

Example (very famous)

• (Tarski, 1931) Consider the proposition

'snow is white'

- Is this proposition true?
- What about the colour of the snow on top of Mount Etna in Sicily?

(Mount Etna is one of the most active volcanoes in the world...)

• Intuitively, a context is a theory of the world which encodes (formally by using a logic called contextual logic--CxL) an individual's *subjective perspective* about the world.

Contextual Reasoning

- F. Giunchiglia was the first to shift the focus explicitly from contexts to contextual reasoning in his 1993 seminal paper titled "Contextual Reasoning".
- His main motivation was the problem of locality, namely the problem of modelling reasoning which uses only a subset of what reasoners actually know about the world.

10

Language

- The first step in setting up a formal language (viz. a contextual language L) is to list the symbols, that is, the <u>alphabet of symbols</u>.
- For every i∈N , we define an alphabet Σ_i for a contextual language L_i such that L= {L_i}_{i∈N}
- Similarly to any logical language, we can divide symbols in Σ_i in 'descriptive' (nonlogical) and 'non-descriptive' (logical).

Multi-Context Alphabet

- We fix a denumerable set I of indices, each index represents the names of a context.
- Definition.A <u>multicontext alphabet</u> is a set

 $\Sigma = \bigcup_{i \in I} \Sigma_i$ (note: $I \subseteq N$ natural numbers)

where Σ_i is a first-order alphabet enriched by some auxiliary symbols to build contextual formulas (see the next slides).

From Σ_i to the Multi-Context Language

- From $\Sigma = \bigcup_{i \in I} \Sigma_i$ we define a family $\{L_i\}_{i \in I}$.
- Definition.A <u>family</u> of sets over I is a set with repetitions, i.e., a set where each element S_i can occur infinitely many often.
 - In symbols: $\{S_i\}_{i\in I}$.
- A local language L_i is a set of formulas defined by using certain "formation rules".

Examples (for context i)

- Contextual Laws for \land , \neg and \rightarrow :
 - $\mathsf{I.i}:(\mathsf{A} \land \neg \mathsf{B}) \rightarrow \neg (\mathsf{A} \rightarrow \mathsf{B})$
 - $2.i:\neg(A \rightarrow B) \rightarrow (A \land \neg B)$
- Contextual Pierce's law: i : $((A \rightarrow B) \rightarrow A) \rightarrow A$
- Contextual De Morgan's laws: I. i : $\neg(A \lor B) \leftrightarrow (\neg A \land \neg B)$
 - $2.\,\mathsf{i}:\neg(A{\wedge}B)\leftrightarrow(\neg A{\vee}\neg B)$

Semantics

- A goal of semantics for modeling purposes is to model reasoning as logical consequence over a multicontext language.
- The semantics of CXL is called 'local model semantics' (LMS).
- LMS is due to Ghidini & Giunchiglia (2001)
- Ghidini and Giunchiglia give two principles for a "good" semantics... see the next slide.

Example 2 (Beliefs)

- Let consider the beliefs an agent *a* has about world (Ghidini & Giunchiglia 2001).
- Beliefs are organized in a chain of contexts, say C(*a*), C(*aa*), C(*aaa*), etc., where:
- C(a) is the root context, which represents the beliefs of a about a given world W.
- C(*aaa*) formalizes the *a*'s beliefs about *a*'s beliefs about *a*'s beliefs about W, etc.

27

Local Models and Compatibility Sequences

- Let Mod(L_i) denote the class of first-order L_i-structures (or models for L_i).
- An element $m \in Mod(L_i)$ is a <u>local model</u>.
- A <u>compatibility sequence</u> (for L= {L_i}_{i∈1}) is an infinite sequence c = c₀, c₁,..., c_i,... where c_i is a set of L_i-structures.
- For I = {1,2} c is called a <u>compatibility pair</u>.

Models and Compatibility Relation • Intuitively, compatibility sequences put

- Intuitively, compatibility sequences put together local models which are "mutually compatible" consistently with the situation we are modeling.
- A <u>compatibility relation</u> (for L) is a set C of compatibility sequences.
- A <u>model</u> (for L) is a <u>nonempty</u> compatibility relation C such that $\emptyset, \emptyset, \dots$ is not in C.

(Ghidini & Giunchiglia AIJ 2001)

30

Remark

- Local models describe what is locally true.
- Compatibility sequences put together local models which are "mutually compatible" consistently with the situation we are describing (see the next example)

Example (cont') (Viewpoints - Language)

- Languages: we need languages L₁ and L₂ describing the views of Mr.1 and Mr.2.
- What expressive power do we need?
 For L₁: to describe that a ball can be on the left or on the right.
 For L₂: to describe that a ball can be on the left, in the center, or on the right.
- Define $L_1 = \{BI \lor Br\}$ and $L_2 = \{BI \lor Br \lor Bc\}$.

Context (Formal definition) Let model C ={c₀, c₁, ..., c_i, ...} be given. A <u>context</u> is any c_i, namely, the set of local models m ∈ Mod(L_i) allowed by C within any particular compatibility sequence c. Given c, a context captures exactly locally true facts given the constraints posed by local models of other contexts in the same compatibility sequence, as allowed by c.

• Then C is a model of $i: \psi, i: \psi$ is true in C.

Truth Relation (Satisfaction Relation)

- An L_i-formula is satisfied by a model C if all the local models in each context c_i satisfy it.
- A model C satisfies a set of formulas Γ (C |= Γ) if C satisfies every formula i : ψ in Γ.
- Γ is <u>satisfiable</u> if C |= i : ψ for some C and for all i : ψ in Γ.
- $i: \psi$ is <u>valid</u> ($|= i: \psi$) if C $|= i: \psi$ for all C.

Contextual Entailment (Logical Consequence)

A set Γ of i-formulas <u>entails</u> an i-formula
 i : ψ <u>with respect to a model</u> C (Γ |=_C i : ψ),
 if: for every compatibility sequence c ∈ C
 and for all j∈l with j≠i, if c_i |= Γ_i then

for all $m \in c_i$, if $m \mid =_{cl} \Gamma_i$ then $m \mid =_{cl} \Psi$.

- Notation: $\Gamma_k = \{\theta \mid k : \theta \in \Gamma\}$ for all $k \in I$.
- i : Ψ is a <u>logical consequence</u> of Γ w.r.t. C.

Contextual Entailment (Logical Consequence)

- A set Γ of i-formulas <u>entails</u> an i-formula i : ψ (Γ |= i : ψ), if Γ |=_C i : ψ for every C.
- Then i : ψ is a <u>logical consequence</u> of Γ .
- We can restrict logical consequence with respect to a class M of models and define $\Gamma \mid_{=M} i: \psi$ if $\Gamma \mid_{=C} i: \psi$ for all $C \in M$.
- Γ may be empty. Then i : ψ is a <u>i-tautology</u>.

39

Logical Consequence (extension of local SAT)

- Theorem (Ghidini & Giunchiglia 2001) Let Γ be a set of FO-formulas. For all i∈l,
- if Γ_i |=_{cl} ψ then Γ |= i : ψ.
 This result extends classical logical
- This result extends classical logical consequence |=_{cl} to contextual logical consequence |=.
- See (Ghidini & Giunchiglia 2001) for a proof.

40