
Logics for Data and Knowledge
Representation

ClassL (part 2): TBOX and ABOX

Outline
 Terminology (TBox)
 Normalization of a TBox
 Reasoning with the TBox

 Some definitions
 Primitive and defined concepts
 Use and directly use
 Cyclic and acyclic terminologies
 Expansion of a TBox

 Eliminating the TBox: Reducing to DPLL reasoning

2

Terminology (TBox)
 A terminology (or TBox) is a set of definitions and specializations

 Terminological axioms express constraints on the concepts of the language, i.e. they
limit the possible models

 The TBox is the set of all the constraints on the possible models

3

Woman ≡ Person ⊓ Female
Man ≡ Person ⊓ ¬Woman
Student ⊑ Person ⊓ Study
Bachelor ≡ Student ⊓ Undergraduate
PhD ⊑ Student ⊓ Lecturer

TBOX :: NORMALIZATION :: REASONING WITH A TBOX :: DEFINITIONS :: ELIMINATING THE TBOX

Equality axiom
Definition

Inclusion axiom
Specialization

TBOX

Subsumption

Equivalence

Semantics: Venn diagrams to represent
axioms
 σ(A ⊑ B)

 σ(A ≡ B)

4

B

A

BA

TBOX :: NORMALIZATION :: REASONING WITH A TBOX :: DEFINITIONS :: ELIMINATING THE TBOX

Normalization of a TBox
 It is always possible to transform a specialization into a

definition by introducing an auxiliary symbol as follows:

 If from a TBox we transform all specializations into
definitions we say we have normalized the TBox

 A TBox with definitions only is called regular.

5

Woman ⊑ Person (the specialization)

Woman ≡ Person ⊓ Female (the normalized specialization)

TBOX :: NORMALIZATION :: REASONING WITH A TBOX :: DEFINITIONS :: ELIMINATING THE TBOX

Reasoning with a TBox T
 Given two class-propositions P and Q, we want to reason about:

 Satisfiability w.r.t. T T ⊨ P ?
A concept P is satisfiable w.r.t. a terminology T, if there exists an
interpretation I with I ⊨ θ for all θ ∈ T, and such that I ⊨ P, I(P)≠∅

 Subsumption T ⊨ P ⊑ Q? T ⊨ Q ⊑ P?
A concept P is subsumed by a concept Q w.r.t. T if I(P) ⊆ I(Q) for
every model I of T

 Equivalence T ⊨ P ⊑ Q and T ⊨ Q ⊑ P?
Two concepts P and Q are equivalent w.r.t. T if I(P) = I(Q) for every
model I of T

 Disjointness T ⊨ P ⊓ Q ⊑ ⊥?
Two concepts P and Q are disjoint with respect to T if their
intersection is empty, I(P) ∩ I(Q) = ∅, for every model I of T

6

TBOX :: NORMALIZATION :: REASONING WITH A TBOX :: DEFINITIONS :: ELIMINATING THE TBOX

TBox: primitive and defined concepts
 In a TBox there are two kinds of concepts (symbols):

 Primitive concepts (or base symbols), which occur only on
the right hand of axioms

 Defined concepts (or name symbols) which occur on the
left hand of axioms

7

A ⊑ B ⊓ (C ⊔ D)

B, C and D are primitive concepts. A is a defined concept

TBOX :: NORMALIZATION :: REASONING WITH A TBOX :: DEFINITIONS :: ELIMINATING THE TBOX

Use and direct use
Let A and B be atomic concepts in a terminology T.
 We say that A directly uses B in T if B appears in the

right hand of the defintion of A.

 We say that A uses B in T if B appears in the right hand
after the definition of A has been “unfolded” so that
there are only primitive concepts in the left hand side of
the definition of A

8

A ⊑ B ⊓ (C ⊔ D)

A directly uses B, C, D

A ⊑ B ⊓ (C ⊔ D) ---> A ⊑ (C ⊔ E) ⊓ (C ⊔ D)

B ⊑ C ⊔ E

A directly uses B; A uses E (because B is defined in terms of E)

TBOX :: NORMALIZATION :: REASONING WITH A TBOX :: DEFINITIONS :: ELIMINATING THE TBOX

Cyclic and acyclic terminologies
 A terminology T contains a cycle (is cyclic) if it contains a

concept which uses itself.

 A terminilogy is acyclic otherwise

9

Parent ≡ Father ⊔ Mother

Father ⊑ Male

Mother ⊑ Female

Male ≡ Person ⊓ ¬ Female

Is acyclic

Father ≡ Male ⊓ hasChild

hasChild ≡ Father ⊔ Mother

Is cyclic

TBOX :: NORMALIZATION :: REASONING WITH A TBOX :: DEFINITIONS :: ELIMINATING THE TBOX

Expansion and equivalent
terminologies
 The expansion T’ of an acyclic terminology T is a terminology obtained

from T by unfolding all definitions until all concepts occurring on the
right hand side of definitions are primitive (direct use only)

 T and T’ are equivalent when they have the same expansion.
 Reasoning with T’ will yield the same results as reasoning with T.
 If T’ is the expansion of T then they are equivalent.

NOTE: it is possible to expand also a cyclic TBox.

In some cases some models exist even if the TBox is cyclic. These
models are called fixpoints and there are some methods to find them
and break the recursion (we will not see them).

10

T T’

A ⊑ B ⊓ (C ⊔ D) A ⊑ (C ⊔ E) ⊓ (C ⊔ D)

B ⊑ (C ⊔ E) B ⊑ (C ⊔ E)

TBOX :: NORMALIZATION :: REASONING WITH A TBOX :: DEFINITIONS :: ELIMINATING THE TBOX

Expansion requires normalization
 To expand a terminology we should first normalize it (not

strictly necessary). Otherwise, if we use a specialization to
expand a definition, definitions reduce to specializations,
as below:

 From now on we deal with regular terminologies only

(see next slide for the regular version of the terminology T
above)

11

T

Parent ≡ Father ⊔ Mother
Father ⊑ Male
Mother ⊑ Female
Male ≡ Person ⊓ ¬ Female

T’

Parent ⊑ (Person ⊓ ¬ Female) ⊔ Female
Father ⊑ Person ⊓ ¬ Female
Mother ⊑ Female
Male ≡ Person ⊓ ¬ Female

TBOX :: NORMALIZATION :: REASONING WITH A TBOX :: DEFINITIONS :: ELIMINATING THE TBOX

Concept expansion
 For each concept C we define the expansion of C with respect

to T as the concept C’ that is obtained from C by replacing
each occurrence of a name symbol A in C by the concept D,
where A≡D is the definition of A in T’, the expansion of T

12

T
Parent ≡ Mother ⊔ Father
Father ≡ Male ⊓ hasChild
Mother ≡ Female ⊓ hasChild
Male ≡ Person ⊓ ¬ Female

The expansion of Parent w.r.t. T is:
(Female ⊓ hasChild) ⊔ (Person ⊓ ¬ Female ⊓ hasChild)

TBOX :: NORMALIZATION :: REASONING WITH A TBOX :: DEFINITIONS :: ELIMINATING THE TBOX

NOTE: The expansion of T to T’ or C to C’ can be costly: In
the worst case T’ is exponential in the size of T, and this
propagates to single concepts.

PL and ClassL: table of the symbols

PL ClassL

Syntax ∧ ⊓

∨ ⊔

¬ ¬
⊤ ⊤

⊥ ⊥

→ ⊑

↔ ≡

P, Q... P, Q...

Semantics ∆={true, false} ∆={o, …} (compare models)

13

 RECALL: A proposition P is true iff it is satisfiable

TBOX :: NORMALIZATION :: REASONING WITH A TBOX :: DEFINITIONS :: ELIMINATING THE TBOX

PL and ClassL are notational
variants

Reduction to subsumption and unsatisfiability
 Reduction to subsumption. Given two concepts C and D,

 C is unsatisfiable ⇔ C ⊑ ⊥
 C ≡ D ⇔ C ⊑ D and D ⊑ C
 C ⊥ D ⇔ C ⊓ D ⊑ ⊥

 Reduction to unsatisfiability. Given two concepts C and
D,
 C ⊑ D ⇔ C ⊓ ¬D is unsatisfiable
 C ≡ D ⇔ both (C ⊓ ¬D) and (¬C ⊓ D) are unsatisfiable
 C ⊥ D ⇔ C ⊓ D is unsatisfiable

14

TBOX :: NORMALIZATION :: REASONING WITH A TBOX :: DEFINITIONS :: ELIMINATING THE TBOX

Eliminating the TBox using expansion
Assume C’ expansion of C w.r.t. T.

For all σ satisfying all the axioms in T we have:
 T ⊨ C iff σ ⊨ C’ (Satisfiability)
 T ⊨ C ⊑ D iff σ ⊨ C’ ⊑ D’ (Subsumption,

Equivalence)
 T ⊨ C ⊓ D ⊑ ⊥ iff σ ⊨ C’ ⊓ D’ ⊑ ⊥ (Disjointness)

15

T
Person ≡ Male ⊓ Female
Male ≡ Person ⊓ ¬ Female

Is Person satisfiable? NO!

The expansion of Person w.r.t. T is: (Person ⊓ ¬ Female) ⊓ Female
which is equivalent to ⊥ and therefore unsatisfiable

TBOX :: NORMALIZATION :: REASONING WITH A TBOX :: DEFINITIONS :: ELIMINATING THE TBOX

Eliminating the TBox: the algorithm
 With acyclic TBoxes T it is always possible to reduce reasoning

problems w.r.t. T to problems without T. See for instance the
algorithm for subsumption (all the others can be reduced to it).

 Input: a TBox T, the two concepts C and D
 Output: true if C ⊑ D holds or false otherwise

boolean function IsSubsumedBy(T, C, D) {

T’ = Normalize(T);

C’ = Expand(C, T’);

D’ = Expand(D, T’);

 C’ = RewriteInPL(C’);

D’ = RewriteInPL(D’);

return DPLL(C’ → D’);

}

16

Normalization

Expansion, TBox
elimination

DPLL Reasoning

TBOX :: NORMALIZATION :: REASONING WITH A TBOX :: DEFINITIONS :: ELIMINATING THE TBOX

Conversion in PL

Outline
 World descriptions, assertions (ABox)
 Reasoning with the ABox
 Eliminating the ABox: Reducing to DPLL reasoning

17

ABox, syntax
 The second component of the knowledge base is the

world description, the ABox.
 In an ABox one introduces individuals, by giving them

names, and one asserts properties about them.
 We denote individual names as a, b, c,…
 An assertion with concept C is called concept assertion

(or simply assertion) in the form:

C(a), C(b), C(c), …

18

Student(paul)
Professor(fausto)

To be read:
paul belongs to (is in) Student
fausto belongs to (is in) Professor

ABOX :: REASONING WITH AN ABOX :: ELIMINATING THE ABOX

ABox, semantics
 We give semantics to ABoxes by extending

interpretations to individual names
 An interpretation I: L → pow(∆I) not only maps atomic

concepts to sets, but in addition it maps each individual
name a to an element aI ∈ ∆I, namely

I(a) = aI ∈ ∆I

I(C(a)) = aI ∈ CI

 Unique name assumption (UNA). We assume that distinct
individual names denote distinct objects in the domain

NOTE: ∆I denotes the domain of interpretation, a denotes the
symbol used for the individual (the name), while aI is the
actual individual of the domain.

19

ABOX :: REASONING WITH AN ABOX :: ELIMINATING THE ABOX

Reasoning Services
 Given an ABox A, we can reason (w.r.t. a TBox T) about the following:

 Satisfiability/Consistency: An ABox A is consistent with respect to T if
there is an interpretation I which is a model of both A and T.

 Instance checking: checking whether an assertion C(a) is entailed by an
ABox, i.e. checking whether a belongs to C.

A ⊨ C(a) if every interpretation that satisfies A also satisfies C(a).

 Instance retrieval: given a concept C, retrieve all the instances a which
satisfy C.

 Concept realization: given a set of concepts and an individual a find the
most specific concept(s) C (w.r.t. subsumption ordering) such that A ⊨
C(a).

20

ABOX :: REASONING WITH AN ABOX :: ELIMINATING THE ABOX

Eliminating the ABox
 RECALL: ABoxes contain assertions of the form C(a).
 To eliminate the ABox we need to create a corresponding concept for

each assertion, e.g. of the form C-a and a new axiom C-a ⊑ C.
 This causes an exponential blow up.

21

A = {Master(Chen), Master(Paul), PhD(Enzo), PhD(Ronald),
 Assistant(Rui)}

New concepts:
Master-Chen, Master-Paul, PhD-Enzo, PhD-Ronald, Assistant-Rui
Their interpretation is the singleton set containing the individual.

T is extended with:
{Master-Chen ⊑ Master, PhD-Enzo ⊑ PhD, Assistant-Rui ⊑ Assistant}

ABOX :: REASONING WITH AN ABOX :: ELIMINATING THE ABOX

Eliminating the ABox: the algorithm
 It is always possible to reduce reasoning problems w.r.t. an

acyclic TBox T and an ABox A to problems without them. See
for instance the algorithm for subsumption (all the others can
be reduced to it).

 Input: a TBox T, an ABox A, the two concepts C and D
 Output: true if C ⊑ D holds or false otherwise

boolean function IsSubsumedBy(T, A, C, D) {

A’ = Expand(A, T);

T’ = ConvertAssertions(T, A’);

return IsSubsumedBy(T’, C, D) ;

}

22

ABox expansion

ABox elimination

DPLL Reasoning
by eliminating T’.
(see previous
lesson)

ABOX :: REASONING WITH AN ABOX :: ELIMINATING THE ABOX

	Logics for Data and Knowledge Representation
	Outline
	Terminology (TBox)
	Semantics: Venn diagrams to represent axioms
	Normalization of a TBox
	Reasoning with a TBox T
	TBox: primitive and defined concepts
	Use and direct use
	Cyclic and acyclic terminologies
	Expansion and equivalent terminologies
	Expansion requires normalization
	Concept expansion
	PL and ClassL: table of the symbols
	Reduction to subsumption and unsatisfiability
	Eliminating the TBox using expansion
	Eliminating the TBox: the algorithm
	Slide 17
	ABox, syntax
	ABox, semantics
	Reasoning Services
	Eliminating the ABox
	Eliminating the ABox: the algorithm

