

Logics for Data and Knowledge Representation

ClassL (part 1): syntax and semantics

Outline

Syntax

- Alphabet
- Formation rules

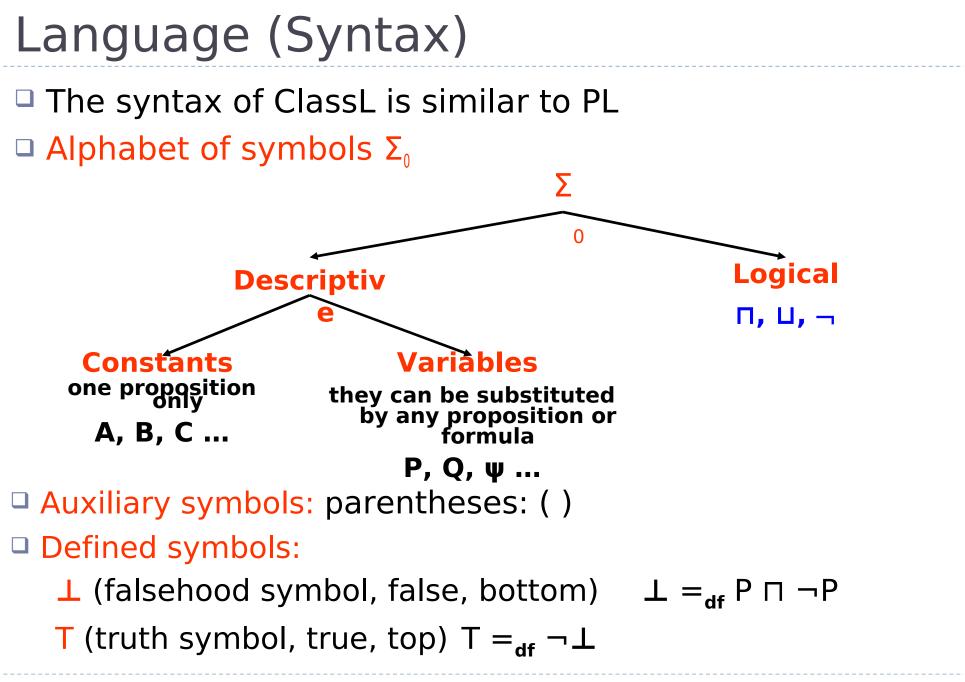
Semantics

- Class-valuation
- Venn diagrams
- Satisfiability
- Validity

Reasoning

- Comparing PL and ClassL
- ClassL reasoning using DPLL

INTRODUCTION :: SYNTAX :: SEMANTICS :: REASONING :: PL AND CLASSL :: CLASSL REASONING USING DPLL



Formation Rules (FR): well formed formulas

Well formed formulas (wff) in ClassL can be described by the following BNF (*) grammar (codifying the rules):

<Atomic Formula> ::= A | B | ... | P | Q | ... | \perp | T <wff> ::= <Atomic Formula> | \neg <wff> | <wff> \sqcap <wff> |

<wff> \sqcup <wff>

- Atomic formulas are also called atomic propositions
- Wff are class-propositional formulas (or just propositions)
- A formula is correct if and only if it is a wff

 $\Box \Sigma_0 + FR \text{ define a propositional language}$ (*) BNF = Backus-Naur form (formal grammar)

Extensional Semantics: Extensions

- The meanings which are intended to be attached to the symbols and propositions form the intended interpretation σ (sigma) of the language
- The semantics of a propositional language of classes L are extensional (semantics)
- The extensional semantics of L is based on the notion of "extension" of a formula (proposition) in L
- The extension of a proposition is the totality, or class, or set of all objects D (domain elements) to which the proposition applies

INTRODUCTION :: SYNTAX :: SEMANTICS :: REASONING :: PL AND CLASSL :: CLASSL REASONING USING DPLL

Extensional interpretation

D = {Cita, Kimba, Simba}

The World

The Mental Model

The Formal Model

Class-valuation σ

In extensional semantics, the first central semantic notion is that of class-valuation (the interpretation function)

Given a Class Language L

Given a domain of interpretation U

□ A class valuation σ of a propositional language of classes L is a mapping (function) assigning to each formula ψ of L a set $\sigma(\psi)$ of "objects" (truth-set) in U:

 $\sigma: L \rightarrow pow(U)$

Class-valuation σ

 $\Box \sigma(\perp) = \emptyset$

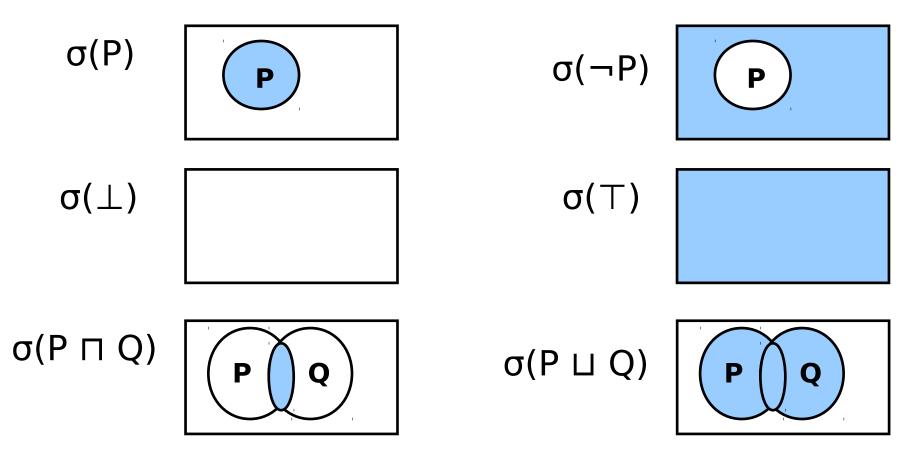
- $\Box \sigma(\top) = U$ (Universal Class, or Universe)
- $\Box \sigma(P) \subseteq U$, as defined by σ
- □ $\sigma(\neg P) = \{a \in U \mid a \notin \sigma(P)\} = comp(\sigma(P))$ (Complement)

 $\Box \sigma(P \sqcap Q) = \sigma(P) \cap \sigma(Q) \quad (Intersection)$

 $\Box \sigma(P \sqcup Q) = \sigma(P) \cup \sigma(Q) \quad (Union)$

Venn Diagrams and Class-Values

By regarding propositions as classes, it is very convenient to use Venn diagrams



Truth Relation (Satisfaction Relation)

□ Let σ be a class-valuation on language L, we define the truth-relation (or class-satisfaction relation) \models and write

 $\sigma \models P$

(read: σ satisfies P) iff $\sigma(P) \neq \emptyset$

Given a set of propositions Γ, we define

 $\sigma \models \Gamma$

iff $\sigma \vDash \theta$ for all formulas $\theta \in \Gamma$

Model and Satisfiability

Let σ be a class valuation on language L. σ is a model of a proposition P (set of propositions Γ) iff σ satisfies P (Γ).

□ P (Γ) is <u>class-satisfiable</u> if there is a class valuation σ such that $\sigma \models P$ ($\sigma \models \Gamma$).

Truth, satisfiability and validity

 \Box Let σ be a class valuation on language L.

 \Box P is true under σ if P is satisfiable by σ ($\sigma \vDash$ P)

□ P is valid if $\sigma \models P$ for all σ (notation: $\models P$) In this case, P is called a tautology (always true)

NOTE: the notions of 'true' and 'false' are relative to some truth valuation. NOTE: A proposition is true iff it is satisfiable

Reasoning on Class-Propositions

Given a class-propositions P we want to reason about the following:

- □ Model checking Does σ satisfy P? ($\sigma \models$ P?)
- □ Satisfiability Is there any σ such that $\sigma \models P$?
- \Box Unsatisfiability Is it true that there are no σ satisfying P?
- □ Validity Is P a tautology? (true for all σ)

PL and ClassL are notational variants

□ **Theorem**: P is satisfiable w.r.t. an intensional interpretation v if and only if P is satifisfiable w.r.t. an extensional interpretation σ

	PL	ClassL
Syntax	Λ	П
	V	
		¬
	Т	Т
	L	\perp
	P, Q	P, Q
Semantics	$\Delta = \{$ true, false $\}$	$\Delta = \{o,\}$ (compare models)

ClassL reasoning using DPLL

- Given the theorem and the correspondences above, ClassL reasoning can be implemented using DPLL.
- The first step consists in translating P into P' expressed in PL
 - Model checking Does σ satisfy P? (σ ⊨ P?)
 Find the corresponding model v and check that v(P') = true
 - □ Satisfiability Is there any σ such that $\sigma \models P$? Check that DPLL(P') succeeds and returns a ν
 - Unsatisfiability Is it true that there are no σ satisfying P?
 Check that DPLL(P') fails
 - □ Validity Is P a tautology? (true for all σ) Check that DPLL(¬P') fails