tree where the nodes are the rules and the leafs are the
assumptions of the derivation. The root of the tree is the conclusion of
the derivation.

φ1 [φ2]
....

φn−5

φ3 φ4....
φn−6

φn−3

φ1 [φ2]

φ3....
φn−5

φn−2

φ3 φ4....
φn−6

φn−1

φn
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ND rules for propositional connectives

∧
φ ψ

φ ∧ ψ ∧I
φ ∧ ψ
φ
∧E1

φ ∧ ψ
ψ

∧E2

⊃
[φ]
....
ψ

φ ⊃ ψ ⊃ I
φ φ ⊃ ψ

ψ
⊃ E

∨

φ

φ ∨ ψ ∨I1
ψ

φ ∨ ψ ∨I2
φ ∨ ψ

[φ]
....
θ

[ψ]
....
θ

θ
∨E
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ND rules for propositional connectives

The connective ¬ for negation

ND does not provide rules for the ¬ connective. Instead, the logical
constant ⊥ is introduced,
⊥ stands for the unsatisfiable formula, i.e., the formula that is false in all
interpretations.
¬A is defined to be a syntactic sugar for A ⊃ ⊥
(exercise: Verify that ¬A ≡ (A ⊃ ⊥) is a valid formula).

⊥
[¬φ]

....
⊥
φ
⊥c
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Extending ND to FOL: quantifiers

∀
φ(x)

∀x .φ(x)
∀I

∀x .φ(x)

φ(t)
∀E

∃

φ(t)

∃x .φ(x)
∃I

∃x .φ(x)

[φ(x)]
....
θ

θ
∃E

Restrictions ∀I : x does not occur free in any assumption from which φ
depends on.
∃E : x does not occur free in θ and in any assumption θ depends on with
the exception of phi(x).
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Extending ND to FOL: equality

=

t = t = I
φ(t) x = t

φ(x)
= E
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Natural Deduction Rules

φ ψ

φ ∧ ψ
∧I

φ ∧ ψ

φ

φ ∧ ψ

ψ
∧E

φ

φ ∨ ψ

ψ

φ ∨ ψ
∨I

φ ∨ ψ

[φ]
.
.
.
.
θ

[ψ]
.
.
.
.
θ

θ
∨E

[φ]
.
.
.
.
ψ

φ ⊃ ψ
⊃ I

φ φ ⊃ ψ

ψ
⊃ E

[¬φ]
.
.
.
.
⊥
φ
⊥c

φ(x)

∀x.φ(x)
∀I

∀x.φ(x)

φ(t)
∀E

φ(t)

∃x.φ(x)
∃I

∃x.φ(x)

[φ(x)]
.
.
.
.
θ

θ
∃E

t = t
= I

φ(t) x = t

φ(x)
= E
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Natural Deduction

Definition (Deduction)

A deduction Π of A with undischarged assumption A1, . . . ,An, is a tree
with root A, obtained by applying the ND rules, and every assumption in
Π, but A1, . . . ,An is discharged, by the application of one of the ND rules.

Definition (Γ `ND A)

A formula A is derivable from a set of formulas Γ, if there is a deduction
of A with undischarged assumption contained in Γ. In this case we write

Γ `ND A

If no ambiguity arises we omit the subscript ND and use Γ ` A
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Soundness & Completeness of Natural Deduction

Theorem

Γ `ND A if and only if Γ |= A.

Using the Natural Deduction rules we can prove all and only the logical
consequences of FOL.
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Examples

For each of the following statements provide a proof in natural deduction.

1 `ND A ⊃ (B ⊃ A)

2 `ND ¬(A ∧ ¬A)

3 `ND ¬¬A↔ A

4 `ND (A ∨ A) ≡ (A ∨ ⊥)

5 (A ∧ B) ∧ C `ND A ∧ (B ∧ C)

6 `ND A ∨ ¬A;

7 `ND (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))

8 `ND (A ⊃ B)↔ (¬A ∨ B)

9 `ND A ∨ (A ⊃ B)

10 ¬(A ⊃ ¬B) `ND (A ∧ B)

11 A ⊃ (B ⊃ C),A ∨ C ,¬B ⊃ ¬A `ND C
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Examples

1. `ND A ⊃ (B ⊃ A)

A1

B ⊃ A
⊃ I

A ⊃ (B ⊃ A)
⊃ I(1)
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Examples

2. `ND ¬(A ∧ ¬A)

A ∧ ¬A1

A
∧E A ∧ ¬A1

¬A ∧E
⊥ ⊃ E

¬(A ∧ ¬A)
⊥c(1)
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Examples

3. `ND ¬¬A↔ A

¬¬A2 ¬A1

⊥ ⊃ E

A
⊥c(1)

¬¬A ⊃ A
⊃ I(2)

A2 ¬A1

⊥ ⊃ E

¬¬A
⊥c(1)

A ⊃ ¬¬A
⊃ I(2)
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Examples

4. `ND (A ∨ A) ≡ (A ∨ ⊥)

A ∨ A2
A1

A ∨ ⊥ ∨I
A1

A ∨ ⊥ ∨I
A ∨ ⊥

∨E(1)

(A ∨ A) ⊃ (A ∨ ⊥)
⊃ I(2)

A ∨ ⊥2
A1

A ∨ A
∨I ⊥1

A ∨ A
⊥c

A ∨ A
∨E(1)

(A ∨ ⊥) ⊃ (A ∨ A)
⊃ I(2)
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Examples

5. (A ∧ B) ∧ C `ND A ∧ (B ∧ C )

(A ∧ B) ∧ C

A ∧ B
∧E

A
∧E

(A ∧ B) ∧ C

A ∧ B
∧E

B
∧E

(A ∧ B) ∧ C

C
∧E

B ∧ C
∧I

A ∧ (B ∧ C )
∧I
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Examples

6. `ND A ∨ ¬A

A1

A ∨ ¬A ∨I ¬(A ∨ ¬A)2

⊥ ⊃ E

¬A
⊥c(1)

A ∨ ¬A ∨I ¬(A ∨ ¬A)2

⊥ ⊃ E

A ∨ ¬A
⊥c(2)
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Examples

7. `ND (A ⊃ (B ⊃ C )) ⊃ ((A ⊃ B) ⊃ (A ⊃ C ))

A ⊃ (B ⊃ C )3 A1

B ⊃ C
⊃ E

A ⊃ B2 A1

B
⊃ E

C
⊃ E

A ⊃ C
⊃ I(1)

(A ⊃ B) ⊃ (A ⊃ C )
⊃ I(2)

(A ⊃ (B ⊃ C )) ⊃ ((A ⊃ B) ⊃ (A ⊃ C ))
⊃ I(3)

100 / 120



Why First Order Logic?
Syntax and Semantics of FOL

Reasoning in FOL

General concepts
Hilbert style axiomatization
Natural Deduction

Examples

8.a `ND (A ⊃ B) ⊃ (¬A ∨ B)

A ⊃ B3 A1

B
⊃ E

¬A ∨ B
∨I ¬(¬A ∨ B)2

⊥ ⊃ E

¬A
⊥c(1)

¬A ∨ B
∨I ¬(¬A ∨ B)2

⊥ ⊃ E

¬A ∨ B
⊥c(2)

(A ⊃ B) ⊃ (¬A ∨ B)
⊃ I(3)
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Examples

8.b `ND (¬A ∨ B) ⊃ (A ⊃ B)

¬A ∨ B3

¬A2 A1

⊥ ⊃ E

B
⊥c

A ⊃ B
⊃ I(1)

B2

A ⊃ B
⊃ I

A ⊃ B
∨E(2)

(¬A ∨ B) ⊃ (A ⊃ B)
⊃ I(3)
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Examples

9. `ND A ∨ (A ⊃ B)

A1

A ∨ (A ⊃ B)
∨I ¬(A ∨ (A ⊃ B))2

⊥ ⊃ E

B
⊥c

A ⊃ B
⊃ I(1)

A ∨ (A ⊃ B)
∨I ¬(A ∨ (A ⊃ B))2

⊥ ⊃ E

A ∨ (A ⊃ B)
⊥c(2)
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Examples

10. ¬(A ⊃ ¬B) `ND (A ∧ B)

A1 ¬A2

⊥ ⊃ E

¬B ⊥c
A ⊃ ¬B

⊃ I(1) ¬(A ⊃ ¬B)

⊥ ⊃ E

A
⊥c(2)

¬B3

A ⊃ ¬B ⊃ I ¬(A ⊃ ¬B)

⊥
B
⊥c(3)

A ∧ B
∧I
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Examples

11. A ⊃ (B ⊃ C ),A ∨ C ,¬B ⊃ ¬A `ND C

A ∨ C

A ⊃ (B ⊃ C) A2

B ⊃ C
⊃ E

¬B ⊃ ¬A ¬B1

¬A ⊃ E
A2

⊥ ⊃ E

B
⊥c(1)

C
⊃ E

C2

C
∨E(2)
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Proof Strategies

1: `ND ψ ⊃ φ
assume ψ and try to deduce φ (simplest solution)

as an alternative, assume ¬φ and ψ and try to deduce ⊥

2: `ND φ1 ⊃ (φ2 ⊃ φ3)

apply recursively the strategy in 1

3: `ND ψ ∧ φ
try to deduce ψ and try to deduce φ (separately) and then apply ∧I
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as an alternative, assume ¬φ and ψ and try to deduce ⊥
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apply recursively the strategy in 1
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Proof Strategies

1: `ND ψ ⊃ φ
assume ψ and try to deduce φ (simplest solution)

as an alternative, assume ¬φ and ψ and try to deduce ⊥

2: `ND φ1 ⊃ (φ2 ⊃ φ3)

apply recursively the strategy in 1

3: `ND ψ ∧ φ
try to deduce ψ and try to deduce φ (separately) and then apply ∧I
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Proof Strategies

4: `ND ψ ∨ φ
try to deduce ψ or (alternatively) φ and then apply ∨I ... usually it doesn’t work.

assume ¬ψ, try to derive φ and proceed by contradiction:

¬ψ1
....
φ

ψ ∨ φ ∨I ¬(ψ ∨ φ)2

⊥ ⊃ E

ψ
⊥c(1)

ψ ∨ φ ∨I ¬(ψ ∨ φ)2

⊥ ⊃ E

ψ ∨ φ
⊥c(2)

alternatively, assume ¬φ, try to derive ψ and proceed by contradiction in the

same way
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Proof Strategies

5: `ND (φ1 ∨ φ2) ⊃ φ3

1 assume φ1 and deduce φ3

2 assume φ2 and deduce φ3

3 assume φ1 ∨ φ1 and apply ∨E

φ1 ∨ φ2

φ1
1....
φ3

φ1
2....
φ3

φ3
∨E(1)
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Examples

Prove the validity of the following statements by using natural deduction:

1 (A ∨ B) `ND ¬(¬A ∧ ¬B)

2 ((A ⊃ B) ⊃ A) `ND A

3 (A ⊃ B) `ND (B ⊃ C ) ⊃ (A ⊃ C )

4 (A ∧ B) ⊃ C `ND A ⊃ (B ⊃ C )

5 `ND (A ⊃ B) ⊃ (¬B ⊃ ¬A)
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Examples

1. (A ∨ B) `ND ¬(¬A ∧ ¬B)

A ∨ B

A3
¬A ∧ ¬B1

¬A ∧E
⊥ ⊃ E

¬(¬A ∧ ¬B)
⊥c(1)

B3
¬A ∧ ¬B2

¬B ∧E
⊥ ⊃ E

¬(¬A ∧ ¬B)
⊥c(2)

¬(¬A ∧ ¬B)
∨E(3)
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Examples

2. ((A ⊃ B) ⊃ A) `ND A

A1 ¬A3

⊥ ⊃ E

B
⊥c

A ⊃ B
⊃ I(1)

(A ⊃ B) ⊃ A A ⊃ B2

A
⊃ E ¬A3

⊥ ⊃ E

¬(A ⊃ B)
⊥c(2)

⊥ ⊃ E

A
⊥c(3)
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Examples

3. (A ⊃ B) `ND (B ⊃ C ) ⊃ (A ⊃ C )

A ⊃ B A1

B
⊃ E

B ⊃ C 2

C
⊃ E

A ⊃ C
⊃ I(1)

(B ⊃ C ) ⊃ (A ⊃ C )
⊃ I(2)

114 / 120



Why First Order Logic?
Syntax and Semantics of FOL

Reasoning in FOL

General concepts
Hilbert style axiomatization
Natural Deduction

Examples

4. (A ∧ B) ⊃ C `ND A ⊃ (B ⊃ C )

A2 B1

A ∧ B
∧I

(A ∧ B) ⊃ C

C
⊃ E

B ⊃ C
⊃ I(1)

A ⊃ (B ⊃ C )
⊃ I(2)
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5. `ND (A ⊃ B) ⊃ (¬B ⊃ ¬A)

¬B2
A ⊃ B3 A1

B
⊃ E

⊥ ⊃ E

¬A
⊥c(1)

¬B ⊃ ¬A
⊃ I(2)

(A ⊃ B) ⊃ (¬B ⊃ ¬A)
⊃ I(3)
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Exercises

For each of the following formula provide either a proof in natural
deduction or a counter-model.

(¬B ⊃ ¬A) ⊃ ((¬B ⊃ A) ⊃ A)

A ⊃ (B ⊃ C ) ≡ (A ∧ B ⊃ C )

((A ⊃ B ∨ C ) ∧ ¬B ∧ ¬C ) ⊃ ¬A
¬(A ⊃ B) ⊃ (B ⊃ A)

((A ⊃ C ) ∨ (B ⊃ D)) ⊃ ((A ⊃ D) ∨ (B ⊃ C ))

((A ⊃ B) ⊃ B) ⊃ ((B ⊃ A) ⊃ A)

117 / 120



Why First Order Logic?
Syntax and Semantics of FOL

Reasoning in FOL

General concepts
Hilbert style axiomatization
Natural Deduction

Exercises

For each of the following propositional classical logical consequences
provide a natural deduction proof

(A ∧ B) ∧ C `ND A ∧ (B ∧ C )

(A ⊃ B) `ND (¬B ⊃ ¬A)

(A ∨ B) `ND ¬(¬A ∧ ¬B)

((A ⊃ B) ⊃ A) `ND A

(A ⊃ B) `ND ((B ⊃ C ) ⊃ A ⊃ C )

((A ∧ B) ⊃ C ) `ND (A ⊃ (B ⊃ C ))
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Natural deduction for classical FOL

Show the deduction for the following first order valid formulas.

1 ∃x .∀y .R(x , y) ⊃ ∀y .∃x .R(x , y)

2 ∃x .(P(x) ⊃ ∀x .P(x))

3 ∃x .(P(x) ∨ Q(x)) ⊃ (∃x .P(x) ∨ ∃x .Q(x))

4 ∃x .(P(x) ∧ Q(x)) ⊃ ∃x .P(x) ∧ ∃x .Q(x))

5 (∃x .P(x) ∧ ∀x .Q(x)) ⊃ ∃x .(P(x) ∧ Q(x))

6 ∀x .(P(x) ⊃ Q) ⊃ (∃x .P(x) ⊃ Q), where x is not free in Q.

7 ∀x .∃y .x = y

8 ∀xyzw .((x = z ∧ y = w) ⊃ (R(x , y) ⊃ R(z ,w))), where ∀xyzw . . .
stands for ∀x .(∀y .(∀z .(∀w . . . ))).
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Natural deduction for classical FOL

Show the deduction for the following first order valid formulas.

1 (A ⊃ ∀x .B(x)) ≡ ∀x(A ⊃ B(x)) where x does not occur free in A

2 ∃x(A(x) ∨ B(x)) ≡ (∃xA(x) ∨ ∃xB(x))

3 ¬∃xA(x) ≡ ∀x¬A(x)

4 ∀x(A(x) ∨ B) ≡ ∀xA(x) ∨ B where x does not occur free in B

5 ∃x(A(x) ⊃ B) ≡ (∀xA(x) ⊃ B) where x does not occur free in B

6 ∃x(A ⊃ B(x)) ≡ (A ⊃ ∃xB(x)) where x does not occur free in A

7 ∀x(A(x) ⊃ B) ≡ (∃xA(x) ⊃ B) where x does not occur free in B

120 / 120


	Why First Order Logic?
	Syntax and Semantics of FOL
	Syntax and Semantics
	First Order Theories

	Reasoning in FOL
	General concepts
	Hilbert style axiomatization
	Natural Deduction


