
LLogics for DData and KKnowledge
RRepresentation

Description Logics

Outline
Overview

Syntax: the DL family of languages

Semantics

TBox

ABox

Tableau Algorithm

2

Overview
Description Logics (DLs) is a family of KR formalisms

3

TBox

ABox

Representation Reasoning

Alphabet of symbols with two new symbols w.r.t. ClassL:
∀R (value restriction)
∃R (existential quantification)

R are atomic role names

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

AL (Attributive language) Logical Symbols
Formation rules:

<Atomic> ::= A | B | ... | P | Q | ... | ⊥ | ⊤
<wff> ::= <Atomic> | ¬<Atomic> | <wff> ⊓ <wff> | ∀R.C | ∃R.⊤
NOTE: no ⊔, ∃R.⊤ = limited existential quantifier, ¬ on atomic only

Person ⊓ Female
“persons that are female”
Person ⊓ ∃hasChild. ⊤
“(all those) persons that have a child”
Person ⊓ ∀hasChild. ⊥
“(all those) persons without a child”
Person ⊓ ∀hasChild.Female
“persons all of whose children are female”

4

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

ALU (AL with disjunction)
Formation rules:

<Atomic> ::= A | B | ... | P | Q | ... | ⊥ | ⊤
<wff> ::= <Atomic> | ¬<Atomic> | <wff> ⊓ <wff> | ∀R.C | ∃R.⊤ |

<wff> ⊔ <wff>

Mother ⊔ Father
“the notion of parent”

5

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

ALE (AL with extended existential)
Formation rules:

<Atomic> ::= A | B | ... | P | Q | ... | ⊥ | ⊤
<wff> ::= <Atomic> | ¬<Atomic> | <wff> ⊓ <wff> | ∀R.C | ∃R.⊤ |

∃R | ∃R.C

∃R (there exists an arbitrary role)
∃R.C (full existential quantification)

Parent ⊓ ∃hasChild.Female
“parents having at least a daughter”

6

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

ALN (AL with number restriction)
Formation rules:

<Atomic> ::= A | B | ... | P | Q | ... | ⊥ | ⊤
<wff> ::= <Atomic> | ¬<Atomic> | <wff> ⊓ <wff> | ∀R.C | ∃R.⊤ |

≥nR | ≤nR

≥nR (at-least number restriction)
≤nR (at-most number restriction)

Parent ⊓ ≥2 hasChild
“parents having at least two children”

7

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

ALC (AL with full concept negation)
Formation rules:

<Atomic> ::= A | B | ... | P | Q | ... | ⊥ | ⊤
<wff> ::= <Atomic> | ¬ <wff> | <wff> ⊓ <wff> | ∀R.C | ∃R.⊤

¬ (Mother ⊓ Father)
“it cannot be both a mother and father”

8

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

AL’s extensions and sub-languages
By extending AL with any subsets of the above constructors
yields a particular DL language.
Each language is denoted by a string of the form AL[U][E][N][C],
where a letter in the name stands for the presence of the
corresponding constructor.
ALC is considered the most important for many reasons.
NOTE: ALU ⊆ ALC and ALE ⊆ ALC

By eliminating some of the syntactical symbols and rules, we
get some sub-languages of AL
The most important sub-language obtained by elimination in the
AL family is ClassL
We also have FL- and FL0 (where FL = frame language)

9

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

From AL to ClassL
ALUC with the elimination of roles ∀R.C and ∃R.⊤

Formation rules:

<Atomic> ::= A | B | ... | P | Q | ... | ⊥ | ⊤
<wff> ::= <Atomic> | ¬ <wff> | <wff> ⊓ <wff> | <wff> ⊔ <wff>

The new language is a description language without roles which
is ClassL (also called propositional DL)

NOTE: So far, we are considering DL without TBOX and ABox.

10

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

AL’s Contractions: FL- and FL0
FL- is AL with the elimination of ⊤, ⊥ and ¬
Formation rules:
<Atomic> ::= A | B | ... | P | Q | ...
<wff> ::= <Atomic> | <wff> ⊓ <wff> | ∀R.C | ∃R.⊤

FL0 is FL- with the elimination of ∃R.⊤
Formation rules:
<Atomic> ::= A | B | ... | P | Q | ...

<wff> ::= <Atomic> | <wff> ⊓ <wff> | ∀R.C

11

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

AL* Interpretation (∆,I)
I(⊥) =∅ and I(⊤) = ∆ (full domain, “Universe”)
For every concept name A of L, I(A) ⊆ ∆
I(¬C) = ∆ \ I(C)
I(C⊓D) = I(C) ∩ I(D)
I(C ⊔ D) = I(C) ∪ I(D)

For every role name R of L, I(R) ⊆ ∆ × ∆
I(∀R.C) = {a ∈ ∆ | for all b, if (a,b)∈I(R) then b∈I(C)}
I(∃R. ⊤) = {a ∈ ∆ | exists b s.t. (a,b) ∈ I(R)}
I(∃R.C) = {a ∈ ∆ | exists b s.t. (a,b) ∈ I(R), b ∈ I(C)}
I(≥nR) = {a ∈ ∆ | |{b | (a, b) ∈ I(R)}| ≥ n}
I(≤nR) = {a ∈ ∆ | |{b | (a, b) ∈ I(R)}| ≤ n}

12

The
SAME
as in

ClassL

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

Interpretation of Existential Quantifier
I(∃R.C) = {a ∈ ∆ | exists b s.t. (a,b) ∈ I(R), b ∈ I(C)}

Those a that have some value b in C with role R.

13

b I(C)

a (a,b)∈I(R)

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

I(∀R.C) = {a ∈ ∆ | for all b, if (a,b)∈I(R) then b∈I(C)}

Those a that have only values b in C with role R.

Interpretation of Value Restriction

14

b I(C)

a if (a,b) ∈I(R)

b'
b''

if (a,b') ∈I(R)
if (a,b'') ∈I(R)

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

Interpretation of Number Restriction
I(≥nR) = {a∈∆ | |{b | (a, b) ∈ I(R)}|≥ n}

Those a that have relation R to at least n individuals.
15

∆

a

b
b'
…

|{b | (a, b) ∈ I(R)}| ≥ n

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

Interpretation of Number Restriction Cont.
I(≤nR) = {a ∈ ∆ | |{b | (a, b) ∈ I(R)}| ≤n }

Those a that have relation R to at most n individuals.
16

∆

a

|{b | (a,b) ∈ I(R)}| ≤n

b
b'
…

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

Terminology (TBox), same as in ClassL
A terminology (or TBox) is a set of definitions and specializations
Terminological axioms express constraints on the concepts of the
language, i.e. they limit the possible models
The TBox is the set of all the constraints on the possible models

17

PhD ≡ Postgraduate ⊓ ≥3Publish.Paper

Parent ≡ Person ⊓ �hasChild.Person
hasGrandChild ⊑ hasChild

Equality axiom
Definition

Inclusion axiom
Specialization

TBOX

Subsumption

Equivalence

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

Reasoning with a TBox T, same as ClassL
Given two class-propositions P and Q, we want to reason about:

Satisfiability w.r.t. T T ⊨ P ?
A concept P is satisfiable w.r.t. a terminology T, if there exists an
interpretation I with I ⊨ θ for all θ ∈ T, and such that I ⊨ P, I(P)≠∅
Subsumption T ⊨ P ⊑ Q? T ⊨ Q ⊑ P?
A concept P is subsumed by a concept Q w.r.t. T if I(P) ⊆ I(Q) for
every model I of T
Equivalence T ⊨ P ⊑ Q and T ⊨ Q ⊑ P?
Two concepts P and Q are equivalent w.r.t. T if I(P) = I(Q) for every
model I of T
Disjointness T ⊨ P ⊓ Q ⊑ ⊥?
Two concepts P and Q are disjoint with respect to T if their intersection is
empty, I(P) ∩ I(Q) = ∅, for every model I of T

18

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

ABox, syntax
In an ABox one introduces individuals, by giving them names,
and one asserts properties about them.
We denote individual names as a, b, c,…
An assertion with concept C is called concept assertion (or
simply assertion) in the form:

C(a), C(b), C(c), …
An assertion with Role R is called role assertion in the form:

R(a, b), R(b, c), …

19

Student(paul)
Professor(fausto)

Teaches(Fausto, LDKR)

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

ABox, semantics
An interpretation I: L → pow(∆I) not only maps atomic concepts
to sets, but in addition it maps each individual name a to an
element aI ∈ ∆I, namely

I(a) = aI ∈ ∆I

I (C(a)) = aI ∈CI,
I(R(a, b)) = (aI, bI)∈RI

Unique name assumption (UNA). We assume that distinct
individual names denote distinct objects in the domain

NOTE: ∆I denotes the domain of interpretation, a denotes the symbol
used for the individual (the name), while aI is the actual individual of
the domain.

20

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

Reasoning Services, same as ClassL
Given an ABox A, we can reason (w.r.t. a TBox T) about the following:

Satisfiability/Consistency: An ABox A is consistent with respect to T
if there is an interpretation I which is a model of both A and T.

Instance checking: checking whether an assertion C(a) or R(a,b) is
entailed by an ABox, i.e. checking whether a belongs to C.
A ⊨ C(a) if every I that satisfies A also satisfies C(a).
A ⊨ R(a,b) if every I that satisfies A also satisfies R(a,b).

Instance retrieval: given a concept C, retrieve all the instances a
which satisfy C.
Concept realization: given a set of concepts and an individual a find
the most specific concept(s) C (w.r.t. subsumption ordering) such
that A ⊨ C(a).

21

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

Tableaux Calculus
The Tableaux calculus is a decision procedure to check
satisfiability of a DL formula.

The procedure looks for a model satisfying the formula in input

The basic idea is to incrementally build the model by looking at
the formula and by decomposing it into pieces in a top-down
fashion.

The procedure exhaustively tries all possibilities so that it can
eventually prove that no model could be found and therefore
the formula is unsatisfiable.

22

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

Preview example
C = (∃R.A) ⊓ (∃R.B) ⊓ (∃R.¬(A ⊓ B))

C = (∃R.A) ⊓ (∃R.B) ⊓ (∃R.(¬ A ⊔ ¬ B)) De Morgan
In Negation Normal Form

C is safisfiable iff I(C) ≠ ∅ for some I

C1 = ∃R.A C2 = ∃R.B C3 = ∃R.(¬ A ⊔ ¬ B) Decomposition
C1 ∃ (b,c) ∈ I(R) and c ∈ I(A)
C2 ∃ (b,d) ∈ I(R) and d ∈ I(B)

C3 ∃ (b,e) ∈ I(R) and e ∈ I(¬ A ⊔ ¬ B) e ∈ I(¬ A) or I(¬ B)
If we take e=c, must be e ∈ I(¬ B) otherwise it reaches a contradiction
If we take e=d, must be e ∈ I(¬ A) otherwise it reaches a contradiction

23

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

The Tableau Algorithm
The formula C in input is translated into Negation Normal Form.

An ABox A is incrementally constructed by adding assertions
according to the constraints in C (identified by decomposition)
following precise transformation rules
Each time we have more than one option we split the space of
the solutions as in a decision tree (i.e. in presence of ⊔)
When a contradiction is found (i.e. A is inconsistent) we need to
try another path in the space of the solutions (backtracking)

The algorithm stops when either we find a consistent A
satisfying all the constraints in C (the formula is satisfiable) or
there is no consistent A (the formula is unsatisfiable)

24

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

T={Mother ≡ Female ⊓ �hasChild.Person} A={Mother(Anna)}
Is ¬�hasChild.Person ⊓ ¬�hasParent. Person) satisfiable?

Expand A w.r.t. T
Mother(Anna) (Female ⊓ �hasChild.Person)(Anna)
A’ = A � {Female(Anna), (�hasChild.Person)(Anna)}

(¬�hasChild.Person ⊓ ¬�hasParent.Person)(Anna)
(¬�hasChild.(Person))(Anna) ⊓ (¬�hasParent.(Person))(Anna)
Both of them must be true, but the first constraint is clearly
in contradiction with A’

Transformation rules
⊓-rule
Condition: A contains (C1 ⊓ C2)(x), but not both C1(x) and C2(x)
Action: A’ = A ∪ {C1(x), C2(x)}

25

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

T={Parent≡�hasChild.Female⊔∃hasChild.Male,
Person≡Male⊔Female, Mother≡Parent ⊓Female}

A={Mother(Anna)}
Is ¬(�hasChild.Person) satisfiable?

Expand A w.r.t. T
A = {Mother(Anna)} A’ = A � {Parent(Anna), Female(Anna)}
Parent(Anna) (�hasChild.Female⊔∃hasChild.Male)(Anna)
(�hasChild.Female)(Anna) or (�hasChild.Male)(Anna)

Both are in contradiction with ¬(�hasChild.Person)

Transformation rules
⊔-rule
Condition: A contains (C1 ⊔ C2)(x), but neither C1(x) or C2(x)
Action: A’ = A ∪ {C1(x)} and A’’ = A ∪ {C2(x)}

26

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

Transformation rules
∃-rule
Condition: A contains (∃R.C)(x), but there is no z such that both C(z)
and R(x,z) are in A
Action: A’ = A ∪ {C(z), R(x,z)}

27

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

T={Parent≡�hasChild.Female⊔∃hasChild.Male,
Person≡Male⊔Female, Mother≡Parent⊓Female}

A={Mother(Anna), hasChild(Anna,Bob), ¬Female(Bob)}
Is ¬(�hasChild.Person) satisfiable?

Expand A w.r.t. T
Mother(Anna) Parent(Anna)
(�hasChild.Female⊔∃hasChild.Male)(Anna)

take (�hasChild.Male)(Anna) hasChild(Anna,Bob), Male(Bob) …

Transformation rules
∀-rule
Condition: A contains (∀R.C)(x) and R(x,z), but it does not C(z)
Action: A’ = A ∪ {C(z)}

28

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

T={DaughterParent≡�hasChild.Female, Male⊓Female⊑⊥}
A={hasChild(Anna,Bob), ¬Female(Bob)}
Is DaughterParent satisfiable?

Expand A w.r.t. T
DaughterParent(x) �hasChild.Female(x)
A’ = A � {Female(Bob)}

but this in contradiction with ¬Female(Bob)

Example of Tableau Reasoning
Is ∀hasChild.Male ⊓ ∃hasChild.¬Male satisfiable?

NOTE: we do not have an initial T or A

(∀hasChild.Male ⊓ ∃hasChild.¬Male)(x)
A = {(∀hasChild.Male)(x), (∃hasChild.¬Male)(x)} ⊓-rule

(∃hasChild.¬Male)(x) A’ = A ∪ {hasChild(x,y), ¬Male(y)} ∃-rule

(∀hasChild.Male)(x), hasChild(x,y) A’’ = A’ ∪ Male(y) ∀-rule

A’’ is clearly inconsistent

29

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

Additional Rules

30

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

Complexity of Tableau Algorithms
The satisfiability algorithm of ALCN may need exponential time
and space. It is PSPACE-complete.

An optimized algorithm needs only polynomial space as it
assumes a depth-first search and stores only the ‘correct’
path.

The consistency and instance checking problem for ALCN are
also PSPACE-complete.

The complexity results for other Description Logics varies
according to corresponding constructors.

31

OVERVIEW :: SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM

	Logics for Data and Knowledge�Representation
	Outline
	Overview
	AL (Attributive language) Logical Symbols
	ALU (AL with disjunction)
	ALE (AL with extended existential)
	ALN (AL with number restriction)
	ALC (AL with full concept negation)
	AL’s extensions and sub-languages
	From AL to ClassL
	AL’s Contractions: FL- and FL0
	AL* Interpretation (∆,I)
	Interpretation of Existential Quantifier
	Interpretation of Value Restriction
	Interpretation of Number Restriction
	Interpretation of Number Restriction Cont.
	Terminology (TBox), same as in ClassL
	Reasoning with a TBox T, same as ClassL
	ABox, syntax
	ABox, semantics
	Reasoning Services, same as ClassL
	Tableaux Calculus
	Preview example
	The Tableau Algorithm
	Transformation rules
	Transformation rules
	Transformation rules
	Transformation rules
	Example of Tableau Reasoning
	Additional Rules
	Complexity of Tableau Algorithms

