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The order of the names is alphabetical.  

Outline

• Logical Modeling: 
Diagram

• Expressiveness

• Complexity

• Tradeoff

• Decidability
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Fundamental Diagram 
of Logical Modeling
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Logical Modeling
Elements

• The basic elements in the diagram are:

1. Domain (data, classes, relations, functions)
2. Logical Language
3. Interpretation (of the language)
4. Model
5. Theory / KnowledgeBase (knowledge)
6. Truth-relation / logical entailment (|=)

• We illustrate each element in turn.
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Domain

• Domain (D) = the chosen objects (data) 
from the world.

• Example (LDKR class): the members of 
the LDKR class define a domain D;

• D is a finite set. 

• The “type” of the elements in D is: person. 

• NB: we will deal only with finite domains!
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Language

• Language (L) = a logical language, i.e. 
1. L’s alphabet of symbols ! contains at least 
one of the logical symbols: ∧, ∨, ¬, ", ∀, ∃;

2. L has clear formation rules for formulas.

• Example (cont’): any logical language with 
=, (, ), professor, student1, student2,... in !.

• Note that English is a propositional language,
...but it is not logical (informal syntax).

6
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Logical Language 
(Syntax)

• The first step in setting up a logical language 
(viz. a formal language) is to list the symbols, 
that is, the alphabet of (formal) symbols (!).

• formal symbol  = a character, or group of 
characters taken from some alphabet. 

• Symbols in ! can be divided in ‘descriptive’ 
(nonlogical) and ‘non-descriptive’ (logical).
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Example

• Take the Monkey-Bananas Problem. 

• In the sentence “There is a monkey in a 
laboratory with some bananas”:

• Descriptive symbols are: ‘monkey’, 
‘laboratory’,‘bananas’, ...

• Non-descriptive symbols are: ‘there is’, ‘with 
some’, ‘a’, ‘in’, ...
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Language (Syntax)

• Descriptive symbols (the terminology is by 
Dag Prawitz, 1965)) refer to the specific 
language we need to represent the problem.

• Non-descriptive symbols refer to logic, i.e. 
the elements of the language that are related 
only to the structure of a specific logic and, 
as such, they are not related to the problem.
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Remark

• The alphabet of symbols (! ) is analogous 
structurally to the alphabet of a language,

•  although in a formal language many of the 
symbols correspond to entire words or 
phrases rather than to single letters. 

• Example: In the MB problem, we model 
the monkey by using the symbol “Monkey”, 
that is in fact word rather that a single letter. 

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia 

Formal Syntax
(Definition)

• Formal Syntax: the set of “rules” saying how 
to construct the expressions of the language 
from the alphabet of symbols, (i.e., the 
syntax) is a grammar (i.e., formal).

• Example: context-free grammars.

• Remark: Formal syntax is often called an 
abstract syntax, in contrast to the concrete 
syntax used, e.g., in implementations. 
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Interpretation

• Interpretation (I) = a mapping of L into D.

• NB: the modeler always requires an 
effective (i.e., computable) mapping.

• Note that with a finite alphabet of symbols 
!, an interpretation is always computable.

• Example (LDKR class, cont’): 
I(prof2) = Fausto, 
I(student2) = Audrey, ...

12
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Model

• Model (M) = the abstract (mathematical 
sense) representation of the intended truths 
about D via interpretation I of language L.

• M called L-model of D.

• Example (LDKR class, cont’): 
A model of the class would formalize that: 
a. I(prof2) is not I(student2),
b. #letters I(prof2) = #letters I(student2), ...
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Theory

• Theory T (also L-Theory) = set of facts of L.

• Since a fact defines a piece of knowledge 
(about D), if  T is finite then it is called a 
knowledge base (denoted by KB).

• A database (denoted by DB) is the 
simplest kind of knowledge base.

• Example (cont’): T = {¬(prof = student)}

14
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Expressiveness of  
Language

15

Effectiveness & 
Expressiveness

• Effective (Webster). Adequate to accomplish 
a purpose; producing the intended result.

• When we deal with effectiveness to refer to 
the adequateness of a representation 
language for modeling purposes we use the 
more specific term expressiveness.

• Now we see some “degrees of 
expressiveness” proper of a logical language.

16
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Degrees of 
Expressiveness

• Example: We may classify the logical 
languages according to some “degrees of 
expressiveness” (other degrees apply):

• Propositional

• Modal

• First-order

• Higher-order

17
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Example

• Propositional: “I like skiing” 
wffs: I-like-skiing, like-skiing(I), ...

• Modal: “I believe I like skiing”
wffs: B(I-like-skiing), BI(like-skiing), ...

• First-order: “Every person likes skiing”
wffs: ∀x.like-skiing(x), ...

• Second-order: “All people like skiing”
wffs: ∀X.like-skiing(X), ...

18

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia 



Example (cont’)

• Propositional: “I like skiing” 
wffs: I-like-skiing, like-skiing(I), ...

• Modal: “I believe I like skiing”
wffs: B(I-like-skiing), BI(like-skiing), ...

• First-order: “Every person likes skiing”
wffs: ∀x.like-skiing(x), ...

• Second-order: “All people like skiing”
wffs: ∀X.like-skiing(X), ...
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Example (cont’)

• Propositional: “I like skiing”                     (*)
wffs: I-like-skiing, like-skiing(I), ...

• Modal: “I believe I like skiing”
wffs: B(I-like-skiing), BI(like-skiing), ...

• First-order: “Every person likes skiing”
wffs: ∀x.like-skiing(x). Note: x=I special case (*)

• Second-order: “All people like skiing”
wffs: ∀X.like-skiing(X), ...
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Example (cont’)

• Propositional: “I like skiing” 
wffs: I-like-skiing, like-skiing(I), ...

• Modal: “I believe I like skiing”
wffs: B(I-like-skiing), BI(like-skiing), ...

• First-order: “Every person likes skiing”
wffs: ∀x.like-skiing(x), ...

• Second-order: “All people like skiing”
wffs: ∀X.like-skiing(X), ...
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Complexity of 
Reasoning
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Efficiency & Complexity

• Efficient (Webster). Performing in the best 
possible manner; satisfactory and 
economical to use.

• in modeling it applies to reasoning; 

• in this case we use the more specific 
terminology computational complexity 
(time, space,...) in place of term efficiency.

23
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Complexity

• Definition. Complexity (or computational 
complexity) of reasoning is the difficulty - 
e.g. measured by the tools of Computational 
Complexity Theory (CCT) - to compute a 
reasoning task expressed by using a logic.

• In analogy with degrees of expressiveness, 
we may classify the logical languages 
according to some “degrees of complexity”.

24
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Degrees of 
Complexity

• The basic “degrees of complexity” are:

• Untractable (undecidable)

• Polynomial - the class P

• Non-polynomial - the class NP

• Other classes (PSPACE, coNP, LOG,...).

• We are not interested in the first degree!

25
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An Important Trade-Off 

• There is a trade-off between expressive 
power (expressiveness) and computational 
efficiency provided by a (logical) language.

• This trade-off is a measure of the tension 
between specification and automation.

• To use logic for modeling, the modeler must 
trading off expressiveness in the language for 
more tractable forms of reasoning services.

26
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A Pyramid of Logics
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Decision Procedures
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Decidability

• Definition.The question (“decision problem,” 
from Hilbert, 1928) about the existance of 
an algorithm which would decide if a given 
“expression” P is provable or not.

• P may be a proposition, a predicate, a 
concept, etc. (We’ see it for each logic.)

• For us (semantic approach, finite models):
P is provable if and only if P is satisfiable.

29
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Algorithm
(Etimology)

• The term “algorithm” comes from the 
Persian Middle-Asian astronomer and 
mathematician Al-Khwarizmi (780- 850 A.C.)

• Al-Khwarizmi recognized the importance of 
special computational procedures solving 
mathematical problems (Wikipedia).

30
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What is 
an Algorithm?

• Decidability is strictly related to the notion 
of “algorithm.” There were two main 
approaches, and many equivalent definitions:

• K. Gödel (1934): recursive functions.
Alonzo Church (1936): lambda-calculus.
S.C. Kleene (1936): functional equations.

• Alan M. Turing (1936-37): Turing machines.
Emil L. Post (1936): Post machines.
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Decision Procedures
Decidable Logics

• Definition. A decision procedure is an 
algorithm that, given a decision problem, 
terminates with the correct yes/no answer.

• Definition. A logic is decidable if there exists 
a decision procedure for that logic. 

• In this course we focus on logics that are 
expressive enough to model real problems 
but are still decidable.
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