


# Logics for Data and Knowledge Representation 

## First Order Logics (FOL)

Originally by Alessandro Agostini and Fausto Giunchiglia Modified by Fausto Giunchiglia, Rui Zhang and Vincenzo Maltese

## Outline

- Introduction
- Syntax
$\square$ Semantics
$\square$ Reasoning Services


## The need for greater expressive power

$\square$ We need FOL for a greater expressive power. In FOL we have:
$\square$ constants/individuals (e.g. 2)
$\square$ variables (e.g. x)
$\square$ Unary predicates (e.g. Man)
$\square$ N-ary predicates (eg. Near)
$\square$ functions (e.g. Sum, Exp)
$\square$ quantifiers $(\forall, \exists)$
$\square$ equality symbol $=$ (optional)
$\square$ n-ary relations express objects in $D^{n} \quad \operatorname{Near}(A, B)$
$\square$ Functions return a value of the domain, $D^{n} \rightarrow D \quad$ Multiply $(x, y)$
$\square$ Universal quantification $\forall x \operatorname{Man}(x) \rightarrow$ Mortal $(x)$
$\square$ Existential quantification $\quad \exists x(\operatorname{Dog}(x) \wedge \operatorname{Black}(x))$

##  FOL



## Alphabet of symbols

- Variables
- Constants
$\square$ Predicate symbols
- Function symbols
- Logical symbols
- Auxiliary symbols

$$
\begin{aligned}
& x_{1}, x_{2}, \ldots, y, z \\
& a_{1}, a_{2}, \ldots, b, c \\
& A_{1}^{1}, A_{2}^{1}, \ldots, A_{m}^{n} \\
& f_{1}^{1}, f_{2}^{1}, \ldots, f_{m}^{n} \\
& \quad \wedge, v, \neg, \rightarrow, \forall, \exists \\
& \quad()
\end{aligned}
$$

- Indexes on top are used to denote the number of arguments, called arity, in predicates and functions.
$\square$ Indexes on the bottom are used to disambiguate between symbols having the same name.
$\square$ Predicates of arity $=1$ correspond to properties or concepts


## Terms and well formed formulas

$\square$ Terms can be defined using the following BNF grammar: <term> ::= <variable> | <constant> | <function sym> (<term> \{,<term>\}*)
$\square$ A term is a closed term iff it does not contain variables, e.g. $\operatorname{Sum}(2,3)$
$\square$ Well formed formulas (wff) can be defined as follows:

```
<atomic formula> ::= <predicate sym> (<term>{,<term>}*)|
    <term> = <term>
<wff> ::= <atomic formula> | ᄀ<wff> | <wff> ^ <wff> | <wff> v <wff> |
    <wff> -> <wff> | \forall <variable> <wff> | ヨ <variable> <wff>
```

NOTE: <term> = <term> is optional. If it is included, we have a FO language with equality.
NOTE: We can also write $\exists x . P(x)$ or $\exists x: P(x)$ as notation (with '.' or ":")

## Scope and index of logical operators

Given two wff $\alpha$ and $\beta$

- Unary operators In $\neg \alpha, \forall x \alpha$ and $\exists x \alpha$, $\alpha$ is the scope and $x$ is the index of the operator
- Binary operators In $\alpha \wedge \beta, \alpha \vee \beta$ and $\alpha \rightarrow \beta$, $\alpha$ and $\beta$ are the scope of the operator

NOTE: in the formula $\forall x_{1} A\left(x_{2}\right), x_{1}$ is the index but $x_{1}$ is not in the scope, therefore the formula can be simplified to $A\left(x_{2}\right)$.

## Free and bound variables

$\square$ A variable $x$ is bound in a formula $\gamma$ if it is $\gamma=\forall x \alpha(x)$ or $\exists x$ $\alpha(x)$ that is $x$ is both in the index and in the scope of the operator.
$\square$ A variable is free otherwise.
$\square$ A formula with no free variables is said to be a sentence or closed formula.
$\square$ A FO theory is any set of FO-sentences.

NOTE: we can substitute the bound variables without changing the meaning of the formula, while it is in general not true for free variables.

## Interpretation function

An interpretation I for a FO language L over a domain D is a function such that:
$\square I\left(a_{i}\right)=a_{i}$
for each constant $\mathrm{a}_{\mathrm{i}}$
$\square I\left(A^{n}\right) \subseteq D^{n}$ for each predicate $A$ of arity $n$
${ }^{\square}\left(f^{n}\right)$ is a function $f: D^{n} \rightarrow D \subseteq D^{n+1}$ for each function $f$ of arity $n$

## Assignment

- An assignment for the variables $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right\}$ of a FO language $L$ over a domain $D$ is a mapping function a: $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\} \rightarrow \mathrm{D}$
$a\left(\mathrm{X}_{\mathrm{i}}\right)=\mathrm{d}_{\mathrm{i}} \in \mathrm{D}$

NOTE: In countable domains (finite and enumerable) the elements of the domain $D$ are given in an ordered sequence $<\mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{n}}>$ such that the assignment of the variables $\mathrm{x}_{\mathrm{i}}$ follows the sequence.

NOTE: the assignment a can be defined on free variables only.

## Interpretation over an assignment a

$\square$ An interpretation $I_{\mathrm{a}}$ for a FO language $L$ over an assignment $a$ and a domain $D$ is an extended interpretation where:
$\square I_{\mathrm{i}}(x)=a(x)$
$\square I_{\mathrm{a}}(\mathrm{c})=\mathrm{I}(\mathrm{c})$
$\square I_{a}\left(f^{\prime}\left(t_{1}, \ldots, t_{n}\right)\right)=I\left(f^{\prime}\right)\left(I_{a}\left(t_{1}\right), \ldots, I_{a}\left(t_{n}\right)\right)$ arity $n$

NOTE: $I_{\mathrm{a}}$ is defined on terms only
for each variable $x$ for each constant c for each function $f$ of

## Satisfaction relation

$\square$ We are now ready to provide the notion of satisfaction relation:

$$
M \vDash \gamma[a]
$$

(to be read: $M$ satisfies $\gamma$ under a or $\gamma$ is true in $M$ under $a$ )
where:
$\square \mathrm{M}$ is an interpretation function I over D $M$ is a mathematical structure <D, I>
$\square a$ is an assignment $\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow D$
$\square \mathrm{\gamma}$ is a FO-formula

NOTE: if $\gamma$ is a sentence with no free variables, we can simply write: M $\vDash \gamma$ (without the assignment $a$ )

## Satisfaction relation for well formed formulas

y atomic formula:
$\square \mathrm{Y}: \mathrm{t}_{1}=\mathrm{t}_{2} \quad \mathrm{M} \vDash\left(\mathrm{t}_{1}=\mathrm{t}_{2}\right)[a]$ iff $\mathrm{I}_{\mathrm{a}}\left(\mathrm{t}_{1}\right)=\mathrm{I}_{\mathrm{a}}\left(\mathrm{t}_{2}\right)$
$\square \gamma: A^{n}\left(t_{1}, \ldots, t_{n}\right) \quad M \vDash A^{n}\left(t_{1}, \ldots, t_{n}\right)[a] \quad$ iff $\quad\left(I_{a}\left(t_{1}\right), \ldots, I_{a}\left(t_{n}\right)\right) \in I\left(A^{n}\right)$

## Satisfaction relation for well formed formulas

$\square \gamma$ well formed formula:
$\square: \neg \alpha \quad M \vDash \neg \alpha[a]$ iff $M \nRightarrow \alpha[a]$
$\square: \alpha \wedge \beta$
$M \vDash \alpha \wedge \beta$ [a]iff $M \vDash \alpha[a]$ and $M \vDash \beta[a]$
$\gamma: \alpha \vee \beta$
$M \vDash \alpha \vee \beta$ [a]iff $M \vDash \alpha[a]$ or $M \vDash \beta$ [a]
$\square: \alpha \rightarrow \beta$
$M \vDash \alpha \rightarrow \beta$ [a] iff $M \neq \alpha[a]$ or $M \vDash \beta$ [a]
$\square \eta: \forall x_{i} \alpha \quad M \vDash \forall x_{i} \alpha[a]$ iff $M \vDash \alpha[s]$ for all assignments $\left.s=<d_{1}, \ldots, d^{\prime}, \ldots, d_{n}\right\rangle$ where $s$ varies from a only for the i-th element ( $s$ is called an $i$-th variant of a)
$\square: \exists x_{i} \alpha \quad M \vDash \exists x_{i} \alpha[a]$ iff $M \vDash \alpha[s]$ for some assignment $\mathrm{s}=\left\langle\mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{i}}, \ldots, \mathrm{d}_{\mathrm{n}}\right\rangle \mathrm{i}$-th variant of $a$

## Satisfaction relation for a set of formulas

- We say that a formula $\gamma$ is true (w.r.t. an interpretation I) iff every assignment

$$
s=<d_{1}, \ldots, d_{n}>\text { satisfies } \gamma \text {, i.e. } M \models \gamma[s] \text { for all } s .
$$

NOTE: under this definition, a formula $\gamma$ might be neither true nor false w.r.t. an interpretation I (it depends on the assignment)
$\square$ If $\gamma$ is true under I we say that I is a model for $\gamma$.
$\square$ Given a set of formulas $\Gamma$, $M$ satisfies $\Gamma$ iff $M \models \gamma$ for all $\gamma$ in $\Gamma$

## Satisfiability and Validity

$\square$ We say that a formula $\gamma$ is satisfiable iff there is a structure
$\mathrm{M}=<\mathrm{D}, \mathrm{I}>$ and an assignment $a$ such that $\mathrm{M} \vDash \gamma[\mathrm{a}]$
$\square$ We say that a set of formulas $\Gamma$ is satisfiable iff there is a structure $\mathrm{M}=<\mathrm{D}, \mathrm{I}>$ and an assignment a such that $M \vDash \gamma[a]$ for all $\gamma$ in $\Gamma$
$\square$ We say that a formula $\gamma$ is valid iff it is true for any structure and assignment, in symbols $\vDash \gamma$
$\square$ A set of formulas $\Gamma$ is valid iff all formulas in $\Gamma$ are valid.

## Entailment

$\square$ Let be $\Gamma$ a set of FO-formulas, $\gamma$ a FO- formula, we say that

$$
\begin{gathered}
\Gamma \models \gamma \\
\text { (to be read } \Gamma \text { entails } \gamma \text { ) }
\end{gathered}
$$

iff for all the interpretations M and assignments a , if $M \vDash \Gamma$ [a] then $M \vDash \gamma[a]$.

## Reasoning Services: EVAL

## Model Checking (EVAL)

Is a FO-formula $\gamma$ true under a
 structure $\mathrm{M}=<\mathrm{D}, \mathrm{I}>$ and an assignment a? Check $\mathrm{M} \vDash \mathrm{\gamma}$ [a]

## Satisfiability (SAT)

Given a FO-formula $\gamma$, is there any
 structure $M=<\mathrm{D}, \mathrm{l}$ > and an assignment a such that $\mathrm{M} \vDash \mathrm{\gamma}[\mathrm{a}]$ ?

## Validity (VAL)

Given a FO-formula $\gamma$, is $\gamma$ true for all the interpretations M and assignments a, i.e. $\vDash \gamma$ ?


NOTE: they are decidable in finite domains

## How to reason on finite domains

- $\vDash \forall x P(x)[a]$
$D=\{a, b, c\}$
we have only 3 possible assignments $a(x)=a, a(x)=b, a(x)$ = C we translate in $\models P(a) \wedge P(b) \wedge P(c)$
$\square \vDash \exists x P(x)[a]$

$$
D=\{a, b, c\}
$$

we have only 3 possible assignments $a(x)=a, a(x)=b, a(x)$ = C we translate in $\vDash P(a) \vee P(b) \vee P(c)$
$\square \vDash \forall x \exists y \mathrm{R}(\mathrm{x}, \mathrm{y})$ [a]

$$
D=\{a, b, c\}
$$

we have 9 possible assignments, e.g. $a(x)=a, a(y)=b$ we translate in $\vDash \exists y R(a, y) \wedge \exists y R(b, y) \wedge \exists y R(c, y)$ and then in $\models(R(a, a) \vee R(a, b) \vee R(a, c)) \wedge$ $(R(b, a) \vee R(b, b) \vee R(b, c)) \wedge$ $(R(c, a) \vee R(c, b) \vee R(c, c))$

