
LLogics for DData and KKnowledge
RRepresentation

First Order Logics (FOL)

Originally by Alessandro Agostini and Fausto Giunchiglia
Modified by Fausto Giunchiglia, Rui Zhang and Vincenzo Maltese

2

Outline
 Introduction
 Syntax
 Semantics
 Reasoning Services

2

The need for greater expressive power
 We need FOL for a greater expressive power. In FOL we have:

 constants/individuals (e.g. 2)
 variables (e.g. x)
 Unary predicates (e.g. Man)
 N-ary predicates (eg. Near)
 functions (e.g. Sum, Exp)
 quantifiers (∀, ∃)
 equality symbol = (optional)

 n-ary relations express objects in Dn Near(A,B)
 Functions return a value of the domain, Dn → D Multiply(x,y)
 Universal quantification∀x Man(x) → Mortal(x)
 Existential quantification ∃x (Dog(x) ∧ Black(x))

3

INTRODUCTION :: SYNTAX :: SEMANTICS :: REASONING SERVICES

Example of what we can express in
FOL

4

Kimba Simba

Cita

Hunts Eats

Monkey

LionNear

constants
1-ary predicates
n-ary predicates

INTRODUCTION :: SYNTAX :: SEMANTICS :: REASONING SERVICES

Alphabet of symbols
 Variables x1, x2, …, y, z

 Constants a1, a2, …, b, c

 Predicate symbols A1
1, A1

2, …, An
m

 Function symbols f1
1, f1

2, …, fn
m

 Logical symbols ∧, ∨, ¬, → , ∀, ∃
 Auxiliary symbols ()

 Indexes on top are used to denote the number of arguments,
called arity, in predicates and functions.

 Indexes on the bottom are used to disambiguate between
symbols having the same name.

 Predicates of arity =1 correspond to properties or concepts

5

INTRODUCTION :: SYNTAX :: SEMANTICS :: REASONING SERVICES

Terms and well formed formulas
 Terms can be defined using the following BNF grammar:

<term> ::= <variable> | <constant> | <function sym> (<term>{,<term>}*)
 A term is a closed term iff it does not contain variables, e.g. Sum(2,3)

 Well formed formulas (wff) can be defined as follows:

<atomic formula> ::= <predicate sym> (<term>{,<term>}*) |

 <term> = <term>

<wff> ::= <atomic formula> | ¬<wff> | <wff> ∧ <wff> | <wff> ∨ <wff> |

 <wff> → <wff> | ∀ <variable> <wff> | ∃ <variable> <wff>

NOTE: <term> = <term> is optional. If it is included, we have a FO language with
equality.

NOTE: We can also write ∃x.P(x) or ∃x:P(x) as notation (with ‘.’ or “:”)

6

INTRODUCTION :: SYNTAX :: SEMANTICS :: REASONING SERVICES

Scope and index of logical operators
Given two wff α and β

 Unary operators

In ¬α, ∀xα and∃xα,

α is the scope and x is the index of the operator

 Binary operators

In α ∧ β, α ∨ β and α → β,

α and β are the scope of the operator

NOTE: in the formula ∀x1 A(x2), x1 is the index but x1 is
not in the scope, therefore the formula can be simplified
to A(x2).

7

INTRODUCTION :: SYNTAX :: SEMANTICS :: REASONING SERVICES

Free and bound variables
 A variable x is bound in a formula γ if it is γ = ∀x α(x) or ∃x

α(x) that is x is both in the index and in the scope of the
operator.

 A variable is free otherwise.

 A formula with no free variables is said to be a sentence or
closed formula.

 A FO theory is any set of FO-sentences.

NOTE: we can substitute the bound variables without changing
the meaning of the formula, while it is in general not true for
free variables.

8

INTRODUCTION :: SYNTAX :: SEMANTICS :: REASONING SERVICES

Interpretation function
 An interpretation I for a FO language L over a domain D

is a function such that:

 I(ai) = ai for each constant ai

 I(An) ⊆ Dn for each predicate A of arity n

 I(fn) is a function f: Dn → D ⊆ Dn +1 for each function f of arity n

9

INTRODUCTION :: SYNTAX :: SEMANTICS :: REASONING SERVICES

Assignment
 An assignment for the variables {x1, …, xn} of a FO

language L over a domain D is a mapping function a:
{x1, …, xn} → D

a(xi) = di ∈ D

NOTE: In countable domains (finite and enumerable) the
elements of the domain D are given in an ordered sequence
<d1,…,dn> such that the assignment of the variables xi

follows the sequence.

NOTE: the assignment a can be defined on free variables
only.

10

INTRODUCTION :: SYNTAX :: SEMANTICS :: REASONING SERVICES

Interpretation over an assignment a
 An interpretation Ia for a FO language L over an

assignment a and a domain D is an extended
interpretation where:

 Ia(x) = a(x) for each variable x

 Ia(c) = I(c) for each constant c

 Ia(fn(t1,…, tn)) = I(fn)(Ia(t1),…, Ia(tn)) for each function f of
arity n

NOTE: Ia is defined on terms only

11

INTRODUCTION :: SYNTAX :: SEMANTICS :: REASONING SERVICES

Satisfaction relation
 We are now ready to provide the notion of satisfaction relation:

M ⊨ γ [a]

 (to be read: M satisfies γ under a or γ is true in M under a)

where:
 M is an interpretation function I over D

M is a mathematical structure <D, I>
 a is an assignment {x1, …, xn} → D

 γ is a FO-formula

NOTE: if γ is a sentence with no free variables, we can simply write: M
⊨ γ (without the assignment a)

12

INTRODUCTION :: SYNTAX :: SEMANTICS :: REASONING SERVICES

Satisfaction relation for well formed formulas
 γ atomic formula:

 γ: t1= t2 M ⊨ (t1= t2) [a] iff Ia(t1) = Ia(t2)

 γ: An(t1,…, tn) M ⊨ An(t1,…, tn) [a] iff (Ia(t1), …, Ia(tn)) ∈ I(An)

13

INTRODUCTION :: SYNTAX :: SEMANTICS :: REASONING SERVICES

Satisfaction relation for well formed formulas
 γ well formed formula:

 γ: ¬ α M ⊨ ¬ α [a] iff M ⊭ α [a]

 γ: α ∧ β M ⊨ α ∧ β [a]iff M ⊨ α [a] and M ⊨ β [a]

 γ: α ∨ β M ⊨ α ∨ β [a]iff M ⊨ α [a] or M ⊨ β [a]

 γ: α → β M ⊨ α → β [a] iff M ⊭ α [a] or M ⊨ β [a]

 γ: ∀xiα M ⊨ ∀xiα [a] iff M ⊨ α [s] for all assignments

s = <d1,…, d’i,…, dn> where s varies from a only

for the i-th element (s is called an i-th variant of a)

 γ: ∃xiα M ⊨ ∃xiα [a] iff M ⊨ α [s] for some assignment

s = <d1,…, d’i,…, dn> i-th variant of a

14

INTRODUCTION :: SYNTAX :: SEMANTICS :: REASONING SERVICES

Satisfaction relation for a set of formulas
 We say that a formula γ is true (w.r.t. an interpretation I) iff

every assignment

s = <d1,…, dn> satisfies γ, i.e. M ⊨ γ [s] for all s.

NOTE: under this definition, a formula γ might be neither
true nor false w.r.t. an interpretation I (it depends on the
assignment)

 If γ is true under I we say that I is a model for γ.

 Given a set of formulas Γ, M satisfies Γ iff M ⊨ γ for all γ in Γ

15

INTRODUCTION :: SYNTAX :: SEMANTICS :: REASONING SERVICES

Satisfiability and Validity
 We say that a formula γ is satisfiable iff there is a

structure

M = <D, I> and an assignment a such that M ⊨ γ [a]

 We say that a set of formulas Γ is satisfiable iff there is
a structure M = <D, I> and an assignment a such that

M ⊨ γ [a] for all γ in Γ

 We say that a formula γ is valid iff it is true for any
structure and assignment, in symbols ⊨ γ

 A set of formulas Γ is valid iff all formulas in Γ are valid.

16

INTRODUCTION :: SYNTAX :: SEMANTICS :: REASONING SERVICES

Entailment
 Let be Γ a set of FO- formulas, γ a FO- formula, we say

that

Γ ⊨ γ

(to be read Γ entails γ)

iff for all the interpretations M and assignments a,

if M ⊨ Γ [a] then M ⊨ γ [a].

17

INTRODUCTION :: SYNTAX :: SEMANTICS :: REASONING SERVICES

Reasoning Services: EVAL
Model Checking (EVAL)

Is a FO-formula γ true under a
structure M = <D, I> and an
assignment a? Check M ⊨ γ [a]

EVALγ, M, a
Yes

No

INTRODUCTION :: SYNTAX :: SEMANTICS :: REASONING SERVICES

Satisfiability (SAT)

Given a FO-formula γ, is there any
structure M = <D, I> and an
assignment a such that M ⊨ γ [a]?

SATγ
M,
aNo

Validity (VAL)

Given a FO-formula γ, is γ true
for all the interpretations M and
assignments a, i.e. ⊨ γ?

VALγ
Yes

No

NOTE: they are decidable in finite
domains

How to reason on finite domains
 ⊨ ∀x P(x) [a] D = {a, b, c}

we have only 3 possible assignments a(x) = a, a(x) = b, a(x)
= c

we translate in ⊨ P(a) ∧ P(b) ∧ P(c)

 ⊨ ∃x P(x) [a] D = {a, b, c}

we have only 3 possible assignments a(x) = a, a(x) = b, a(x)
= c

we translate in ⊨ P(a) ∨ P(b) ∨ P(c)

 ⊨ ∀x ∃y R(x,y) [a] D = {a, b, c}

we have 9 possible assignments, e.g. a(x) = a, a(y) = b

we translate in ⊨ ∃y R(a,y) ∧ ∃y R(b,y) ∧ ∃y R(c,y)

and then in ⊨ (R(a,a) ∨ R(a,b) ∨ R(a,c)) ∧
 (R(b,a) ∨ R(b,b) ∨ R(b,c)) ∧
 (R(c,a) ∨ R(c,b) ∨ R(c,c))

INTRODUCTION :: SYNTAX :: SEMANTICS :: REASONING SERVICES

	Logics for Data and Knowledge Representation
	Outline
	The need for greater expressive power
	Example of what we can express in FOL
	Alphabet of symbols
	Terms and well formed formulas
	Scope and index of logical operators
	Free and bound variables
	Interpretation function
	Assignment
	Interpretation over an assignment a
	Satisfaction relation
	Satisfaction relation for well formed formulas
	Slide 14
	Satisfaction relation for a set of formulas
	Satisfiability and Validity
	Entailment
	Reasoning Services: EVAL
	How to reason on finite domains

