

Representation of Data

- The expression or designation of data by some term, character, symbol, or the like.
- **Example**: a pixel of the photo can be represented by "p," (term), "red(3,7)" (the Cartesian coordinates of the red-pixel w.r.t. the photo's dimension), etc.
- A database is a representation of data and their relationships (see the next example).

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia 14

Language's Components Syntax and Semantics

• Semantics: the way a language is interpreted.

 determines the meaning of syntactic constructs (expressions), that is, the relationship between syntactic constructs and the elements of some <u>universe of</u> <u>meanings</u>.

• such relationship is called interpretation.

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia 25

Levels of Formalization Syntax and Semantics • Syntax can be formal or informal. • it depends on the formal/informal rules used to construct the expressions of the

language from the alphabet.

- Semantics can be formal or informal as well.
 - it depends on the formal/informal relationship between expressions and the elements of some universe of meanings.

Copyright © 2009-1 I Alessandro Agostini and Fausto Giunchiglia 29

Levels of Formalization Examples				
C NLs	Diagram	ns Programming Languages	Logics	
Evei I ← English Italian Russian Hindi 	ER UML 	SQL 	PL PL DL 	
Copyrigh	t © 2009-11 A	Nessandro Agostini and Fausto G 31	īiunchiglia	

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

2. what is knowledge?

42

Lo R.	E-R Semantics	
(Solution of I)		
Project	$\subseteq \{p : I \ge \text{ Manages} \cap (\Omega \times \{p\}) \ge I\}$	
$Project \subseteq \{p: I \ge Works\text{-for} \cap (\Omega \times \{p\}) \mid \ge I \}$		
Manager ⊆ Employee		
AreaManager ⊆ Manager		
TopManager ⊆ Manager		
TopManager \cap AreaManager = \emptyset		
Manager ⊆ (TopManager ∪ AreaManager)		
	Copyright © 2009-11 Alessandro Agostini and Fausto Gunchiglia 72	

- Model Checking (EVAL): Is a sentence ψ true according to a model M?
- Validity: Is a sentence ψ true according to every possible model M?
- Satisfiability (SAT): Is KB satisfiable?

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia 88

