

DATA AND KNOWLEDGE

Logics for Data and Knowledge Representation

Description Logics

Outline
\square Overview
-Syntax: the DL family of languages
\square Semantics
\square TBox
\square ABox
\square Tableau Algorithm

Overview

\square Description Logics (DLs) is a family of KR formalisms

- Alphabet of symbols with two new symbols w.r.t. ClassL:
$\square \forall R$ (value restriction)
$\square \exists R$ (existential quantification)
R are atomic role names

AL (Attributive language) Logical Symbols

- Formation rules:
<Atomic> ::= A|B|...|P|Q|...| \mid |
<wff> ::= <Atomic> | \quad <Atomic> | <wff> Π <wff> | \forall R.C $\mid \exists R . T$
NOTE: no $u, \exists R . T=$ limited existential quantifier, \neg on atomic only
- Person $п$ Female
"persons that are female"
- Person \square ヨhasChild. $т$
"(all those) persons that have a child"
Person $п \forall h a s C h i l d . ~ \perp$
"(all those) persons without a child"
- Person $\square \forall$ hasChild.Female
"persons all of whose children are female"

ALU (AL with disjunction)

\square Formation rules:

$$
\begin{aligned}
& \text { <Atomic> ::=A|B|...|P|Q|...| } \mid \text { | } \\
& \text { <wff> ::= <Atomic> | ᄀ<Atomic> | <wff> п <wff> | } \forall \text { R.C | } \exists \text { R. } \top \mid \\
& \text { <wff> ப <wff> }
\end{aligned}
$$

- Mother u Father
"the notion of parent"

ALE (AL with extended existential)

\square Formation rules:

$$
\begin{aligned}
&<\text { Atomic> }::=A|B| \ldots|P| Q|\ldots| \perp \mid \top \\
&<\text { wff> }::=<\text { Atomic> | }- \text { <Atomic> } \mid<\text { wff }>\text { <wff> | } \forall \text { R.C }|\exists R . T| \\
& \exists R \mid \exists R . C
\end{aligned}
$$

$\square \exists \mathrm{R}$ (there exists an arbitrary role)
$\square \exists$ R.C (full existential quantification)

- Parent $п$ ヨhasChild.Female "parents having at least a daughter"

ALN (AL with number restriction)

\square Formation rules:

$$
\begin{aligned}
& \text { <Atomic> ::= A | B | ... | P | Q | ... | } \mid \text { | } \top \\
& \text { <wff> ::= <Atomic> | ᄀ<Atomic> | <wff> п <wff> | } \forall \text { R.C | } \exists \text { R. } T \mid \\
& \geq n R \mid \leq n R
\end{aligned}
$$

$\square \geq n R$ (at-least number restriction)
$\square \leq n R$ (at-most number restriction)
\square Parent $\mathrm{n} \geq 2$ hasChild "parents having at least two children"

ALC (AL with full concept negation)

\square Formation rules:
<Atomic> ::= A | B | ... $|\mathrm{P}| \mathrm{Q}|\ldots| \perp \mid \top$
<wff> ::= <Atomic> | ᄀ <wff> | <wff> ח <wff> | \forall R.C | ヨR.T
$\square \neg$ (Mother \cap Father)
"it cannot be both a mother and father"

AL's extensions and sub-languages

\square By extending $A L$ with any subsets of the above constructors yields a particular DL language.
\square Each language is denoted by a string of the form $A L[U][E][N][C]$, where a letter in the name stands for the presence of the corresponding constructor.
$\square A L C$ is considered the most important for many reasons. NOTE: $A L U \subseteq A L C$ and $A L E \subseteq A L C$
\square By eliminating some of the syntactical symbols and rules, we get some sub-languages of $A L$
\square The most important sub-language obtained by elimination in the AL family is ClassL
\square We also have FL- and FLO (where FL = frame language)

From AL to ClassL

\square ALUC with the elimination of roles \forall R.C and \exists R.T
\square Formation rules:
<Atomic> ::=A|B|...|P|Q|...| \mid |
<wff> ::= <Atomic> | ᄀ <wff> | <wff> п <wff> | <wff> ப <wff>
\square The new language is a description language without roles which is ClassL (also called propositional DL)

NOTE: So far, we are considering DL without TBOX and ABox.

AL's Contractions: FL- and FLO

- $F L$ - is $A L$ with the elimination of T, \perp and \neg
- Formation rules:
<Atomic> ::=A|B|...|P|Q|...
<wff> ::= <Atomic> | <wff> п <wff> | \forall R.C | ヨR.T
- FLO is $F L$ - with the elimination of $\exists \mathrm{R}$. \top
- Formation rules:
<Atomic> ::=A|B| ... $|\mathrm{P}| \mathrm{Q} \mid \ldots$
<wff> ::= <Atomic> | <wff> п <wff> | \forall R.C

AL* Interpretation (Δ, I)

$\square \mathrm{I}(\perp)=\varnothing$ and $\mathrm{I}(\mathrm{T})=\Delta$ (full domain, "Universe")
\square For every concept name A of $L, I(A) \subseteq \Delta$
$\square I(\neg C)=\Delta \backslash(C)$
$\square I(C \cap D)=I(C) \cap I(D)$
$\square I(C \cup D)=I(C) \cup I(D)$

The SAME as in
ClassL

- For every role name R of $\mathrm{L}, \mathrm{l}(\mathrm{R}) \subseteq \Delta \times \Delta$
$\square I(\forall R . C) \quad=\{a \in \Delta \mid$ for all b, if $(a, b) \in I(R)$ then $b \in I(C)\}$
$\square I(\exists R . T) \quad=\{a \in \Delta \mid$ exists b s.t. $(a, b) \in I(R)\}$
$\square I(\exists R . C) \quad=\{a \in \Delta \mid$ exists b s.t. $(a, b) \in I(R), b \in I(C)\}$
$\square I(\geq n R) \quad=\{a \in \Delta| |\{b \mid(a, b) \in I(R)\} \mid \geq n\}$
$\square I(\leq n R) \quad=\{a \in \Delta| |\{b \mid(a, b) \in I(R)\} \mid \leq n\}$

Interpretation of Existential Quantifier

$\square I(\exists R . C)=\{a \in \Delta \mid$ exists b s.t. $(a, b) \in I(R), b \in I(C)\}$

\square Those a that have some value b in C with role R.

Interpretation of Value Restriction

$\square I(\forall R . C)=\{a \in \Delta \mid$ for all b, if $(a, b) \in I(R)$ then $b \in I(C)\}$

\square Those a that have only values b in C with role R.

Interpretation of Number Restriction

$\square I(\geq n R)=\{a \in \Delta| |\{b \mid(a, b) \in I(R)\} \mid \geq n\}$

$$
|\{b \mid(a, b) \in l(R)\}| \geq n
$$

\square Those a that have relation R to at least n individuals.

Interpretation of Number Restriction Cont.

$\square I(\leq n R)=\{a \in \Delta| |\{b \mid(a, b) \in I(R)\} \mid \leq n\}$

$$
|\{b \mid(a, b) \in I(R)\}| \leq n
$$

\square Those a that have relation R to at most n individuals.

Terminology (TBox), same as in ClassL

\square A terminology (or TBox) is a set of definitions and specializations

- Terminological axioms express constraints on the concepts of the language, i.e. they limit the possible models
- The TBox is the set of all the constraints on the possible models

Equivalence
TBOX

Equality axiom
Definition

PhD \equiv Postgraduate $\sqcap \geq 3$ Publish.Paper
Parent \equiv Person \sqcap hasChild.Person
hasGrandChild \sqsubseteq hasChild

Reasoning with a TBox T, same as ClassL

- Given two class-propositions P and Q , we want to reason about:
- Satisfiability w.r.t. T $\mathrm{T} \vDash \mathrm{P}$?

A concept P is satisfiable w.r.t. a terminology T, if there exists an interpretation I with $I \vDash \theta$ for all $\theta \in T$, and such that $I \vDash P, I(P) \neq \varnothing$

- Subsumption $T \vDash P \subseteq Q$? $T \vDash Q \subseteq P$?

A concept P is subsumed by a concept Q w.r.t. T if $I(P) \subseteq I(Q)$ for every model I of T

- Equivalence

$$
T \vDash P \subseteq Q \text { and } T \vDash Q \subseteq P ?
$$

Two concepts P and Q are equivalent w.r.t. T if $I(P)=I(Q)$ for every model I of T

- Disjointness

$$
T \vDash P \sqcap Q \subseteq \perp ?
$$

Two concepts P and Q are disjoint with respect to T if their intersection is empty, $I(P) \cap I(Q)=\varnothing$, for every model I of T

ABox, syntax

- In an ABox one introduces individuals, by giving them names, and one asserts properties about them.
\square We denote individual names as a, b, c, \ldots
\square An assertion with concept C is called concept assertion (or simply assertion) in the form:

$$
C(a), C(b), C(c), \ldots
$$

\square An assertion with Role R is called role assertion in the form:

$$
R(a, b), R(b, c), \ldots
$$

```
Student(paul)
Professor(fausto)
Teaches(Fausto, LDKR)
```


ABox, semantics

\square An interpretation $\mathrm{I}: L \rightarrow \operatorname{pow}\left(\Delta^{\prime}\right)$ not only maps atomic concepts to sets, but in addition it maps each individual name a to an element $a^{l} \in \Delta^{\prime}$, namely

$$
\begin{array}{ll}
I(a) & =a^{\prime} \in \Delta^{\prime} \\
I(C(a)) & =a^{\prime} \in C^{\prime} \\
I(R(a, b)) & =\left(a^{\prime}, b^{\prime}\right) \in R^{\prime}
\end{array}
$$

- Unique name assumption (UNA). We assume that distinct individual names denote distinct objects in the domain

NOTE: Δ^{\prime} denotes the domain of interpretation, a denotes the symbol used for the individual (the name), while a^{\prime} is the actual individual of the domain.

Reasoning Services, same as ClassL

\square Given an ABox A, we can reason (w.r.t. a TBox T) about the following:
\square Satisfiability/Consistency: An ABox A is consistent with respect to T if there is an interpretation I which is a model of both A and T .
\square Instance checking: checking whether an assertion $C(a)$ or $R(a, b)$ is entailed by an ABox, i.e. checking whether a belongs to C.
$A \vDash C(a)$ if every I that satisfies A also satisfies $C(a)$.
$A \vDash R(a, b)$ if every I that satisfies A also satisfies $R(a, b)$.
\square Instance retrieval: given a concept C, retrieve all the instances a which satisfy C.
\square Concept realization: given a set of concepts and an individual a find the most specific concept(s) C (w.r.t. subsumption ordering) such that $\mathrm{A} \vDash \mathrm{C}(a)$.

Tableaux Calculus

- The Tableaux calculus is a decision procedure to check satisfiability of a DL formula.
\square The procedure looks for a model satisfying the formula in input
- The basic idea is to incrementally build the model by looking at the formula and by decomposing it into pieces in a top-down fashion.
- The procedure exhaustively tries all possibilities so that it can eventually prove that no model could be found and therefore the formula is unsatisfiable.

Preview example

$C=(\exists \mathrm{R} . \mathrm{A}) \sqcap(\exists \mathrm{R} . \mathrm{B}) \sqcap(\exists \mathrm{R} . \neg(\mathrm{A} \sqcap \mathrm{B}))$
$C=(\exists R . A) \sqcap(\exists R . B) \sqcap(\exists R .(\neg A \sqcup \neg B)) \quad$ De Morgan
In Negation Normal Form
C is safisfiable iff I(C) $\neq \varnothing$ for some I
$\mathrm{C} 1=\exists \mathrm{R} . \mathrm{A} \quad \mathrm{C} 2=\exists \mathrm{R} . \mathrm{B} \quad \mathrm{C} 3=\exists \mathrm{R} .(\neg \mathrm{A} \sqcup \neg \mathrm{B})$ Decomposition
$C 1 \Rightarrow \exists(b, c) \in I(R)$ and $c \in I(A)$ $C 2 \Rightarrow \exists(b, d) \in I(R)$ and $d \in I(B)$
$\mathrm{C} 3 \Rightarrow \exists(\mathrm{~b}, \mathrm{e}) \in \mathrm{I}(\mathrm{R})$ and $\mathrm{e} \in \mathrm{I}(\neg \mathrm{A} \sqcup \neg \mathrm{B}) \Rightarrow \mathrm{e} \in \mathrm{I}(\neg \mathrm{A})$ or $\mathrm{I}(\neg \mathrm{B})$
If we take $e=c$, must be $e \in I(\neg B)$ otherwise it reaches a contradiction If we take $e=d$, must be $e \in I(\neg A)$ otherwise it reaches a contradiction

The Tableau Algorithm

- The formula C in input is translated into Negation Normal Form.
- An ABox A is incrementally constructed by adding assertions according to the constraints in C (identified by decomposition) following precise transformation rules
- Each time we have more than one option we split the space of the solutions as in a decision tree (i.e. in presence of u)
- When a contradiction is found (i.e. A is inconsistent) we need to try another path in the space of the solutions (backtracking)
\square The algorithm stops when either we find a consistent A satisfying all the constraints in C (the formula is satisfiable) or there is no consistent A (the formula is unsatisfiable)

Transformation rules

\square П-rule
Condition: A contains (C1 $\cap \mathrm{C} 2)(x)$, but not both $\mathrm{C} 1(x)$ and $\mathrm{C} 2(\mathrm{x})$ Action: $A^{\prime}=A \cup\{C 1(x), C 2(x)\}$
$\mathrm{T}=\{$ Mother \equiv Female $\sqcap \quad$ hasChild.Person $\} \quad \mathrm{A}=\{$ Mother(Anna) $\}$
Is \neg hasChild.Person $\sqcap \neg$ hasParent. Person) satisfiable?
Expand A w.r.t. T
Mother(Anna) \Rightarrow (Female \square hasChild.Person)(Anna) \Rightarrow $A^{\prime}=A \quad\{F e m a l e(A n n a),($ hasChild.Person)(Anna)\}
(\neg hasChild.Person $\sqcap \neg$ hasParent.Person)(Anna) \Rightarrow
(\neg hasChild.(Person))(Anna) $\sqcap(\neg$ hasParent.(Person))(Anna)
Both of them must be true, but the first constraint is clearly in contradiction with A'

Transformation rules

- ப-rule

Condition: A contains (C1 $\sqcup \mathrm{C} 2)(\mathrm{x})$, but neither $\mathrm{C} 1(\mathrm{x})$ or $\mathrm{C} 2(\mathrm{x})$ Action: $A^{\prime}=A \cup\{C 1(x)\}$ and $A^{\prime \prime}=A \cup\{C 2(x)\}$
$\mathrm{T}=\{$ Parent \equiv hasChild.Female $\sqcup \exists$ hasChild.Male, Person \equiv Male \sqcup Female, Mother \equiv Parent \sqcap Female $\}$
A=\{Mother(Anna) $\}$
Is \neg (hasChild.Person) satisfiable?
Expand A w.r.t. T
$A=\{$ Mother(Anna) $\} \Rightarrow A^{\prime}=A \quad\{$ Parent(Anna), Female(Anna) $\}$ Parent(Anna) \Rightarrow (hasChild.Female $\sqcup \exists$ hasChild.Male)(Anna) \Rightarrow (hasChild.Female)(Anna) or (hasChild.Male)(Anna)

Both are in contradiction with $\neg($ hasChild.Person)

Transformation rules

- \exists-rule

Condition: A contains (\exists R.C) (x), but there is no z such that both $C(z)$ and $R(x, z)$ are in A Action: $\mathrm{A}^{\prime}=\mathrm{A} \cup\{\mathrm{C}(\mathrm{z}), \mathrm{R}(\mathrm{x}, \mathrm{z})\}$

T=\{Parent \equiv hasChild.Female $\sqcup \exists$ hasChild.Male, Person=MaleபFemale, Mother=Parent \square Female $\}$ A=\{Mother(Anna), hasChild(Anna,Bob), $\neg F e m a l e(B o b)\}$ Is \neg (hasChild.Person) satisfiable?

Expand A w.r.t. T
Mother(Anna) \Rightarrow Parent(Anna) \Rightarrow
(hasChild.Female $\sqcup \exists$ hasChild.Male)(Anna)
take (hasChild.Male)(Anna) \Rightarrow hasChild(Anna,Bob), Male(Bob) ...

Transformation rules

- \forall-rule

Condition: A contains ($\forall \mathrm{R} . \mathrm{C})(\mathrm{x})$ and $\mathrm{R}(\mathrm{x}, \mathrm{z})$, but it does not $\mathrm{C}(\mathrm{z})$ Action: $A^{\prime}=A \cup\{C(z)\}$
$\mathrm{T}=\{$ DaughterParent \equiv hasChild.Female, Male \sqcap Female $\subseteq \perp$ \}
A=\{hasChild(Anna,Bob), ᄀFemale(Bob)\}
Is DaughterParent satisfiable?
Expand A w.r.t. T
DaughterParent $(x) \Rightarrow$ hasChild.Female $(x) \Rightarrow$ $A^{\prime}=A \quad\{$ Female $(\mathrm{Bob})\}$
but this in contradiction with \neg Female(Bob)

Example of Tableau Reasoning

\square Is \forall hasChild．Male \sqcap ヨhasChild．\neg Male satisfiable？

NOTE：we do not have an initial T or A
（ \forall hasChild．Male \sqcap ヨhasChild．\neg Male）（x）\Rightarrow
$\mathrm{A}=\{(\forall$ hasChild．Male）（x），（ヨhasChild．\neg Male）（x）$\} \quad п$－rule
（ ヨhasChild．\neg Male）（x）$\Rightarrow A^{\prime}=A \cup$ hasChild $(x, y), \neg$ Male（y）\} \exists－rule
（ \forall hasChild．Male）(x) ，hasChild $(x, y) \Rightarrow A^{\prime \prime}=A^{\prime} u$ Male $(y) \forall-r u l e$

A＂is clearly inconsistent

Additional Rules

The \rightarrow-rule

Condition: \mathcal{A} contains $(\geqslant n R)(x)$, and there are no individual names z_{1}, \ldots, z_{n} such that $R\left(x, z_{i}\right)(1 \leq i \leq n)$ and $z_{i} \neq z_{j}(1 \leq i<j \leq n)$ are contained in \mathcal{A}.
Action: $\mathcal{A}^{\prime}=\mathcal{A} \cup\left\{R\left(x, y_{i}\right) \mid 1 \leq i \leq n\right\} \cup\left\{y_{i} \neq y_{j} \mid 1 \leq i<j \leq n\right\}$, where y_{1}, \ldots, y_{n} are distinct individual names not occurring in \mathcal{A}.

The $\rightarrow<$-rule
Condition: \mathcal{A} contains distinct individual names y_{1}, \ldots, y_{n+1} such that $(\leqslant n R)(x)$ and $R\left(x, y_{1}\right), \ldots, R\left(x, y_{n+1}\right)$ are in \mathcal{A}, and $y_{i} \neq y_{j}$ is not in \mathcal{A} for some $i \neq j$. Action: For each pair y_{i}, y_{j} such that $i>j$ and $y_{i} \neq y_{j}$ is not in \mathcal{A}, the ABox $\mathcal{A}_{i, j}=\left[y_{i} / y_{j}\right] \mathcal{A}$ is obtained from \mathcal{A} by replacing each occurrence of y_{i} by y_{j}.

Complexity of Tableau Algorithms

\square The satisfiability algorithm of ALCN may need exponential time and space. It is PSPACE-complete.
\square An optimized algorithm needs only polynomial space as it assumes a depth-first search and stores only the 'correct' path.
\square The consistency and instance checking problem for ALCN are also PSPACE-complete.
\square The complexity results for other Description Logics varies according to corresponding constructors.

