
Managing Process Customizability and
Customization: Model, Language and Process

Alexander Lazovik1 and Heiko Ludwig2

1 University of Trento, Italy
lazovik@dit.unitn.it

2 IBM TJ Watson Research Center, USA
hludwig@us.ibm.com

Abstract. One of the fundamental ideas of services and service oriented
architecture is the possibility to develop new applications by composing
existing services into business processes. However, only little effort has
been devoted so far to the problem of maintenance and customization
of already composed processes. In the context of global service delivery,
where process is delivered to clients, it is critical to have a possibil-
ity to customize the standardized reference process for each particular
customer. Having a standardized delivery process yields many benefits:
interchangeable delivery teams, enabling 24/7 operations, labor cost arbi-
trage, specialization of delivery teams, making knowledge shared between
all customers, optimization of standardized processes by re-engineering
and automation. In the paper we propose an approach, where refer-
ence process models are used explicitly in the process lifecycle, where
customer-specific process instantiations are obtained by a series of cus-
tomization steps over reference processes. To show the feasibility of the
approach, we developed a process-independent language to express dif-
ferent customization options for the reference business processes. We also
provided an implementation that extends WebSphere BPEL4WS Editor
to introduce process customizations to BPEL4WS processes.

1 Introduction and motivation

Customizing processes from reference processes or templates is common practice
to reduce the time and effort to design and deploy processes on all levels. It finds
application in high-level business processes design and execution, Web services
compositions, and also workflows on a technical level such as integration pro-
cesses and scientific workflows. Customizing reference processes usually involves
adding, removing or modifying process elements such as activities, control flow
and data flow connectors. Oftentimes, however, there is a business need to limit
the customizability of a process, the extent to which a process can be modified.

We look at the area of management of IT service delivery as an application
scenario as managing process variations is a big challenge [10]. It comprises pro-
cesses for provisioning servers, creating user IDs, managing storage and the like.
In an outsourcing scenario, a service provider runs similar processes for different

clients but more often than not clients will require that their specific needs be
addressed. While a service provider often maintains a set of best practices as
reference processes, these processes will be customized when signing up a new
client. However, there are limitations to these customizations based on specific
technical properties and dependencies of the system used to implement the ser-
vice, staff qualifications and availability, time zone constraints and many other
reasons. For example, certain activities cannot be removed as they are manda-
tory for subsequent activities or a regulatory requirement. In server provisioning,
an operating system image must be installed prior to installing an application.
Other activities must be performed in specific sequence, no other activities added
in between. This is particularly the case if subsequent activities are performed
by the same person in a particular location in the data center. It might not be
economical to let the person wait while something else happens.

Creation and customization of processes is a topic that has undergone sig-
nificant research attention, e.g., by Rosemann et al. [14] and Becker et al. [3],
and is a standard practice in business consulting and system integration of large
standard application packages such as ERP products. Limiting and shaping cus-
tomization of process reference models, however, is a nascent topic that has only
received limited attention so far.

In this paper, we propose a model of reference process that includes a def-
inition of the limitations of how it can be customized. In addition, we propose
an XML-based language to express these annotations and associate them with a
business process definition to express our extended notion of a reference process.

We proceed as follows: In the next section, we discuss in more detail the
types of customization operations that might be required for process models.
Subsequently, we introduce a formal model of a business process, its customizing
operations and the constraints that can be applied. Section 5 briefly introduces
an implementation of a process editor extension to the WebSphere Integration
Developer BPEL editor. Finally, we discuss related work and conclude.

2 Managing the customization life-cycle

The use of reference processes primarily improves and accelerates the defini-
tion of process models or templates to be instantiate at runtime. They are
particularly useful in use cases where similar processes are defined for different
organizational deployments, e.g., by a business process outsourcer or a consult-
ing or system integration company. The use of reference processes extends the
traditional process build time run time life-cycle model to a model of reference
modeling customization run time. Reference process and customization are
new conceptual entities that must be subjected to a government process in an
organization. Staying with our scenario of service delivery management, we will
use an example of a simple server provisioning process to illustrate what needs
for customization and which limitations may exist.

In the above example process, the first step may be left out if the process is to
be deployed in a re-provision scenario in which hardware is already in place. OS

not needed if server exists

Win32 or HP-UNIX

WebSphere or IIS

DB2 or MS SQL

customize OS install

replace confirmation with better logging

additional security checks

Fig. 1. Customization examples for a server build process.

installation customization may be limited to the choice between a Windows or
UNIX installation sub-process; likewise for applications running on the system.
The send confirmation step may be replaced with any activity, e.g., writing a
log entry. While we may want to maintain the specific order of these steps,
additional steps might be added to the end of the process, e.g., for additional
security checks. While this process offers many opportunities to customize it, the
environment of process execution, e.g., the operations of a service provider data
center limit the extent to which the service provider can accept modifications to
this process.

2.1 Customization Operations

While customization refers to the process of adapting a copy of a reference pro-
cess in general, a specific customization operation is an operation on a copy
of a reference process that changes (customizes) it. The specific place where
a customization operation is applied is called customization point. The poten-
tial customization operations at a customization point are called customization
options. We consider two types of customization operations: object-based and
process-based. Object-based ones target a single process element without affect-
ing the rest of the process. Process elements are primarily the activities of a
process but also control flow elements such as joins and forks. Object-based
customization operations are the following:

– Adding a new process element;
– Removing a process element;

– Replacing one process element with another. This also comprises a change to
the definition of an object, e.g., changing an activity description or a control
flow condition.

In contrast to the contained effect of object-based Process-based customiza-
tion options affect the whole process. We distinguish the following cases:

– Restricting possible provider assignment for a role.

The actual provider for an activity is typically chosen at run-time from a list
of possible providers. The role-restricting customization option allows restrict-
ing the possible provider assignments. For example, we may have specialized
providers for operating system installations that can run either Windows or one
of the Linux installation activities. If we require the installation of Linux-specific
software on a server, we want to restrict the possible operating system installa-
tion provider to the one offering Linux installations.

– Adding global customization variables.

We often assume that the person who customizes or instantiates a business
process has complete knowledge of the underlying process semantics. However,
in practice the requester, customizer and process owner are different. Sometimes,
a user understands process variables but has limited or no knowledge about the
process itself. Consider the following example: When buying a computer using
an on-line configuration tool, a user can customize a computer by expressing
his or her preference in terms of memory size, processor, mount unit format
etc. However, the choices of process variables determine the customization of
the assembly process implicitly. We want to be able to express this relationship
and enable global customization variables. Based on explicitly defining the set
of potential customization operations and their subjects, we can define means of
expressing the limits of customization that must be observed.

3 Formal model for customizable reference process

Business process is a series of a linked set of activities that is designed to ac-
complish some goal, where activities represent some form of atomic operations.
Business process can be seen as a generic process model that represents the best
practices for some particular business domain. For web service domain, activities
are web services or other processes. There are many process languages used for
process specification, for example, BPEL for web services. However, ideas intro-
duced in this paper are process-independent, that is, developed customization
rules and mechanisms can be applied to any of the process specification, as far
as it consists of activities, control flow constructs, etc. To be precise, let us intro-
duce a formal definition of some abstract process specification that can be used
as a reference point for our customizations. In practice, we assume that these
formal definitions refer to some actual specifications language. For our example
introduced later are developed for processed expressed in BPEL.

Definition 1 (Process). A process is a tuple B = 〈nameB , A, M, F, T,D, R, r〉,
where:

– nameB is the name of the process;
– A is a set of activities with one activity marked as start activity a0;
– M is a set of possible process messages, every message is defined as a set of

variables;
– F is a set of connectors, all of type {XOR, OR, AND};
– Din : A → M is a data transition function, D(a) defines the input parame-

ters for the activity a;
– Dout : A → 2M is a data transition function, D(a) defines the output pa-

rameters for the activity a;
– T : U → 2U is a transition function, where U is a set of process elements

and is defined as U = A ∪ F . Every transition T (a) corresponds to one of
the completion states of a, and, from this it follows that |Dout(a)| = T (a)|;

– R is a set of roles, with r : A → R being a function that associates the
activity with its role.

To make our formal model simple, the definition of Din indicates that each
activity has only one input message, which is not necessarily always the case,
since an activity can have more than one input messages. However, since every
message is represented as a set of variables (and, by that, it may actually consist
of several other messages), this assumption does imply any serious restrictions
on the formal model. In general, a process may be seen as an atomic operation
itself. In this case we assume, that for such process B : Din(B) = Din(a0),
and Dout(B) = {Dout(ai)}, where a0 is a starting activity for the process B,
and ai are terminating activities. We use service registries to map activities to
possible providers. Providers are usually chosen at the begin of or during process
execution. We define service registries as follows:

Definition 2 (Service Registry). A service registry S for process B is defined
by the following tuple: S = 〈name, P, s〉, where:

– name is a service registry reference name;
– P is a set of providers;
– s : R → 2P is a function that associates the roles R from process B with

providers P .

A process with customization points is called a reference process. Concep-
tually, a reference process defines a set of possible processes. It can be seen
as a function B(c1, . . . , cn) over customization operations ci. Assignments to
ci instantiate the reference process. Depending on the resolved customization
options, different business processes can be potentially instantiated. This is gen-
erating function for the customizable reference process Bc. The outputs of the
function are instances of the reference processes. However, this functional de-
pendency is not function with its traditional meaning, since customization may
have interrelations. That is, by resolving of some customization options other

customization options may be affected. In our setting, reference process is de-
fined on top of the business process, and seen as original process specification
plus possible customization options. Formally, we define a reference process as
follows:

Definition 3 (Customizable Reference Process). A customizable reference
process Bc is a reference process B and its service registry S enriched with cus-
tomizable elements and is defined by the following tuple Bc = 〈name, nameB , S, C, t〉,
where:

– name is a name of the customizable reference process;
– nameB is a name of the process that is made customizable;
– C is a set of allowed customization operations for the business process;
– t(C) is a function that defines a set of additional properties for each of the

customization, as when the customization is resolved, by what role, etc.

In practice we work with more specific classes of customization operations,
and often we define customizations implicitly, as it is described in the following
sections.

4 Customizations

In this section we define possible customization operations and their formal
semantics. As a result of customization we have a customized process that is
identical to the original one with changes applied in potential customization
points according to customization operational semantics. Now we are ready to
formally define a customization of the reference process:

Definition 4 (Customization of the Reference Process). A customization
of the reference process B1 = 〈. . .〉 is a process B2 = 〈. . .〉, that is derived from
B1 by resolving customization operations.

A customization option can be seen as an operation of modification of the
process. In practice, these possible changes are defined implicitly, since the ac-
tual process customization is performed in two steps: first, by describing of the
possible customization options, and, as a second, resolving the customization
option to some value. In the rest of the section we discuss semantic transition
rules for the customization options introduced in Section 2.1.

Adding new activity a2 between activities a1 and a3:

Requirements:

– Din(a2) ⊆ Dout(a1);
– Din(a3) ⊆ Dout(a2).

Semantic transition rules:

– A2 = A1 + a2;
– T2(a1) = T1(a1)\a3 + a2;
– T2(a2) = a3.

Customization operation Requirements Semantic transition rule

Adding a2 between a1 and a3 Din(a2) ⊆ Dout(a1) A2 = A1 + a2

Din(a3) ⊆ Dout(a2) T2(a1) = T1(a1)\a3 + a2

T2(a2) = a3

Removing a between a1 and a2 Din(a2) ⊆ Dout(a1) A2 = A1\a
T2(a1) = T1(a1)\a + a2

Replacing a1 with a2 between Din(a2) ⊆ Dout(a3) A2 = A1 a1 + a2

a3 and a4 Din(a4) ⊆ Dout(a2) T2(a) = T1(a) a1 + a2

T2(a2) = one of T (a1)

Restricting provider assignment for I ⊆ s1(r) s2(r) = I
a role r to a set of providers I

Adding global customization vari-
ables

- -

Table 1. Definition of customization operations.

Removing activity a between activities a1 and a2:

Requirements:

– Din(a2) ⊆ Dout(a1).

Semantic transition rules:

– A2 = A1\a;
– T2(a1) = T1(a1)\a + a2.

Replacing activity a1 with a2 after activity a:

Requirements:

– Din(a2) ⊆ Dout(a3);
– Din(a4) ⊆ Dout(a2).

Semantic transition rules:

– A2 = A1 a1 + a2;
– T2(a) = T1(a) a1 + a2;
– T2(a2) = one of T (a1).

Restricting a provider assignment for a role r to a set of providers:

Requirements:

– I ⊆ s1(r).

Semantic transition rules:

– s2(r) = I.

Adding global customization variables:

Requirements:

– A variable may be taken from the process variables and named as customiza-
tion variable.

Semantic transition rules:

– No direct impact. The actual impact of the global customization variables is
performed through guidelines. This type of customizations may be seen as
an abstraction that allows implicitly orchestrate the customization process
without getting too much into details of actual process semantics.

A summary of atomic customization operations is provided in Table 1. Con-
sider, for example, adding an activity a1 between activities a2 and a3. When
described, a customization operation usually explicitly defines the activities a2

and a3, that is, the place where some (not yet defined) activity may be inserted.
This type of customizations may be seen as an abstraction that allows implic-
itly orchestrate the customization process without getting too much into details
of actual process semantics. A variable is taken from the process variables and
named as customization variable.

From now, when we refer to customization option, we assume that it is defined
in some parametric way as described above. Within this setting, resolving the
customization option is the actual customization choice (activity to be inserted
in the above example).

5 Implementation

We implemented an extension to the BPEL editor of the WebSphere Integration
Developer (WID) application. It is realized in the form of an Eclipse plug-in.
This allows us to use BPEL Editor also as an editor for reference processes, with
BPEL process enriched with customization elements. Customizations are stored
in a separate file in the same folder as the customized BPEL process.

The reference implementation architecture is shown in Figure 2. WID uses
the same scheme of extensions based on plug-ins as the original Eclipse platform
(www.eclipse.org). To allow customizations of BPEL processes, we extended the
BPEL Editor with a set of plug-ins:

– EMF customization model extends the BPEL EMF model, and is recognized
by the BPEL editor as BPEL extension elements;

– To save/load BPEL processes, if the process contains any customization
extensions, they are saved/loaded using in/from a separate file, making the
on-the-fly validation against customization XML schema. If the validation
fails, the problems tab points to a set of validation errors;

WID / Eclipse

Customizations
EMF Model

Process

Customizations

Process
EMF Model

Process
EMF Model

PropertiesProperties BPEL Editor

ProcessProcess

Plug-in
Extensions XML Schema

Fig. 2. Implementation of a customizability annotator as extension to a BPEL editor.

– To fully support visual editing of customizations, for each element we added
a separate visual extension element to BPEL Editor, as shown in Figure 3.
Context-aware property tabs are activated, when the customized element is
chosen. To define relations between customizations in the form of guidelines
and requirements the separate view is used as shown in Figure 3.

The reference process XML representation generated by the tool is used as input
to a customization tool.

6 Related work

In[14] the authors propose configurable event-driven process chains (C-EPC) as
an extended reference modeling language which allows capturing the core config-
uration patterns. The general requirements for configurable reference modeling
languages are identified and formalization of C-EPC model is provided as an ex-
ample. Comprehensive discussion and overview of variability in process models is
provided in [6, 1]. Modeling variability by UML Use Case diagrams is introduced
in [20]. However, the authors do not deal with the issue of customizations speci-
fication. The relations and inheritance between processes and the possibilities of
transforming of one process to another are discussed in [2]. SAP [5, 15] (as well as
other Enterprise Systems reference models) uses reference models as application
process models that document the functionality of off-the-shelf-solutions. How-
ever, these models are specific to domains for which their processes were initially
developed with only limited customization options whereas address the issue of
a general customizability approach. Rational Method Composer (RMC) [13] de-
livers a unified software process with the possibility to configure the software

� cust-parameter� add-new� delete� replace� property� role

Fig. 3. Customization elements attached to a process activity.

process in a customer-specific way on a base of initial configuration. While the
customization possibilities of RMC are extensive, there is no or little control
over how the customization process happens. In contrast, this work not only
provides the language for customization options, but also the mechanism to
control and validate the customization process by means of requirements and
guidelines. The concept of guidelines and requirements is very similar to those
defined in [12]. Requirements allow designers to limit the configuration space,
while guidelines allow them to shape the configuration process. However, the
actual validation and application of requirements and guidelines within the pro-
cess lifecycle has received only limited attention in [14, 12]. Capturing variability
of business process models in a language-independent way is not new [19]. Here
the authors represent business processes with labeled transition systems and use
simple atomic operations as hiding and blocking to restrict the process behavior.
Study of BPEL-specific customization may be found in [7], where run-time con-
figuration capabilities are offered, and in [8], where BPEL processes are derived
from collaboration templates.

There are a number of alternative approaches to build customer-specific pro-
cesses. For example, automatic service composition techniques allow delivering
a user-specific process based on a set of pre-defined objectives and preferences.
The techniques can be based on template planning [17], data dependency [18]
or finite state machines [4]. Planner such as Golog [11] and the HTN planner
SHOP2 are applied for web service composition [16]. In [9] a service request lan-
guage (XSRL) is introduced to compose the executable process based on process
reference models and the goal describing desired service attributes and function-

alities, including temporal and non-temporal constraints. The drawback of the
approach is the limited control of the customer on the actual process synthesis
and execution. A general drawback of automatic composition is that in general it
is difficult to maintain the semantic descriptions of process activities up-to-date,
making altering the service implementations difficult. Hence, while automated
generation approaches implicitly contain a constraint on the set of process that
can be created it is usually not in a form in which it can be usefully managed
by a person who wants to restrict reference process use.

7 Conclusion

This paper outlines the issue of constraining the customizability of reference
processes and introduces a model and representation for defining customization
options on reference processes. The proposed approach allows a reference process
editor to explicit control the customizability of the reference process. We defined
a formal model for customizations with detailed operation semantics rules for
each customization type. The formal model is built on top of existing process
definitions. The XML-based language for customization definitions can be used
in the context of existing process definition language. It is designed with an
idea of being independent from particular process notation. To demonstrate the
feasibility of the approach, we developed a reference prototype as an extension
to WebSphere Integration Developer BPEL Editor.

This is an important contribution to the management of process variabil-
ity that is in particular relevant for service providers that deal with numerous
instances of a similar process entailing high life-cycle costs.

In the next step we plan to further investigate the implication of customiza-
tion operations. For example, application of object-based customization opera-
tions (like removing or modifying an activity) does not always have only local
implications. What if there are connectors in-between the activities where a new
activity is inserted? It would be also interesting to understand the implications
on the behavioral correctness (e.g. removing an activity may lead to a deadlock).
As a separate line of research, we also plan to address different ways of execut-
ing customization options, which depend to a large extent on the richness of the
choices and the level of skills of the customizer. We plan to extend the provided
implementation to validate and simulate customization options. Extensions for
other process notations, e.g., BPMN, are also planned.

References

1. F. Bachmann and L. Bass. Managing Variability in Software Architecture. ACM
Press, 2001.

2. T. Basten and W. M. P. van der Aalst. Inheritance of behavior. J. Log. Algebr.
Program., 47(2):47–145, 2001.

3. J. Becker, P. Delfmann, and R. Knackstedt. Adaptative reference modeling: In-
tegrating configurative and generic adaptation techniques for information models.
In Reference Modeling Conference, 2006.

4. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Auto-
matic composition of e-services that export their behavior. In ICSOC-03, 2003.

5. T. Curran and G. Keller. SAP R/3 Business Blueprint: Understanding the Busi-
ness Process Reference Model. Upper Saddle River, 1997.

6. G. Halmans and K. Pohl. Communicating the variability of a software-product
family to customers. Software and System Modeling, 2(1):15–36, 2003.

7. D. Karastoyanova, F. Leymann, J. Nitzsche, B. Wetzstein, and D. Wutke. Param-
eterized bpel processes: Concepts and implementation. Business Process Manage-
ment, pages 471–476, 2006.

8. R. Khalaf. From rosettanet pips to bpel processes: A three level approach for
business protocols. Business Process Management, pages 364–373, 2005.

9. A. Lazovik, M. Aiello, and M. Papazoglou. Planning and monitoring the execution
of web service requests. Journal on Digital Libraries, 2005.

10. H. Ludwig, J. Hogan, R. Jaluka, D. Loewenstern, S. Kumaran, A. Gilbert, A. Roy,
and M. Surendra T. Nellutla. Catalog-based service request management in the
bluecat environment. IBM Systems Journal, 46(3), 2007.

11. S. McIlraith and T. C. Son. Adapting Golog for composition of semantic web-
services. In Conf. on principles of Knowledge Representation (KR), 2002.

12. J. Mendling, J. Recker, M. Rosemann, and W. M. P. van der Aalst. Towards the
interchange of configurable EPCs. In EMISA, pages 8–21, 2005.

13. RMC. Rational method composer. http://www-128.ibm.com/developerworks/

rational/products/rup.
14. M. Rosemann and W. van der Aalst. A configurable reference modelling language.

Inf. Syst., 31(1):1–32, 2007.
15. SAP. Online documentation mySAP ERP. http://help.sap.com, 2005.
16. E. Sirin, B. Parsia, and J. Hendler. Filtering and selecting semantic web services

with interactive composition techniques. IEEE Intelligent Systems, 19(4), 2004.
17. S. Thakkar, J. Ambite, C. Knoblock, and C. Shahabi. Dynamically composing web

services from on-line sources. In AAAI Workshop Intelligent Service Integr., 2002.
18. S. Thakkar, J. Ambite, C. Knoblock, and C. Shahabi. Dynamically composing web

services from on-line sources. In AAAI Workshop Intelligent Service Integr., 2002.
19. W. van der Aalst, A. Dreiling, F. Gottschalk, M. Rosemann, and M. Jansen-Vullers.

Configurable process models as a basis for reference modeling. In BPM Workshops,
pages 512–518, 2005.

20. T. von der Massen and H. Lichter. Modeling variability by uml use case diagrams.
In REPL 02, 2002. Technical Report: ALR-2002-033, AVAYA labs.

