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Abstract

Reo is a language for coordinating autonomous components in distributed environments. Coordination
in Reo is performed by circuit-like connectors, which are constructed from primitive channels with well-
defined behavior. These channels are mobile, i.e. can be dynamically created and reconfigured at run-time.
Based on these language features, we introduce a high-level transformation system for Reo. We show how
transformations of Reo connectors can be defined using the theory of high-level replacement (HLR) systems.
This leads to a powerful notion of dynamic connector reconfiguration in Reo. Moreover, the rewrite rules
are naturally expressed in Reo’s visual syntax for connectors.
Applications of this framework are manifold, due to the generality of the field of coordination. In this paper
we provide an example from the area of Service-oriented Computing.

Keywords: Reo, coordination, high-level replacement systems, adhesive categories, model transformation,
service composition.

1 Introduction

Component composition is one of the greatest challenges in distributed, heteroge-
nous environments. The concept of coordination directly addresses this problem by
providing models for describing the necessary communication among the compo-
nents in a composed system. In this sense, coordination languages describe the ’glu-
ing’ of loosely coupled components, such that a desired system behaviour emerges.
The achieved separation of business logic and coordination of the active entities
leads to a much cleaner design and helps to handle the greater complexity of large
applications. In this paper, we use Reo [1], an exogenous coordination language
for distributed environments. Reo can be applied in various distributed scenarios
- from service-oriented to grid computing - as the coordination model is exogenous
and independent from the actual component implementation and infrastructure.
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As software systems evolve over time, it is important to be able to dynamically
adapt to changes in the interface of a component on the one hand, and its behavioral
properties on the other. Further, there is often a need to reconfigure a complete
structure of the system or even to redefine the composition of the components at
run-time. In service-oriented architecture (SOA), adapting the service composition
according to an issued user request is one of the possible examples of such system
reconfiguration. In a typical scenario, the basic reference process is modified to
satisfy the extended objectives of a particular client request.

Traditionally, applying changes to existing compositions is a very difficult task:
it is a time-consuming, expensive procedure that can be done only by business do-
main experts. Adapting the existing composition for a particular customer usually
requires plenty of time and cannot be done on-the-fly. The problem is even worse:
different customers request different extensions, and organizations are stuck with
maintaining separate processes for different groups of their customers. However,
they still miss business opportunities because they are not able to satisfy clients
that need dissimilar variations on top of the existing processes. But, if we look
at what customers want, we see that there is always a simple base functionality
that is requested by all of them, plus some specific options that are taken from a
limited (yet potentially large) set of additional features. The number of possible
combinations of optional features is enormous, making it impossible to maintain all
possible process instantiations for all customers.

In this paper we propose a different approach based on high-level replacement
systems. In this approach, business organizations need to maintain only a simple
base system that is reconfigured using transformation rules when necessary. Each
transformation rule (or set of rules) corresponds to one of the possible added value
features of the business domain. For example, in a travel package scenario, booking
a hotel and a flight represents basic functionality, while reserving some tourist guides
or restaurants are additional features. The transformation rules are expressed using
a separate high-level meta-language.

The idea of high-level replacement (HLR) systems is to define a set of rewrite
rules, each consisting of a pattern, that must be matched and an associated tem-
plate, describing the changes to be performed over the system. Additional appli-
cation conditions may restrict the transformation further. A major advantage of
this rewriting approach is that it allows to specify abstractly in which situations
and how a system should be changed, including possible dependencies that need to
be updated. Further, these rules cannot only be applied locally, but also globally,
i.e. wherever the patterns match. Another important aspect of this approach is
the granularity of changes that are made. Instead of sequentially performing local
modifications, complex structural refactorings can be achieved in an atomic step.
In this paper we apply the ideas of HLR systems to the coordination language Reo.

Organization: The rest of this paper is organized as follows. In Section 2
we describe related work. Section 3 contains an overview of coordination with Reo,
including a short introduction to its dynamic aspects. Our running examples, intro-
duced in Section 4 are taken from the field of service-oriented computing. Section 5
is an introduction to general high-level replacement systems. In Section 6, we give
a formal definition of Reo connectors and show that these definitions give rise to a
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HLR-system. We then extend the examples of Section 4 by rewrite rules in Section
7. In Section 8 we give a brief overview of the implementation of Reo. We conclude
with remarks on possible future work in Section 9.

2 Related work

Reo [1] has been introduced as a general-purpose coordination language that is not
restricted to a specific domain. A number of formal and informal descriptions of the
dynamic features of Reo exist. A systematic discussion of connector reconfiguration
in Reo is given in [9] and [10]. The approach includes a model checking algorithm
for a reconfiguration logic, called ReCTL*. Reconfigurations in these papers are
performed directly using Reo’s dynamic operations, like channel creation and node
splitting. The transformation approach in this paper introduces a higher-level, alge-
braic view on connector reconfiguration. Reasoning through these transformations
belongs to our future work.

High-level replacement systems [16] have their roots in the field of graph trans-
formation. They were introduced as a generalization of graph grammars to other
high-level structures. Initially, the structures that were considered in this context
were all graph-like, e.g. Petri nets, AHL-nets and hypergraphs. Although the
theory also has been applied to algebraic specifications for instance. High-level
replacement systems can be seen as an abstract meta-language for arbitrary trans-
formations. An important advantage of HLR-systems is their generality and the
sophisticated techniques for reasoning about the semantics of transformations. An
extensive introduction to the theory of HLR-systems can be found in [15]. An ap-
plication to the field of service-oriented computing can be found in [20]. There, the
authors use graph transformation for service discovery. In this paper, we propose
HLR-systems as the basis for business process customization.

The idea of on-the-fly modifications of a process is not new: for example,
in [31,25] the authors propose configurable event-driven process chains (C-EPC)
as an extended reference modeling language that allows capturing the core con-
figuration patterns. A comprehensive discussion and an overview of variability in
process models are provided in [19,4]. The relations and inheritance among pro-
cesses and the possibilities of transforming one process to another are discussed
in [5]. SAP [13,32] (as well as other Enterprise Systems reference models) uses
reference models as application process models that document the functionality of
off-the-shelf-solutions. However, these models are specific to domains for which
their processes were initially developed, with only limited customization options.
In contrast to the cited work, this paper emphasizes how customization happens,
what parts are to be modified, and how the actual transformation is performed.

There are a number of alternative approaches to building customer-specific pro-
cesses. For example, automatic service composition techniques allow delivering a
user-specific process based on a set of pre-defined objectives and preferences. A con-
figurable approach to service composition is proposed in [7]. To support dynamic
composition of web services from existing web services and dynamic integration of
their data, [34] proposes a data integration technique. The HTN planner SHOP2
was applied for web service composition in [35]. In [24] an XML Service Request
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Language was introduced in order to express complex user goals and preferences
over partially composed business processes. A number of approaches to service
composition and coordination are based on service rich semantic descriptions, e.g.,
knowledge-based semantic web service composition [8], service discovery and com-
position based on semantic matching [29], and semi-automatic composition of web
services based on semantic descriptions [33]. A general drawback of automatic com-
position which stops its wide adoption is the impossibility to keep the semantic
descriptions of process activities up-to-date, making altering and introducing new
service implementations difficult. In contrast, the approach presented in this paper
does not rely on any rich semantic descriptions, making it much more feasible for
real world distributed scenarios involving heterogenous computational entities with
no or little available semantics.

3 Reo Overview

Reo is an exogenous coordination language wherein so-called connectors are used
to coordinate components from outside, i.e. the components are not aware of the
fact that they are coordinated. Complex connectors are composed out of primitive
ones, called channels, with well-defined behavior, supplied by users. To build larger
connectors, channels can be joined into nodes and, in this way, arranged in a circuit.
Each channel type imposes its own constraints for the possible data flow at its ends,
e.g. synchrony or mutual exclusion. The ends of a channel can be either source
ends or sink ends. Source ends accept data into, and sink ends produce data out of
their respective channels. While the behavior of channels is user-defined, nodes are
fixed in their routing constraints. Data flow at a node occurs, iff

(i) exactly one of its coincident sink ends provides data, and

(ii) all of its coincident source ends are able to accept data.

A node atomically does a destructive read at the active sink end and replicates the
data item at all attached source ends. The examples in Figure 1 illustrate how
this behavior can be used to impose constraints at the border nodes of a connector
and thereby, implement a certain connector behavior. This is possible due to the
fact that the synchrony and exclusion constraints of channels and nodes propagate
through the (synchronous regions of the) connector. This behavior leads to a certain
context-awareness in connectors. A detailed discussion of this can be found in [9].

Figure 1 shows two connectors that involve in total four different kinds of chan-
nels. The Sync channel synchronously takes a data item from its source end and
makes it available at its sink end. Its transfer can succeed only if the node at the
sink end is ready to accept data. The LossySync has the same behavior, except
that it does not block if the receiver cannot accept data. Instead, the data item is
read and destroyed by the channel. The FIFO1 is an asynchronous channel that
has a buffer of size one. Unlike the prior channels, FIFOs are stateful primitive
connectors. The SyncDrain channel is different than the already introduced ones.
It has two source ends through which it can only consume data. Its behavior can
be described as follows: if there are data items available at both ends, it consumes
both of them synchronously.
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Fig. 1. (a) Exclusive router, (b) Ordering connector.

The exclusive router, shown in Figure 1.a, routes data from A to either B or C.
The connector is only active if there is a write request pending at the source node
A and there is at least one component attached to B or C that is ready to accept
data. If both, B and C, are enabled the choice is made nondeterministically. This
behavior can be explained by examining the possible data flow at the internal node
I. It can accept data only from one of its attached sink ends. So one of the ends
must not be active, which forces the corresponding LossySync to lose its data.

The second connector, shown in Figure 1.b, imposes an ordering on the data-
flow from the source nodes A′ and B′ to the sink node C ′. While the SyncDrain

synchronizes the inputs, the FIFO1 stores the data item from B′ and makes it
available for the next step. Due to the fact that the FIFO1 buffer cannot store
more than one item, the connector cannot accept any new data from A′ or B′ in
this configuration. The buffered element has to be removed before new input data
can be processed.

Reo further includes a number of operations for changing the topology of a
connector at run-time. Reo allows the dynamic creation of channels, splitting and
joining of nodes, hiding internal nodes and more. The hiding of internal nodes plays
an important role, because it allows to freeze the topology of a connector, such that
it can only be used from outside with its published interface, but not changed
anymore. The resulting connector can be viewed as a new primitive connector,
since its internal structure is hidden and its behaviour is fixed.

Our focus in the rest of this paper will be on the basic operations that can be used
for reconfiguring a connector. The proposed transformation approach addresses
direct creation of channels and nodes, as well as connector reconfiguration using
splitting and joining of nodes. To define complex transformations, we base our
approach on the theory of so-called high-level replacement systems. An introduction
to HLR-systems is given in Section 5. To motivate the use of such an abstract
transformation approach, we first consider some examples from the field of Service-
oriented Computing.

4 Running Example: Building a Travel Package

To illustrate our ideas we use a simple example from Service-oriented Computing
that is based on the OTA standardized travel domain [27]. Service-oriented com-
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puting describes an architecture that uses loosely coupled services to support the
requirements of business processes and users. Computational entities in a SOA en-
vironment are made available as independent services that can be accessed without
any knowledge of their underlying implementation platform.

As the main coordination mechanism we rely on the channel-based exogenous
coordination language Reo, introduced in Section 3. Reo supports a specific notion
of compositionality that enables coordinated composition of individual services, as
well as complex composite business processes. Accordingly, a coordinated business
process consists of a set of web services whose collective behavior is coordinated by
Reo connectors.

RestaurantRestaurant

HotelHotel

FlightFlight

PaymentPayment

HotelHotel

FlightFlight

PaymentPayment

XOR

TrainTrain

HotelHotel

FlightFlight

XOR

TrainTrain

MapsMaps

PaymentPayment

(a) (b) (c)

Fig. 2. Example processes.

OTA defines general XML-based message-oriented protocols for the travel do-
main. For demonstration purposes, we consider a simplified version that consists
of reserving a hotel and booking transportation (flight or train in our simplified
setting). A possible Reo coordination model is shown in Figure 2.a. To make this
process work, we assumed to have a marketplace of properly described correspond-
ing services. For example, a hotel reservation service is seen as an operation with one
input and one output. An input message is taken from the user, while the output
is directed to a payment service. We assume all issues regarding data compliance
are resolved, since within the same business domain it is rather easy to achieve a
common agreement on the protocol message types.

Consider a typical execution scenario. First, we try to reserve a hotel for some
specific dates. We take the price and other information from the user, give it to the
hotel service, and if the requested room is available, the execution proceeds to use
a payment service. In parallel, a flight service is engaged for a booking in a similar
way, and if the booking is succeeded, the payment service is used to pay for the
tickets.

This process is simple, but it works for most users. However, even typical
scenarios are usually more complicated with more services involved. Our simple
process may be additionally enriched with services that the average user travelling
abroad may benefit from, e.g., restaurants, museums, information offices, etc. It is
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difficult, or even nearly impossible, to put all services within the same process: users
require different services only a few of which are shared. This makes it difficult to
add new travel options, since only a limited number of users are actually interested
in additional services. We demonstrate one of the possible complex requests that
goes beyond the functionality of our simple process:

A trip to Lisbon is planned for the time of a conference; a hotel must be reserved
and a travel ticket booked. The client prefers to have an alternative transportation
option, e.g., train, in case the conference location is close. The client also requests
to visit a restaurant close enough to the hotel for a dinner, if possible.

For such a complex yet typical goal with a large number of loosely coupled
services, hard-coded business process specifications cannot be used effectively. The
problem is that the number of additional services is enormous, and every concrete
user may be interested only in a few of them. Having these considerations in mind,
it is sensible to design a business process to contain only basic services (as we did
in Figure 2.a) with a number of external services (or other processes) that are not
directly a part of the process, but the user may want them as added value, e.g.,
museums and places to visit, or making reservations in restaurants.

The Reo connector that satisfies the introduced user request is shown in Fig-
ure 2.c. The transition from the initial base process is done in two steps. At first we
introduce a train service into the process as a transportation alternative to a flight
service (see Figure 2.b). In the second step, we add a restaurant service that is
optionally requested by the user. A map service is used to ensure that a restaurant
is close enough to the requested hotel. The resulting process is shown in Figure 2.c.

To make this scenario work requires a mechanism to define the transformation
rules that change the shape of the process to satisfy the user request in a fast and
convenient way. This approach requires a language for high-level descriptions of
possible process modifications according to the users’ goals. In this scenario, the
user is an actor who triggers the transformation rules. In general, the triggering
events may come from different sources, such as other services, the underlying plat-
form, or actions during the process execution itself, allowing runtime on-the-fly
reconfigurations.

Traditional approaches to business process customization support small incre-
mental modifications of the original process. However, applying atomic customiza-
tion operations is difficult, time-consuming and error-prone. Moreover, each mod-
ification requires a skillful process designer who knows the corresponding business
domain. All this makes it impossible to apply the traditional approaches to adapt
a process to a user request.

In the following sections we introduce a high-level replacement approach which
allows us to modify a process quickly, even dynamically on-the-fly, if necessary. The
general idea is to group the related modifications into one or more transformation
rules that are triggered when needed. Using a high-level replacement system, a
process is adapted to a user request in the following way. Initially, we have a
simple process with basic functionality (as the one introduced in Figure 2.a) and a
repository of transformation rules that define possible process modifications. When
a user issues his request, its corresponding rules are fetched from the repository. In
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our example, two rules apply: adding an alternative transportation (train service)
to a flight, and adding a restaurant service that is close to the hotel. The latter
may consist of two rules: add a travel option with a parameter restaurant; and a
rule that uses a map service to ensure that the restaurant is located near the hotel.

5 High-Level Replacement Systems

High-level replacement (HLR) systems, introduced in [16], arose as a generalization
of the theory of graph transformation to other high-level structures, e.g. Petri-nets,
AHL-nets and algebraic specifications. In the following, we apply this theory in
the field of coordination to allow us to define transformations for Reo connectors
conveniently.

In high-level replacement systems, transformations are defined abstractly, based
on concepts from category theory. An overview of HLR-systems can be found in
[15] and [28]. We recall now the most important definitions. First we give a formal
definition of productions, which are abstract representations of transformation rules.
The second concept, called derivations, describes the application of a transformation
rule w.r.t. a given input.

Definition 5.1 [Production] A production p is a span of morphisms

p = (L l← K
r→ R)

in a category C. A production is called linear, if l and r are monos.

Productions are interpreted as rewrite rules. To support this intuition, we usu-
ally assume linear productions, i.e. the morphisms l, r are injective. In that case,
the object K can be viewed as a substructure of both L and R. The object L is
referred to as the left-hand side and R as the right-hand side of the rewrite rule. K

can be thought of as a gluing object of the production, which means that it is the
part that remains invariant during rule application. To apply a rewrite rule, the
following steps must be performed:

(i) match L as a substructure of an input object M ,

(ii) delete all parts of M that are matched by L, but are not in K,

(iii) add all parts of R that are not in K.

In other words, in a production p = (L l← K
r→ R), the morphism l determines

which parts of the matched pattern should be deleted, and r determines which
new parts should be added. The categorical formulation of this principle is the
concept of so-called Double-Pushout (DPO) derivations. Pushouts are a categorical
construction that describe the gluing of two structures.

Definition 5.2 [Derivation] Given an object M in a category C, a production
p = (L l← K

r→ R) and a morphism m : L → M , called match, a derivation
M

p,m⇒ N is a diagram in C
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where (1) and (2) are pushouts.

The notation M
p,m⇒ N can be interpreted in the following way: an input M is

transformed, using the rule p and a match m, to the output N . The idea of high-
level replacement categories is to define a set of axioms, called HLR-conditions, that
not only allow DPO-Rewriting, but also ensure a number of useful properties and
theorems. We recall now the most important properties of HLR-categories. For a
detailed discussion see [15].

Glueing Condition An arbitrary production is not always applicable with respect
to a given match. Formally, this problem corresponds to the existence of the
pushout complement C in Def. 5.2. The so-called glueing condition states under
which circumstances C exists and hence, the rewriting rule can be applied.

Local Church-Rosser deals with parallel and sequential independence of deriva-
tions. The specified conditions ensure that two productions applied to the same
structure in any order or even in parallel, lead to the same result.

Concurrency While Local Church-Rosser deals with sequentially and parallel in-
dependent derivations, the concurrency theorem addresses rules that cannot be
applied in arbitrary order. In particular, the theorem gives constructions for
composing and decomposing sequentially dependent productions.

High-level replacement categories are a rich meta-language for general transfor-
mation systems. However, in order to instantiate an HLR-system with concrete
structures, it is necessary to show that a language fulfills the requirements of an
HLR-category. An overview of these HLR-conditions is given in [28]. The rather
large number of requirements has been verified for many examples, including graphs,
hypergraphs, Petri nets and algebraic specifications. However, we do not list these
conditions here. Instead, we base our approach on another concept that is closely
related to HLR-categories. In 2005, Lack and Sobociński introduced the concept
of so-called adhesive categories [23]. The definitions made there turned out to be
sufficient to prove almost all requirements of high-level replacement categories. In
the following section, we use this result to instantiate Reo as an HLR-category.

6 Connector Rewriting

In this section we give formal definitions for the structural aspects of Reo connec-
tors. Next, we show that these definitions are appropriate to derive a high-level
replacement system.

Definition 6.1 [Connector] A connector C = (N,P, E, node, prim, type) consists
of a set N of nodes, a set P of primitives, a set E of primitive ends and functions

• prim : E → P , assigning a primitive to each primitive end,
• node : E → N , assigning a node to each primitive end,
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• type : E → 2 := {src, snk}, assigning a type to each primitive end.

The structure of a connector can be described as a hypergraph with an additional
coloring for the ends of the hyperedges. Primitives correspond to hyperedges and the
primitive ends are the points where primitives coincide on nodes. Moreover, these
primitive ends are colored, in the way that the function type : E → 2 determines
whether they are source or sink ends.

Definition 6.2 [Connector morphism] For two connectors C1, C2, a connector mor-
phism h = (hN , hP , hE) : C1 → C2 is a tuple of functions hN : N1 → N2,
hP : P1 → P2, hE : E1 → E2, such that the following diagrams commute:

E1 E2

N1 N2

=

hE //

hN

//

node1

��
node2

��

E1 E2

P1 P2

=

hE //

hP

//

prim1

��
prim2

��

E1 E2

2 2

=

hE //

id2

//

type1

��
type2

��

Connectors with their morphisms form the category Con of connectors. Con-
tinuing the interpretation of connectors as special hypergraphs, the definition of
connector morphisms preserves the hypergraph structure and the type information
of the primitive ends. This incorporates the invariant that source ends can be
mapped only to source ends and sink ends only to sink ends. The definition of
connector morphisms can also be used to define typed connectors and typed rewrite
rules 4 . Like the DPO-approach, the idea of this kind of typing originates in the
field of graph transformation [15]. Type information can be used to restrict the set
of primitives used in a connector and further its topology. Intuitively, a connector C

is typed by another connector T , if there is a morphism t : C → T . In this setting,
the connector C may use only those primitives that also occur in T . Further, typed
morphisms and typed rewrite rules must preserve this information. A possible sce-
nario may permit a component to attach to only a specific type of channels or that
two different channel types may never join together. More information on typed
graph transformation can be found in [15].

Based on the results by Lack and Sobociński [23], we can show that connectors
as defined above indeed form a high-level replacement category. Hence, we can rely
on the results and methodologies of the theory of HLR-systems.

Theorem 6.3 Connectors and their morphisms form a HLR-category.

Proof. It is known that hypergraphs form a HLR-category [30]. To verify this
also with our specific notion of connectors, we use the result that presheaves are
adhesive categories [23]. The definitions for connectors and their morphisms have
been chosen such as to form a presheaf over the small category

N E P

2

nodeoo prim //

type
��

4 Here, the term typed has nothing to do with the function in Def. 6.1.

10



Koehler, Lazovik, Arbab

where we restrict the functor images of 2 to be binary sets. Hence, connectors form
an adhesive category. To show that it is also a HLR-category, one more requirement
has to be satisfied, namely that there must be an initial object [23]. The empty
connector fulfills this requirement. 2

With this result, we can define transformation rules for Reo. Based on our
running example, we present a set of rules for a business process customization in
the following section.

7 Example Rules

In this section we define transformation rules for the example introduced in Sec-
tion 4. The scenario was based on an informal user request, which is used to
customize a process.

In the following, we use a visual notation to define rewrite rules. However, the
underlying formalism consists of the definition of connectors, connector morphisms
and HLR-productions only. Each rule is represented in a separate figure, which
consist of two parts: a left-hand side (LHS) and a right-hand side (RHS). The left-
hand side is the pattern to be matched. The dashed arrows define the mapping
to the right-hand side. This mapping implicitely defines the gluing structure K in
Def. 5.1. Every node and every channel (primitive connector), that is mapped to
the right-hand side will be preserved during the transformation. Parts in the LHS,
that are not mapped, will be deleted. Parts in the RHS, that are not in the image
of the mapping are added.

XOR

FlightFlight

FlightFlight

ServiceService

Fig. 3. Rewrite rule: Add flight alternative.

The first rule, shown in Figure 3, introduces an alternative transportation to a
process. The pattern consists of a flight, that is already part of the initial process.
The node mappings indicate that the upper Sync channel in the left-hand side is
replaced by an exclusive router. In this example, we hide the internal structure
of the exclusive router, which has been described in Section 3. Note also that the
rule is parameterized by a service, that is derived from the user request. In our
particular example, this parameter is a train service. After application of this rule
to the original base process, we have a process with a train as an alternative as
shown in Figure 2.b.

The second part of the request, booking a restaurant that is close to the hotel, is a
bit more complicated. It consists of two rules shown in Figure 4 and 5. With the first
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PaymentPayment PaymentPayment

ServiceService

Fig. 4. Rewrite rule: Add travel package option.

rule, we add a travel package option which is a restaurant service in our example.
The second rule allows us to synchronize two services based on their location. An
external map service is used to check if the locations of the two services are nearby.
The map service works as follows: it produces some output whenever two input
messages refer to close locations, and does nothing otherwise. Thus, the second
service successfully executes only if the map service has some output. After the
application of this rule with a hotel and restaurant as its parameters, the resulting
process looks as in Figure 2.c.

From the formal point of view, each of the presented example rules corresponds
to a linear production (cf. Def. 5.1). This incorporates the constraint that the
mappings, indicated by the dashed arrows, introduce a 1:1 correspondence between
nodes or channels. Consequently, the rules apply only the expected basic operations,
such as node / channel creation or deletion. Dropping the requirement of linear
productions introduces a new kind of operations, i.e., splitting or joining of elements.
In particular, it is possible to define node splittings and node joins, as specified
in the Reo language. However, using this kind of operations also introduces new
requirements that must be ensured at run-time. For instance, when splitting a node
into two new nodes, what happens to the channels that coincide on this node must
be well-defined.

Our example shows a possible scenario of how transformation rules can be used
to build a travel package according to a user request. However, this very specific

MapsMaps

Service 1Service 1

Service 2Service 2

Service 1Service 1

Service 2Service 2

Fig. 5. Rewrite rule: Add map synchronization.
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scenario should not hide the fact that i) coordination with Reo is not limited to the
domain of services, and ii) the idea of high-level replacement systems is a general
transformation meta-language that can be instantiated with arbitrary structural
models.

8 Implementation

The examples given in this paper show that a good tool support is crucial for any
kind of application in the field of coordination. The Eclipse Coordination Tools
(ECT) project [14,22] aims at unifying a number of existing Reo-related tools into
one integrated environment. ECT is implemented in Java as a set of plug-ins for
the Eclipse platform 5 . Currently the framework consists of the following parts:

(i) graphical editors for Reo connectors and constraint automata [2],

(ii) simulation plug-in for Reo, that generates Flash animations on the fly,

(iii) conversion tool from Reo connectors to constraint automata,

(iv) Java code generation from constraint automata,

(v) model checking tool for constraint automata [21].

The existing Java code generation plug-in produces a centralized implementation
of connectors using simple threads. Ongoing work also includes an implementation
based on constraint programming, and a distributed implementation of Reo, which
will be implemented using the Actors extension of the Scala language [18].

Since the Reo coordination tools are implemented using standard Eclipse mod-
eling framework, we can directly use existing model transformation frameworks
to define connector transformations. In particular, we use the Tiger EMF Model
Transformation Framework (EMT) [6] which is an implementation of the graph-
based HLR transformation approach, as presented in this paper. Our Reo model
can be imported into the Tiger framework, where transformations are defined using
a visual editor. Future work includes an integration of the run-time libraries of the
transformation framework with the implementation of Reo.

9 Conclusions and Future Work

Reo is an expressive language for coordinating autonomous software components.
Applying high-level replacement systems to Reo, we show how evolving software
systems can be maintained and complex reconfigurations can be realized. As shown
in our running example, the proposed approach successfully applies to a number of
challenges in the field of service-oriented computing.

In the next step of our work, we plan to investigate to what extent it is possible
to reason about the changes in the behavior of evolving connectors. In particular,
it is interesting to extract a class of transformations that preserve certain aspects
of the behavior of a connector. Since the semantics of Reo connectors can be
given with so-called constraint automata [2], behavior preserving transformations

5 http://www.eclipse.org
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can be classified by postulating bisimilarity between the input and the result of a
transformation (cf. [17]).

In classical HLR-systems, transformations are not limited to a single rule ap-
plication. In general, multiple rules can be applied in combination (sequentially or
even in parallel). The so-called negative application conditions can be used to define
patterns that must not be matched to apply a rule. As mentioned already before,
type information for connectors can be used to restrain the topologies of connec-
tors. Further, it is possible to enforce a protocol that determines when to apply
which rule and how often. All these concepts should be considered in the context
of coordination, since they truely increase the expressiveness of transformations.

When transformation rules are used to achieve some objectives, e.g., build a user
request, some transformation rules cannot be applied together, since one rule may
potentially neglect the effects of previously applied transformations. It is possible to
use AI techniques such as planning or formal verification to find a sequence of trans-
formation rules that satisfies the provided objectives. In general, it is interesting to
have a mechanism for analysis of various kind of relations between transformation
rules: dependencies, mutual exclusiveness, joint effects, etc.

From the point of service-oriented computing, the scenarios provided in this
paper are not exhaustive. For example, one may use HLR techniques to specify
the composition of several processes as a set of transformations, to apply business
rules that change the structure of a process, or to have run-time reconfigurations to
deal with changes in the infrastructure. To make full use of high-level replacement
systems in SOA, we also plan to address issues of QoS, service-level agreements,
security, transactional behavior, and compensation. Initial work in this area has
been done already in [3] and [26].

Our immediate future work involves the implementation of the proposed frame-
work, i.e., the deployment of components and connectors in distributed environ-
ments.
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