
LLogics for DData and KKnowledge
RRepresentation

First Order Logics (FOL) 

Originally by Alessandro Agostini and Fausto Giunchiglia
Modified by Fausto Giunchiglia, Rui Zhang and Vincenzo Maltese



2

Outline
 Introduction
 Syntax
 Semantics
 Reasoning Services

2



The need for greater expressive power
 We need FOL for a greater expressive power. In FOL we have:

 constants/individuals (e.g. 2)
 variables (e.g. x)
 Unary predicates (e.g. Man)
 N-ary predicates (eg. Near) 
 functions (e.g. Sum, Exp)
 quantifiers (∀, ∃)
 equality symbol = (optional)

 n-ary relations express objects in Dn  Near(A,B) 
 Functions return a value of the domain, Dn → D Multiply(x,y) 
 Universal quantification∀x Man(x) → Mortal(x)
 Existential quantification ∃x (Dog(x) ∧ Black(x))
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Example of what we can express in 
FOL
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Alphabet of symbols
 Variables x1, x2, …, y, z

 Constants  a1, a2, …, b, c

 Predicate symbols  A1
1, A1

2, …, An
m

 Function symbols f1
1, f1

2, …, fn
m

 Logical symbols  ∧, ∨,  ¬,  → , ∀, ∃
 Auxiliary symbols ( )

 Indexes on top are used to denote the number of arguments, 
called arity, in predicates and functions.

 Indexes on the bottom are used to disambiguate between 
symbols having the same name.

 Predicates of arity =1 correspond to properties or concepts
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Terms and well formed formulas
 Terms can be defined using the following BNF grammar:

<term> ::= <variable> | <constant> | <function sym> (<term>{,<term>}*)
 A term is a closed term iff it does not contain variables, e.g. Sum(2,3)

 Well formed formulas (wff) can be defined as follows:

<atomic formula> ::= <predicate sym> (<term>{,<term>}*) |

   <term> = <term>

<wff> ::= <atomic formula> | ¬<wff> | <wff> ∧ <wff> | <wff> ∨ <wff> |

      <wff> → <wff> | ∀ <variable> <wff> | ∃ <variable> <wff> 

NOTE: <term> = <term> is optional. If it is included, we have a FO language with 
equality.

NOTE: We can also write ∃x.P(x) or ∃x:P(x) as notation (with ‘.’ or “:”) 
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Scope and index of logical operators
Given two wff α and β

 Unary operators

In ¬α, ∀xα and∃xα, 

α is the scope and x is the index of the operator 

 Binary operators

In α ∧ β, α ∨ β and α → β, 

α and β are the scope of the operator

NOTE: in the formula ∀x1 A(x2), x1 is the index but x1 is 
not in the scope, therefore the formula can be simplified 
to A(x2).
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Free and bound variables
 A variable x is bound in a formula γ if it is γ = ∀x α(x) or ∃x 

α(x) that is x is both in the index and in the scope of the 
operator.

 A variable is free otherwise.

 A formula with no free variables is said to be a sentence or 
closed formula.

 A FO theory is any set of FO-sentences. 

NOTE: we can substitute the bound variables without changing 
the meaning of the formula, while it is in general not true for 
free variables.
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Interpretation function
 An interpretation I for a FO language L over a domain D 

is a function such that:

 I(ai) = ai for each constant ai

 I(An) ⊆ Dn for each predicate A of arity n

 I(fn) is a function f: Dn → D ⊆ Dn +1 for each function f of arity n
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Assignment
 An assignment for the variables {x1, …, xn} of a FO 

language L over a domain D is a mapping function a: 
{x1, …, xn} → D 

a(xi) = di ∈ D

NOTE: In countable domains (finite and enumerable) the 
elements of the domain D are given in an ordered sequence 
<d1,…,dn> such that the assignment of the variables xi 

follows the sequence.

NOTE: the assignment a can be defined on free variables 
only.
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Interpretation over an assignment a
 An interpretation Ia for a FO language L over an 

assignment a and a domain D is an extended 
interpretation where:

 Ia(x) = a(x) for each variable x

 Ia(c) = I(c) for each constant c

 Ia(fn(t1,…, tn)) = I(fn)(Ia(t1),…, Ia(tn)) for each function f of 
arity n

NOTE: Ia is defined on terms only
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Satisfaction relation
 We are now ready to provide the notion of satisfaction relation:

M ⊨ γ [a]

 (to be read: M satisfies γ under a or γ is true in M under a)

where: 
 M is an interpretation function I over D 

M is a mathematical structure <D, I>
 a is an assignment {x1, …, xn} → D 

 γ is a FO-formula

NOTE: if γ is a sentence with no free variables, we can simply write: M 
⊨ γ (without the assignment a)
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Satisfaction relation for well formed formulas
 γ atomic formula:

 γ: t1= t2  M ⊨ (t1= t2) [a]   iff   Ia(t1) = Ia(t2)

 γ: An(t1,…, tn) M ⊨ An(t1,…, tn) [a]   iff   (Ia(t1), …, Ia(tn)) ∈ I(An)
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Satisfaction relation for well formed formulas
 γ well formed formula:

 γ: ¬ α  M ⊨ ¬ α [a] iff   M ⊭ α [a] 

 γ: α ∧ β  M ⊨ α ∧ β [a]iff   M ⊨ α [a] and M ⊨ β [a]

 γ: α ∨ β  M ⊨ α ∨ β [a]iff   M ⊨ α [a] or M ⊨ β [a]

 γ: α → β M ⊨ α → β [a] iff   M ⊭ α [a] or M ⊨ β [a]

 γ: ∀xiα  M ⊨ ∀xiα [a] iff   M ⊨ α [s] for all assignments

s = <d1,…, d’i,…, dn> where s varies from a only 

for the i-th element (s is called an i-th variant of a)

 γ: ∃xiα  M ⊨ ∃xiα [a] iff   M ⊨ α [s] for some assignment

s = <d1,…, d’i,…, dn> i-th variant of a
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Satisfaction relation for a set of formulas
 We say that a formula γ is true (w.r.t. an interpretation I) iff 

every assignment 

s = <d1,…, dn> satisfies γ, i.e. M ⊨ γ [s] for all s.

NOTE: under this definition, a formula γ might be neither 
true nor false w.r.t. an interpretation I (it depends on the 
assignment)

  If γ is true under I we say that I is a model for γ.

 Given a set of formulas Γ, M satisfies Γ iff M ⊨ γ for all γ in Γ
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Satisfiability and Validity
 We say that a formula γ is satisfiable iff there is a 

structure 

M = <D, I> and an assignment a such that M ⊨ γ [a]

 We say that a set of formulas Γ is satisfiable iff there is 
a structure M = <D, I> and an assignment a such that 

M ⊨ γ [a] for all γ in Γ

 We say that a formula γ is valid iff it is true for any 
structure and assignment, in symbols ⊨ γ

 A set of formulas Γ is valid iff all formulas in Γ are valid.
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Entailment
 Let be Γ a set of FO- formulas, γ a FO- formula, we say 

that

Γ ⊨ γ 

(to be read Γ entails γ)

iff for all the interpretations M and assignments a, 

if M ⊨ Γ [a] then M ⊨ γ [a].
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Reasoning Services: EVAL
Model Checking (EVAL)

Is a FO-formula γ true under a 
structure M = <D, I> and an 
assignment a? Check M ⊨ γ [a]

EVALγ, M, a
Yes

No
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Satisfiability (SAT)

Given a FO-formula γ, is there any 
structure M = <D, I> and an 
assignment a such that M ⊨ γ [a]?

SATγ
M, 
aNo

Validity (VAL)

Given a FO-formula γ, is γ true 
for all the interpretations M and 
assignments a, i.e. ⊨ γ?

VALγ
Yes

No

NOTE: they are decidable in finite 
domains



How to reason on finite domains
 ⊨ ∀x P(x) [a] D = {a, b, c}

we have only 3 possible assignments a(x) = a, a(x) = b, a(x) 
= c

we translate in ⊨ P(a) ∧ P(b) ∧ P(c)

 ⊨ ∃x P(x) [a] D = {a, b, c}

we have only 3 possible assignments a(x) = a, a(x) = b, a(x) 
= c

we translate in ⊨ P(a) ∨ P(b) ∨ P(c)

 ⊨ ∀x ∃y R(x,y) [a] D = {a, b, c}

we have 9 possible assignments, e.g. a(x) = a, a(y) = b

we translate in ⊨ ∃y R(a,y) ∧ ∃y R(b,y) ∧ ∃y R(c,y)

and then in ⊨ (R(a,a) ∨ R(a,b) ∨ R(a,c) ) ∧
                           (R(b,a) ∨ R(b,b) ∨ R(b,c) ) ∧
                           (R(c,a) ∨ R(c,b) ∨ R(c,c) )
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