
Alessandro Agostini Fausto Giunchiglia
agostini@dit.unitn.it fausto@dit.unitn.it

University of Trento

Logics for
Data and Knowledge

Representation

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia.
The order of the names is alphabetical.

Outline

• Logical Modeling:
Diagram

• Expressiveness

• Complexity

• Tradeoff

• Decidability

! "#! "#

!$%&'()*$#)
+,-,),.+)".$/!0+%0)

#01#0(0.-,-&$.
,!0((,.+#$),%$(-&.&

*,2(-$)%&2.'3&%!&,

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

2

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Fundamental Diagram
of Logical Modeling

3

World

LANGUAGE

MODEL

M=M(D)

In
te
rp
re
ta
ti
o
n

I

SEMANTIC

GAP

E
n
ta
il
m
en
t

|=

Realization

Modeling

Model

THEORY

T=TH(L)

Knowledge

DOMAIN

D Meaning

Data

L

Logical Modeling
Elements

• The basic elements in the diagram are:

1. Domain (data, classes, relations, functions)
2. Logical Language
3. Interpretation (of the language)
4. Model
5. Theory / KnowledgeBase (knowledge)
6. Truth-relation / logical entailment (|=)

• We illustrate each element in turn.

4

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Domain

• Domain (D) = the chosen objects (data)
from the world.

• Example (LDKR class): the members of
the LDKR class define a domain D;

• D is a finite set.

• The “type” of the elements in D is: person.

• NB: we will deal only with finite domains!

5

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Language

• Language (L) = a logical language, i.e.
1. L’s alphabet of symbols ! contains at least
one of the logical symbols: ∧, ∨, ¬, ", ∀, ∃;

2. L has clear formation rules for formulas.

• Example (cont’): any logical language with
=, (,), professor, student1, student2,... in !.

• Note that English is a propositional language,
...but it is not logical (informal syntax).

6

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Logical Language
(Syntax)

• The first step in setting up a logical language
(viz. a formal language) is to list the symbols,
that is, the alphabet of (formal) symbols (!).

• formal symbol = a character, or group of
characters taken from some alphabet.

• Symbols in ! can be divided in ‘descriptive’
(nonlogical) and ‘non-descriptive’ (logical).

7

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Example

• Take the Monkey-Bananas Problem.

• In the sentence “There is a monkey in a
laboratory with some bananas”:

• Descriptive symbols are: ‘monkey’,
‘laboratory’,‘bananas’, ...

• Non-descriptive symbols are: ‘there is’, ‘with
some’, ‘a’, ‘in’, ...

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Language (Syntax)

• Descriptive symbols (the terminology is by
Dag Prawitz, 1965)) refer to the specific
language we need to represent the problem.

• Non-descriptive symbols refer to logic, i.e.
the elements of the language that are related
only to the structure of a specific logic and,
as such, they are not related to the problem.

9

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Remark

• The alphabet of symbols (!) is analogous
structurally to the alphabet of a language,

• although in a formal language many of the
symbols correspond to entire words or
phrases rather than to single letters.

• Example: In the MB problem, we model
the monkey by using the symbol “Monkey”,
that is in fact word rather that a single letter.

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Formal Syntax
(Definition)

• Formal Syntax: the set of “rules” saying how
to construct the expressions of the language
from the alphabet of symbols, (i.e., the
syntax) is a grammar (i.e., formal).

• Example: context-free grammars.

• Remark: Formal syntax is often called an
abstract syntax, in contrast to the concrete
syntax used, e.g., in implementations.

11

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Interpretation

• Interpretation (I) = a mapping of L into D.

• NB: the modeler always requires an
effective (i.e., computable) mapping.

• Note that with a finite alphabet of symbols
!, an interpretation is always computable.

• Example (LDKR class, cont’):
I(prof2) = Fausto,
I(student2) = Audrey, ...

12

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Model

• Model (M) = the abstract (mathematical
sense) representation of the intended truths
about D via interpretation I of language L.

• M called L-model of D.

• Example (LDKR class, cont’):
A model of the class would formalize that:
a. I(prof2) is not I(student2),
b. #letters I(prof2) = #letters I(student2), ...

13

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Theory

• Theory T (also L-Theory) = set of facts of L.

• Since a fact defines a piece of knowledge
(about D), if T is finite then it is called a
knowledge base (denoted by KB).

• A database (denoted by DB) is the
simplest kind of knowledge base.

• Example (cont’): T = {¬(prof = student)}

14

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Expressiveness of
Language

15

Effectiveness &
Expressiveness

• Effective (Webster). Adequate to accomplish
a purpose; producing the intended result.

• When we deal with effectiveness to refer to
the adequateness of a representation
language for modeling purposes we use the
more specific term expressiveness.

• Now we see some “degrees of
expressiveness” proper of a logical language.

16

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Degrees of
Expressiveness

• Example: We may classify the logical
languages according to some “degrees of
expressiveness” (other degrees apply):

• Propositional

• Modal

• First-order

• Higher-order

17

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Example

• Propositional: “I like skiing”
wffs: I-like-skiing, like-skiing(I), ...

• Modal: “I believe I like skiing”
wffs: B(I-like-skiing), BI(like-skiing), ...

• First-order: “Every person likes skiing”
wffs: ∀x.like-skiing(x), ...

• Second-order: “All people like skiing”
wffs: ∀X.like-skiing(X), ...

18

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Example (cont’)

• Propositional: “I like skiing”
wffs: I-like-skiing, like-skiing(I), ...

• Modal: “I believe I like skiing”
wffs: B(I-like-skiing), BI(like-skiing), ...

• First-order: “Every person likes skiing”
wffs: ∀x.like-skiing(x), ...

• Second-order: “All people like skiing”
wffs: ∀X.like-skiing(X), ...

19

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Example (cont’)

• Propositional: “I like skiing” (*)
wffs: I-like-skiing, like-skiing(I), ...

• Modal: “I believe I like skiing”
wffs: B(I-like-skiing), BI(like-skiing), ...

• First-order: “Every person likes skiing”
wffs: ∀x.like-skiing(x). Note: x=I special case (*)

• Second-order: “All people like skiing”
wffs: ∀X.like-skiing(X), ...

20

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Example (cont’)

• Propositional: “I like skiing”
wffs: I-like-skiing, like-skiing(I), ...

• Modal: “I believe I like skiing”
wffs: B(I-like-skiing), BI(like-skiing), ...

• First-order: “Every person likes skiing”
wffs: ∀x.like-skiing(x), ...

• Second-order: “All people like skiing”
wffs: ∀X.like-skiing(X), ...

21

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Complexity of
Reasoning

22

Efficiency & Complexity

• Efficient (Webster). Performing in the best
possible manner; satisfactory and
economical to use.

• in modeling it applies to reasoning;

• in this case we use the more specific
terminology computational complexity
(time, space,...) in place of term efficiency.

23

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Complexity

• Definition. Complexity (or computational
complexity) of reasoning is the difficulty -
e.g. measured by the tools of Computational
Complexity Theory (CCT) - to compute a
reasoning task expressed by using a logic.

• In analogy with degrees of expressiveness,
we may classify the logical languages
according to some “degrees of complexity”.

24

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Degrees of
Complexity

• The basic “degrees of complexity” are:

• Untractable (undecidable)

• Polynomial - the class P

• Non-polynomial - the class NP

• Other classes (PSPACE, coNP, LOG,...).

• We are not interested in the first degree!

25

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

An Important Trade-Off

• There is a trade-off between expressive
power (expressiveness) and computational
efficiency provided by a (logical) language.

• This trade-off is a measure of the tension
between specification and automation.

• To use logic for modeling, the modeler must
trading off expressiveness in the language for
more tractable forms of reasoning services.

26

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

A Pyramid of Logics

27

FOL

ClassL (PL)Computability

Expressibility

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Decision Procedures

28

Decidability

• Definition.The question (“decision problem,”
from Hilbert, 1928) about the existance of
an algorithm which would decide if a given
“expression” P is provable or not.

• P may be a proposition, a predicate, a
concept, etc. (We’ see it for each logic.)

• For us (semantic approach, finite models):
P is provable if and only if P is satisfiable.

29

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Algorithm
(Etimology)

• The term “algorithm” comes from the
Persian Middle-Asian astronomer and
mathematician Al-Khwarizmi (780- 850 A.C.)

• Al-Khwarizmi recognized the importance of
special computational procedures solving
mathematical problems (Wikipedia).

30

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

What is
an Algorithm?

• Decidability is strictly related to the notion
of “algorithm.” There were two main
approaches, and many equivalent definitions:

• K. Gödel (1934): recursive functions.
Alonzo Church (1936): lambda-calculus.
S.C. Kleene (1936): functional equations.

• Alan M. Turing (1936-37): Turing machines.
Emil L. Post (1936): Post machines.

31

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

fu
n
ct

io
n
al

ap

p
ra

o
ch

co
m

p
u
ta

ti
o
n
al

ap
p
ro

ac
h

Decision Procedures
Decidable Logics

• Definition. A decision procedure is an
algorithm that, given a decision problem,
terminates with the correct yes/no answer.

• Definition. A logic is decidable if there exists
a decision procedure for that logic.

• In this course we focus on logics that are
expressive enough to model real problems
but are still decidable.

32

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

