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Overview
Description Logics (DLs) is a family of KR formalisms
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TBox

ABox

Representation Reasoning

Alphabet of symbols with two new symbols w.r.t. ClassL:
∀R (value restriction)
∃R (existential quantification)

R are atomic role names
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AL (Attributive language) Logical Symbols 
Formation rules:

<Atomic> ::= A | B | ... | P | Q | ... | ⊥ | ⊤
<wff> ::= <Atomic> | ¬<Atomic> | <wff> ⊓ <wff> | ∀R.C | ∃R.⊤
NOTE: no ⊔, ∃R.⊤ = limited existential quantifier, ¬ on atomic only

Person ⊓ Female
“persons that are female”
Person ⊓ ∃hasChild. ⊤
“(all those) persons that have a child”
Person ⊓ ∀hasChild. ⊥
“(all those) persons without a child”
Person ⊓ ∀hasChild.Female
“persons all of whose children are female”
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ALU (AL with disjunction)
Formation rules:

<Atomic> ::= A | B | ... | P | Q | ... | ⊥ | ⊤
<wff> ::= <Atomic> | ¬<Atomic> | <wff> ⊓ <wff> | ∀R.C | ∃R.⊤ |

<wff> ⊔ <wff>

Mother ⊔ Father
“the notion of parent”
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ALE (AL with extended existential)
Formation rules:

<Atomic> ::= A | B | ... | P | Q | ... | ⊥ | ⊤
<wff> ::= <Atomic> | ¬<Atomic> | <wff> ⊓ <wff> | ∀R.C | ∃R.⊤ | 

∃R | ∃R.C

∃R (there exists an arbitrary role) 
∃R.C (full existential quantification) 

Parent ⊓ ∃hasChild.Female
“parents having at least a daughter”
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ALN (AL with number restriction)
Formation rules:

<Atomic> ::= A | B | ... | P | Q | ... | ⊥ | ⊤
<wff> ::= <Atomic> | ¬<Atomic> | <wff> ⊓ <wff> | ∀R.C | ∃R.⊤ | 

≥nR | ≤nR

≥nR (at-least number restriction)
≤nR (at-most number restriction)

Parent ⊓ ≥2 hasChild
“parents having at least two children”
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ALC (AL with full concept negation)
Formation rules:

<Atomic> ::= A | B | ... | P | Q | ... | ⊥ | ⊤
<wff> ::= <Atomic> | ¬ <wff> | <wff> ⊓ <wff> | ∀R.C | ∃R.⊤

¬ (Mother ⊓ Father) 
“it cannot be both a mother and father”

8

OVERVIEW ::  SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM



AL’s extensions and sub-languages
By extending AL with any subsets of the above constructors 
yields a particular DL language.
Each language is denoted by a string of the form AL[U][E][N][C], 
where a letter in the name stands for the presence of the 
corresponding constructor.
ALC is considered the most important for many reasons.
NOTE: ALU ⊆ ALC and ALE ⊆ ALC

By eliminating some of the syntactical symbols and rules, we 
get some sub-languages of AL
The most important sub-language obtained by elimination in the 
AL family is ClassL
We also have FL- and FL0 (where FL = frame language)

9

OVERVIEW ::  SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM



From AL to ClassL
ALUC with the elimination of roles ∀R.C and ∃R.⊤

Formation rules:

<Atomic> ::= A | B | ... | P | Q | ... | ⊥ | ⊤
<wff> ::= <Atomic> | ¬ <wff> | <wff> ⊓ <wff> | <wff> ⊔ <wff>

The new language is a description language without roles which 
is ClassL (also called propositional DL)

NOTE: So far, we are considering DL without TBOX and ABox. 
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AL’s Contractions: FL- and FL0
FL- is AL with the elimination of ⊤, ⊥ and ¬
Formation rules:
<Atomic> ::= A | B | ... | P | Q | ... 
<wff> ::= <Atomic> | <wff> ⊓ <wff> | ∀R.C | ∃R.⊤

FL0 is FL- with the elimination of ∃R.⊤
Formation rules:
<Atomic> ::= A | B | ... | P | Q | ... 

<wff> ::= <Atomic> | <wff> ⊓ <wff> | ∀R.C
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AL* Interpretation (∆,I)
I(⊥) =∅ and I(⊤) = ∆ (full domain, “Universe”)
For every concept name A of L, I(A) ⊆ ∆
I(¬C) = ∆ \ I(C)
I(C⊓D) = I(C) ∩ I(D)
I(C ⊔ D) = I(C) ∪ I(D)

For every role name R of L, I(R) ⊆ ∆ × ∆
I(∀R.C) = {a ∈ ∆ | for all b, if (a,b)∈I(R) then b∈I(C)}
I(∃R. ⊤) = {a ∈ ∆ | exists b s.t. (a,b) ∈ I(R)}
I(∃R.C) = {a ∈ ∆ | exists b s.t. (a,b) ∈ I(R), b ∈ I(C)}
I(≥nR) = {a ∈ ∆ | |{b | (a, b) ∈ I(R)}| ≥ n}
I(≤nR) = {a ∈ ∆ | |{b | (a, b) ∈ I(R)}| ≤ n}
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The
SAME 
as in

ClassL
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Interpretation of Existential Quantifier
I(∃R.C) = {a ∈ ∆ | exists b s.t. (a,b) ∈ I(R), b ∈ I(C)} 

Those a that have some value b in C with role R.

13

b I(C)

a (a,b)∈I(R)
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I(∀R.C) = {a ∈ ∆ | for all b, if (a,b)∈I(R) then b∈I(C)}

Those a that have only values b in C with role R.

Interpretation of Value Restriction
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b I(C)

a if (a,b)  ∈I(R)

b'
b''

if (a,b') ∈I(R)
if (a,b'') ∈I(R)
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Interpretation of Number Restriction
I(≥nR) = {a∈∆ | |{b | (a, b) ∈ I(R)}|≥ n} 

Those a that have relation R to at least n individuals.
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∆

a

b
b'
…

|{b | (a, b) ∈ I(R)}| ≥ n 
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Interpretation of Number Restriction Cont.
I(≤nR) = {a ∈ ∆ | |{b | (a, b) ∈ I(R)}| ≤n } 

Those a that have relation R to at most n individuals.
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∆

a

|{b | (a,b) ∈ I(R)}| ≤n 

b
b'
…
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Terminology (TBox), same as in ClassL 
A terminology (or TBox) is a set of definitions and specializations
Terminological axioms express constraints on the concepts of the 
language, i.e. they limit the possible models
The TBox is the set of all the constraints on the possible models
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PhD ≡ Postgraduate ⊓ ≥3Publish.Paper

Parent ≡ Person ⊓ �hasChild.Person
hasGrandChild ⊑ hasChild

Equality axiom
Definition

Inclusion axiom
Specialization

TBOX

Subsumption

Equivalence
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Reasoning with a TBox T, same as ClassL
Given two class-propositions P and Q, we want to reason about:

Satisfiability w.r.t. T T ⊨ P ?
A concept P is satisfiable w.r.t. a terminology T, if there exists an 
interpretation I with I ⊨ θ for all θ ∈ T, and such that I ⊨ P, I(P)≠∅
Subsumption T ⊨ P ⊑ Q? T ⊨ Q ⊑ P? 
A concept P is subsumed by a concept Q w.r.t. T if I(P) ⊆ I(Q) for 
every model I of T
Equivalence T ⊨ P ⊑ Q and T ⊨ Q ⊑ P?
Two concepts P and Q are equivalent w.r.t. T if I(P) = I(Q) for every 
model I of T
Disjointness T ⊨ P ⊓ Q ⊑ ⊥?
Two concepts P  and Q are disjoint with respect to T if their intersection is 
empty, I(P) ∩ I(Q) = ∅, for every model I of T
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ABox, syntax
In an ABox one introduces individuals, by giving them names, 
and one asserts properties about them.
We denote individual names as a, b, c,…
An assertion with concept C is called concept assertion (or 
simply assertion) in the form:

C(a), C(b), C(c), …
An assertion with Role R is called role assertion in the form:

R(a, b), R(b, c), …
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Student(paul)
Professor(fausto)

Teaches(Fausto, LDKR)
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ABox, semantics
An interpretation I: L → pow(∆I) not only maps atomic concepts 
to sets, but in addition it maps each individual name a to an 
element aI ∈ ∆I, namely

I(a) = aI ∈ ∆I

I (C(a)) = aI ∈CI, 
I(R(a, b)) = (aI, bI)∈RI

Unique name assumption (UNA). We assume that distinct 
individual names denote distinct objects in the domain

NOTE: ∆I denotes the domain of interpretation, a denotes the symbol 
used for the individual (the name), while aI is the actual individual of 
the domain.
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Reasoning Services, same as ClassL
Given an ABox A, we can reason (w.r.t. a TBox T) about the following:

Satisfiability/Consistency: An ABox A is consistent with respect to T 
if there is an interpretation I which is a model of both A and T.

Instance checking: checking whether an assertion C(a) or R(a,b) is 
entailed by an ABox, i.e. checking whether a belongs to C. 
A ⊨ C(a) if every I that satisfies A also satisfies C(a).
A ⊨ R(a,b) if every I that satisfies A also satisfies R(a,b).

Instance retrieval: given a concept C, retrieve all the instances a
which satisfy C.
Concept realization: given a set of concepts and an individual a find 
the most specific concept(s) C (w.r.t. subsumption ordering) such 
that A ⊨ C(a).

21

OVERVIEW ::  SYNTAX :: SEMANTICS :: TBOX :: ABOX :: TABLEAU ALGORITHM



Tableaux Calculus
The Tableaux calculus is a decision procedure to check 
satisfiability of a DL formula.

The procedure looks for a model satisfying the formula in input

The basic idea is to incrementally build the model by looking at 
the formula and by decomposing it into pieces in a top-down 
fashion. 

The procedure exhaustively tries all possibilities so that it can 
eventually prove that no model could be found and therefore 
the formula is unsatisfiable.
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Preview example
C = (∃R.A) ⊓ (∃R.B) ⊓ (∃R.¬(A ⊓ B))

C = (∃R.A) ⊓ (∃R.B) ⊓ (∃R.(¬ A ⊔ ¬ B)) De Morgan
In Negation Normal Form

C is safisfiable iff I(C) ≠ ∅ for some I

C1 = ∃R.A C2 = ∃R.B C3 = ∃R.(¬ A ⊔ ¬ B)  Decomposition
C1 ∃ (b,c) ∈ I(R) and c ∈ I(A) 
C2 ∃ (b,d) ∈ I(R) and d ∈ I(B) 

C3 ∃ (b,e) ∈ I(R) and e ∈ I(¬ A ⊔ ¬ B) e ∈ I(¬ A) or I(¬ B) 
If we take e=c, must be e ∈ I(¬ B) otherwise it reaches a contradiction
If we take e=d, must be e ∈ I(¬ A) otherwise it reaches a contradiction
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The Tableau Algorithm
The formula C in input is translated into Negation Normal Form.

An ABox A is incrementally constructed by adding assertions 
according to the constraints in C (identified by decomposition) 
following precise transformation rules
Each time we have more than one option we split the space of 
the solutions as in a decision tree (i.e. in presence of ⊔)
When a contradiction is found (i.e. A is inconsistent) we need to 
try another path in the space of the solutions (backtracking)

The algorithm stops when either we find a consistent A 
satisfying all the constraints in C (the formula is satisfiable) or 
there is no consistent A (the formula is unsatisfiable)
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T={Mother ≡ Female ⊓ �hasChild.Person}      A={Mother(Anna)}
Is ¬�hasChild.Person ⊓ ¬�hasParent. Person) satisfiable?

Expand A w.r.t. T
Mother(Anna) (Female ⊓ �hasChild.Person)(Anna) 
A’ = A � {Female(Anna), (�hasChild.Person)(Anna)}

(¬�hasChild.Person ⊓ ¬�hasParent.Person)(Anna) 
(¬�hasChild.(Person))(Anna) ⊓ (¬�hasParent.(Person))(Anna) 
Both of them must be true, but the first constraint is clearly 
in contradiction with A’

Transformation rules
⊓-rule
Condition: A contains (C1 ⊓ C2)(x), but not both C1(x) and C2(x)
Action: A’ = A ∪ {C1(x), C2(x)}
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T={Parent≡�hasChild.Female⊔∃hasChild.Male,
Person≡Male⊔Female, Mother≡Parent ⊓Female}

A={Mother(Anna)}
Is ¬(�hasChild.Person) satisfiable?

Expand A w.r.t. T
A = {Mother(Anna)} A’ = A � {Parent(Anna), Female(Anna)}
Parent(Anna) (�hasChild.Female⊔∃hasChild.Male)(Anna) 
(�hasChild.Female)(Anna) or (�hasChild.Male)(Anna)

Both are in contradiction with ¬(�hasChild.Person)

Transformation rules
⊔-rule
Condition: A contains (C1 ⊔ C2)(x), but neither C1(x) or C2(x)
Action: A’ = A ∪ {C1(x)} and A’’ = A ∪ {C2(x)}
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Transformation rules
∃-rule
Condition: A contains (∃R.C)(x), but there is no z such that both C(z) 
and R(x,z) are in A
Action: A’ = A ∪ {C(z), R(x,z)}
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T={Parent≡�hasChild.Female⊔∃hasChild.Male, 
Person≡Male⊔Female, Mother≡Parent⊓Female}

A={Mother(Anna), hasChild(Anna,Bob), ¬Female(Bob)}
Is ¬(�hasChild.Person) satisfiable?

Expand A w.r.t. T
Mother(Anna) Parent(Anna) 
(�hasChild.Female⊔∃hasChild.Male)(Anna) 

take (�hasChild.Male)(Anna) hasChild(Anna,Bob), Male(Bob) …



Transformation rules
∀-rule
Condition: A contains (∀R.C)(x) and R(x,z), but it does not C(z) 
Action: A’ = A ∪ {C(z)}
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T={DaughterParent≡�hasChild.Female, Male⊓Female⊑⊥}
A={hasChild(Anna,Bob), ¬Female(Bob)}
Is DaughterParent satisfiable?

Expand A w.r.t. T
DaughterParent(x) �hasChild.Female(x) 
A’ = A � {Female(Bob)}

but this in contradiction with ¬Female(Bob)



Example of Tableau Reasoning
Is ∀hasChild.Male ⊓ ∃hasChild.¬Male satisfiable?

NOTE: we do not have an initial T or A

(∀hasChild.Male ⊓ ∃hasChild.¬Male)(x) 
A = {(∀hasChild.Male)(x), (∃hasChild.¬Male)(x)}   ⊓-rule

(∃hasChild.¬Male)(x) A’ = A ∪ {hasChild(x,y), ¬Male(y)} ∃-rule

(∀hasChild.Male)(x), hasChild(x,y) A’’ = A’ ∪ Male(y) ∀-rule

A’’ is clearly inconsistent
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Additional Rules
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Complexity of Tableau Algorithms
The satisfiability algorithm of ALCN may need exponential time 
and space. It is PSPACE-complete.

An optimized algorithm needs only polynomial space as it 
assumes a depth-first search and stores only the ‘correct’
path.

The consistency and instance checking problem for ALCN are 
also PSPACE-complete.

The complexity results for other Description Logics varies 
according to corresponding constructors.
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