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Abstract

Interaction with web service enabled marketplaces would be greatly facilitated
if users were given a high level service request language to express their goals in
complex business domains. This could be achieved by using a planning frame-
work which monitors the execution of planned goals against predefined standard
business processes and interacts with the user to achieve goal satisfaction.

The thesis addresses the problem of service composition executions man-
aged by interacting with the client. The planning architecture accepts high level
requests, expressed in XSRL (XML Service Request Language). The plan-
ning framework is based on the principle of interleaving planning and exe-
cution. This is accomplished on the basis of refinement and revision as new
service-related information is gathered from service registries and web services
instances, and as execution circumstances necessitate change. The system in-
teracts with the user whenever confirmation or verification is needed.

The work is primarily concerned with the problems of composition and mon-
itoring of business processes based on process reference models. XML Service
Request Language (XSRL) was proposed to address the issue of service com-
position by giving the users an explicit control over process executions by de-
scribing desired service attributes and functionalities, including temporal and
non-temporal constraints between services. Reference model instantiation is
planned according to the goals and preferences specified by the user, and an
appropriate plan is executed. The algorithms behind are based on the idea of in-
terleaving planning and execution. These algorithms are based on model check-



ing and constraint programming. Research in process monitoring was brought
to the definition of a framework where business rules are defined by assertion
statements. Assertions are published by the partners involved in the business
process. The business process is executed with respect to the specified asser-
tions and, by that, up-to-date business objectives, constraints and new market
situations.

Algorithms for interleaving planning, monitoring and execution have been
implemented by using Java programming language. The implementation uses
constraint programming system to satisfy user goals and preferences against
reference business processes. The choice for constraint solvers was motivated
by the fact that in a web service scenario, users may wish to know why certain
solutions are preferred to others. Explanation-based constraint programming is
a viable approach to tackling such issues. As a constraint solver external system
(Choco) is used. Choco is a Java library for constraint satisfaction problems,
constraint programming and explanation-based constraint solving.

The evaluation of the language and service composition framework focused
on showing the feasibility of the approach. There was implemented a domain
generator allowing the tuning of the following parameters: number of states,
branching factor, non-determinism rate, maximum directed cycle length, and if
the service domain corresponds to a dag or a not. Then there were made several
experimentations with different XSRL requests with increasing complexity on
different domains. The evaluation showed that the system is able to deal with
domains which are considerably larger than the biggest ones seen in practice.

Keywords
Service request languages, service composition, service-oriented computing, AI
planning, constraint programming
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Chapter 1

Introduction

The Internet and the Web provide great opportunities for companies who would
like their customers to have fast, easy and cheap access to company’s services
by publishing them on-line. Nowadays anyone can buy books, reserve hotels
and tickets, check latest news and meteorological forecasts from any device
connected to the Internet. However, even if the Internet gives a good potential
for business-to-customer interaction, its infrastructure has not been fully ex-
ploited for business-to-business solutions. One of the main research topics on
the Web today is the service-enabled marketplaces where different parties work
together by sharing their business processes. Service-oriented computing tries
to solve this problem by introducing a concept of service and framework for
service publishing, discovery, binding and composition.

Services are self-describing, open components that support rapid, low-cost
composition of distributed applications. Services are offered by service providers
– organizations that procure the service implementations, supply their service
descriptions, and provide related technical and business support. Since services
may be offered by different enterprises on the Internet, they provide a distributed
computing infrastructure for both intra and cross-enterprise application integra-
tion and collaboration [39].

An important aspect of services is the separation between the interface and
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CHAPTER 1. INTRODUCTION

the implementation. The interface part defines the functionality visible to the
external world and the way it is accessed. The service describes its own inter-
face characteristics, i.e., the operations available, the parameters, data-typing
and the access protocols, in a way that other software modules can determine
what it does, how to invoke its functionality, and what result to expect in return.
In a typical interaction a service client uses the service’s interface description to
bind to the service provider and invoke its functionalities.

The implementation realizes the interface and the implementation details are
hidden from the users of the service. Different service providers using any pro-
gramming language of their choice may implement the same interface. One
service implementation might provide the direct functionality itself, while an-
other service implementation might use a combination of other services to pro-
vide the same functionality [108]. A group of services interacting in the above
manner forms the service application in a service-oriented computing (SOC)
architecture.

Nowadays service-oriented computing is rapidly becoming the prominent
paradigm for distributed computing and electronic business applications. SOC
allows for service providers and service application developers to construct
value-added services by combining existing services that are resident on the
Web. To achieve this, firstly, services must be described in terms of the standard
service definition language, published in the service registry, and subsequently
must be inter-linked to express how collections of web services work jointly
to realize more complex functionalities typified by business processes. Busi-
ness processes described in this way model the actual behavior of a participant
in a business interaction as well as the visible message exchange behavior of
each of the parties involved in the business protocol. A service business process
is defined “in the abstract” by referencing and inter-linking service interfaces
involved in a process. A business process is a reusable definition that can be de-
ployed in different ways and in different scenarios, while maintaining a uniform
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application-level behavior across all of them. For web services, BPEL [23] is
used for describing the business processes.

One of the most challenging areas in SOC is the composition of services.
Efforts have been made aiming at developing techniques to automatically com-
pose different services in order to achieve complex business goals. In many
situations it is desirable to allow a user to gain explicit control over the execu-
tion of BPEL expressions and dynamically change the nature of the web service
interactions conducted with a particular business partner depending on the state
of the process. Consider for example the case of a traveller deciding to change
his hotel reservation to take advantage of an unexpectedly low priced weekend
offer. Users may need to change message property values in the midst of a
computation, e.g., update their holiday budget based on a ticket, hotel prices
and availability, evaluate different behavioral alternatives or scenarios during a
computation and change their course of action dynamically, or revisit different
execution paths based on non-deterministic message property values that result
from the invocation of the services involved in a process. This implies that pro-
cess execution must be made adaptable at run-time to meet the changing needs
of users and businesses. Obviously, BPEL specifications do not allow for the
required flexibility to react swiftly to unforeseen circumstances or opportunities
as choices are predefined and statically bound in BPEL programs. To meet such
requirements serious re-coding efforts are needed every time when there is a
need for even a slight deviation.

Such advanced functionality can only be supported by a service request lan-
guage and its appropriate run-time support environment to allow users to ex-
press their needs on the basis of the characteristics and functionality of standard
business processes whose services are found in service registries. A service
request language provides for a formal means of describing desired service at-
tributes and functionality, including temporal and non-temporal constraints be-
tween services, service scheduling preferences, alternative options and so on.
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CHAPTER 1. INTRODUCTION

In the thesis we introduced an XML Service Request Language (XSRL) and
its supporting framework to address the above issues. XSRL expresses a re-
quest and executes it according to the user preferences. The framework, that
takes XSRL request as input, returns a product as the result of the request, e.g.,
constructs an end-to-end holiday packages (documents) comprising a number of
flight and accommodation choices. XSRL is equipped with constructs for ex-
pressing quantitative requests, such as, booking a room for two nights, spending
between 100 and 200 euro, etc., but also qualitative operations for sequencing
goals, such as, contacting the hotel only after having booked a plane, for stating
preferences, e.g., flying rather than taking a train to a destination, for stating the
maintaining of a condition during execution, such as, keeping the budget below
500 euro. Loosely speaking, the response documents can be perceived as a se-
ries of plans that potentially satisfy a request. In expressing an XSRL request it
is important that a user is enabled to specify the way that the request needs to
be satisfied.

Traditional approaches in service-oriented computing assume that the person
who initiates an interaction with the business process has complete knowledge
of the underlying process semantics. However, in practice the requester and the
process owner are different people or organizations and the requirement for the
user to be aware of the process semantics is somewhat strong. The situation,
when the user has precise knowledge about process variables but has limited
or no knowledge about the process itself is more typical. Consider an example
from the travel domain. An average user is aware of process variables such as
price, time, tickets cost, but has only general knowledge of how the particular
travel agency processes his request. Taking an example from another domain
as buying a computer, one may see that the situation is the same: user usually
restricts price, built time, and some additional preferences like particular mem-
ory or processor, but he has no constraints on how the computer is assembled
as far as he is guaranteed to finally receive it. In the above scenarios, the user
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formulates his request to a travel agency or a computer selling company in a
high level way, basically constraining the crucial process variables. The XML
Service Request Language deals with the scenarios above and gives the final
user the ability to express his constraints in a high-level intuitive way without
requiring him to know the details of the underlying process. Moreover, this
brings additional freedom to the process providers, as they can easier make
changes to the process, as far as it provides the necessary functionality, with-
out being afraid to violate the agreement between the requester and the process
itself.

XSRL request

USER XSRL FRAMEWORK SERVICE PROVIDERS

XSRL Framework

Process Engine

Planner (Constraint Solver)

Executor

Monitor

Figure 1.1: XSRL Framework.

For the request language to work, we developed a supporting framework
based on the interleaving planning and execution. The high-level view on the
framework is shown in Figure 1.1. When user issues a request, the planner finds
the execution that potentially satisfy the request. Planning is done by encoding
the process and the request into constraint satisfaction problem. The executor,
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CHAPTER 1. INTRODUCTION

built on top of the process engine, processes the execution generated by the
planner until the request is satisfied or re-planning is needed. Re-planning is
performed when new information if gathered such as hotel price or room avail-
ability that is available only at run-time. The monitor performs interleaving
between planning and execution and search for new service providers if needed.

In general, composition in web service based environments poses an inter-
esting and potentially rewarding challenge to the AI community as there is a
need for tools and techniques to deal with the composition of loosely-coupled
autonomous components, to deal with uncertainty and incomplete information
deriving from the absence of a centralized control, to deal with potentially in-
finite possible executions. On the other hand, making the challenge feasible
to approach, unlike other open environments such as those of robot planning,
web service environments have the advantage of being highly structured. Op-
erations to be invoked are syntactically specified, registries holding information
on active services are available for querying, and so on.

If the planning is done using constraint programming techniques, as we pro-
pose, one can take advantage of reuse of the previously generated plans in the
replanning phases. In fact, a new value returned by a service invocation may
simply result in the addition of a constraint to the solution space and no further
replanning is necessary. As a positive side effect of our investigation and pro-
posal for using constraints, we highlight a set of challenges which are of general
interest to constraint programming.

Additionally to the algorithms based on the encoding to constraint program-
ming, we have developed an approach based on planning as model checking. It
works with booleanized business process domain since originally planning as
model checking was developed for planning domains with only boolean propo-
sitions.

Service interfaces within a business process are usually distributed between
different parties (organization which may play different roles) that can make
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their changes in different portions of the process. A business process definition
language can guarantee the consistency of service interfaces, message order-
ing and message invocations, but it can not be used to check process runtime
properties. Safe execution of the business process can only be ensured by a
monitoring mechanism that checks the runtime properties of business process
and possibly recovers from assertion violations. Our framework is also able to
deal handle this. The monitoring of the business process based on the assertions
violations is performed in the following way. At first, assertions are published
by the party who wants his assertions to be applied to business processes and
monitored during execution. When the business process is executed, the frame-
work allows only those executions to proceed where published assertions are
satisfied. If an assertion is violated then the system tries to find an alternative
execution path in the business process that does not violate the assertion, if any.
Assertions are published on different levels: business process, role or provider.
During execution, assertions defined on the business process level are always
taken into account; assertions defined by roles are checked only if operations
for that role are invoked; provider level assertions are considered if an action of
the particular provider is necessary.

More precisely, monitoring is a mechanism that ensures the execution of a
process is consistent with respect to business rules and user specified requests.
As a business process spans several organizations, all of them expect their busi-
ness rules to be taken into account when the process is executed. Business rules
are supplied by service providers and are enforced on business processes that
are associated with such rules during their execution. The key point of the ap-
proach is to give more control over the business process execution to end users
and service providers, as schematically illustrated in Figure 1.2. In the moni-
toring framework service providers are allowed to issue assertions, and, by that,
they have more control on how their service is accessed in the context of the
business process execution.
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XSRL requests

assertions and 
service implementations

business
process

control over execution

Figure 1.2: XSRL/XSAL Framework: giving more control to involved parties.
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1.1. AN EXAMPLE IN THE TRAVEL MARKETPLACE

Let us now summarize the main contributions present in the thesis:

• identification of an adequate goal language over composed services with
expressive power enough for the user, but, at the same time, computation-
ally tractable;

• development of a service composition framework;

• design and implementation of a supporting framework for goal language;

• design and implementation of a supporting framework for service compo-
sition;

• implementation and evaluation of the language and service composition
framework;

• development of a service monitoring framework with business rules ex-
pressed via assertions;

• discussion of applicability of the proposed assertion language for express-
ing and monitoring QoS properties;

1.1 An example in the travel marketplace

Let us now give the details of an example for planning a trip, that we use through
the thesis for demonstrating purposes.

Consider a user requesting a trip to Nowhereland and having a number of
additional requirements regarding such a trip, e.g., that the total price of the
trip be lower than 300 euro, the prices of the hotel below 200 euro, avoiding
using the train, and so on. To be satisfied such a request involves the interaction
with various autonomous service providers, including a travel agency, a hotel
company and a flight carrier. The services reside in the same travel marketplace
and must follow a standard business process for the domain such as the one
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Figure 1.3: A travel business process.
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1.1. AN EXAMPLE IN THE TRAVEL MARKETPLACE

exemplified in Figure 1.3. This process is modeled as a state transition diagram,
that is, every node represents a state in which the process can be, while labeled
arcs indicate how the process changes state. Actors involved in the process are
shown at the top of the diagram. The actors include the user, a travel agency, a
hotel service, an air service, a train service and a payment service.

The process is initiated by the user contacting a travel agency, hence, (1) is
the initial state. The state is then changed to (2) by requesting a quote from an
hotel (action a1). The dashed arcs represent web service responses, in partic-
ular arc a2 brings the system in the state (3). The execution continues along
these lines by traversing the paths in the state transition diagram until we reach
state (14). In this state a confirmation of an hotel and of a flight or train is
given by the travel agency and the user is prompted for acceptance of the travel
package (13).

The state transition diagram is non-deterministic. This is illustrated, for in-
stance, in state (4). In this state the user has accepted the hotel room price how-
ever is faced with two possible outcomes, one that a room is not available (where
the system transits back to state (1)) and the other one where a room reservation
can be made (state (5)). The actual path will be determined at runtime when
appropriate services will provide information regarding the availability for the
hotel providers.

The lower part of the business process models the payment of the travel
package just booked as an atomic action. This means the entire trip is payment
atomic.

Services intervening in the process above may have additional requirements
and business rules that need to be followed. A particular travel carrier may
require advanced payment, a travel agency may want to always have explicit
user’s approval before committing to a package. At a higher level, different
marketplaces may implement the same process but with different rules. For in-
stance, one may additionally require that all air carriers use a specific commu-
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Figure 1.4: A travel service domain.

nication protocol. There also could be a set of Quality of Service requirements
expressed in the same manner. For example, one of the involved parties may
require additional level of security, the overall process could assert the partici-
pating services to support the transactional behavior, etc. This sort of additional
business rules are what we called assertions.

However, the provided example may result too verbose to use for demon-
strating concepts through the thesis. Thus, whenever convenient, we consider
the simplified version limiting ourselves to hotel and ticket reservation as shown
in Figure 1.4.

1.2 Published material

The work has been developed in collaboration with various people (as the pub-
lications indicate) and in particular with Marco Aiello, Mike Papazoglou and
Rosella Gennari.

The work presented in the thesis is primarily concerned with the problems
of composition and monitoring of the business processes based on the pro-
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1.2. PUBLISHED MATERIAL

cess reference models. We have proposed an XML Service Request Language
(XSRL) [81, 84, 82] to address the issue of service composition and service
monitoring. The algorithms behind the XSRL supporting framework are based
on the idea of interleaving planning and execution. The planning algorithms
extend ideas from planning as model checking [81, 84] and constraint program-
ming [79, 1, 80].

Research [83, 2] in process monitoring was brought to the definition of a
framework where business rules are defined by assertion statements. Assertions
are published by the partners involved in the business process. The business
process is executed with respect to the specified assertions and. Extensions
towards monitoring of business entities constraints have been proposed in [77].

[1] M. Aiello A. Lazovik and R. Gennari. Choreographies: using constraints
to satisfy service requests. In IEEE Web Services-based Systems and Applica-

tions (WEBSA at ICIW), 2006.

[2] M. Aiello and A. Lazovik. Associating assertions with business pro-
cesses and monitoring their execution. International Journal of Cooperative

Information Systems, 2006.

[77] A. Lazovik. Monitoring of document-oriented business processes.
In 1st European Young Researchers Workshop on Service Oriented Comput-

ing (YRSOC-05), 2005.

[79] A. Lazovik, M. Aiello, and R. Gennari. Encoding requests to web
service compositions as constraints. In Principles and Practice of Constraint

Programming (CP-05), LNCS 3709, pages 782–786. Springer, 2005.

[80] A. Lazovik, M. Aiello, and R. Gennari. Encoding requests to web
service compositions as constraints. Technical Report DIT-05-40, Univ. of
Trento, 2005.

[81] A. Lazovik, M. Aiello, and M. Papazoglou. Planning and monitoring
the execution of web service requests. In Conf. on Service-Oriented Comput-

ing (ICSOC-03), Lecture Notes in Computer Sciences 2910, pages 335–350.
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Springer, 2003.

[82] A. Lazovik, M. Aiello, and M. Papazoglou. Planning and monitoring
the execution of web service requests. Technical Report DIT-03-049, University
of Trento, 2003.

[83] A. Lazovik, M. Aiello, and M. Papazoglou. Associating assertions with
business processes and monitoring their execution. In M. Aiello, M. Aoyama,
F. Curbera, and M. Papazoglou, editors, Conf. on Service-Oriented Computing

(ICSOC-04), pages 94–104. ACM Press, 2004.

[84] A. Lazovik, M. Aiello, and M. Papazoglou. Planning and monitoring
the execution of web service requests. Journal on Digital Libraries, 2005.

1.3 Thesis organization

The thesis is organized in the following way. In Chapter 2 the overview of
currently available work on service composition is provided. Then in Chap-
ter 3 the framework of interleaving planning and execution is introduced. In
Chapter 4 planning algorithm based on encoding of the service planning as con-
straint problem is introduced. Monitoring of service compositions is discussed
in Chapter 5. The reference implementation is overviewed in Chapter 6. In the
following, the detailed description of each chapter is provided.

Chapter 2 provides the state of the art in service-oriented computing (SOC)
and service composition in particular. Section 2.1 describes an overview of SOC
and introduces the main issues and research directions in service composition
and monitoring. Section 2.2 provides an overview of automated composition
problems and concentrates on algorithms based on various AI Planning tech-
niques. Application of constraint satisfaction to web services is described in
Section 2.3. The Semantic Web view on service composition and service inter-
face matching, in particular, is introduced in Section 2.4.

Chapter 3 is devoted to the framework for interleaving planning and exe-
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1.3. THESIS ORGANIZATION

cution. First, in Section 3.1 the view on service business processed as formal
state-transition systems is introduced. The XML Service Request Language
(XSRL) is introduced for issuing requests to business processes in Section 3.2.
The problem of service planning is defined in Section 3.3. Formal semantics
of XSRL is described in Section 3.4. In Section 3.5 algorithms for interleaving
planning and execution are provided.

In Chapter 4 a particular planning algorithm based on encoding the service
problem to constraint programming is developed. The approach consists of two
parts: encoding of the domain (introduced in Section 4.1), and encoding of the
service request (introduced in Section 4.2). A sample encoding of travel domain
that was introduced in Section 1.1 is provided in Section 4.3.

In Chapter 5 the framework of service process monitoring is introduced.
Business rules in the framework are defined by assertion statements, that are
formally defined in Section 5.2. The monitoring framework itself is discussed
in Section 5.3. The monitoring of the sample process is provided in Section 5.4.
Discussion on how assertions can be applied to express and monitor QoS prop-
erties is given in Section 5.5.

A reference implementation of framework for interleaving planning and ex-
ecution is discussed in Chapter 6. In Section 6.1 detailed view on implemented
algorithms is provided. Two example snippets from Supply Chain and Purchase
Order domains are provided in Sections 6.2.1 and 6.2.2.

Chapter 7 summarizes the thesis work and provides an overview of new re-
search directions, that are opened by the presented work.

In Appendix A formal BNF notation for XSRL is provided. In Appendix B
an approach based on planning as model checking is presented. Its correctness
and completeness properties are discussed in Section B.1.
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Chapter 2

Related work

2.1 Service-oriented computing

The Internet and the Web provide great opportunities for companies who would
like their customers to have fast, easy and cheap access to company’s services
by publishing them on-line. Nowadays anyone can buy books, reserve hotels
and tickets, check latest news and meteorological data from any device con-
nected to the Internet. However even if the Internet gives a good potential for
business-to-customer model, its infrastructure is not enough for business-to-
business solutions. One of the challenging research topics on the Web today
is the service-enabled marketplaces where different parties works together by
sharing their business processes. Service-oriented computing tries to solve this
problem by introducing a concept of service and framework for service publish-
ing, discovery, binding and composition.

Services are autonomous platform-independent computational elements that
can be described, published, discovered, orchestrated and programmed for the
purpose of developing distributed inter-operable applications [108].

Services are self-describing, open components that support rapid, low-cost
composition of distributed applications. Services are offered by service providers-
organizations that procure the service implementations, supply their service de-
scriptions, and provide related technical and business support. Since services
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may be offered by different enterprises on the Internet, they provide a distributed
computing infrastructure for both intra and cross-enterprise application integra-
tion and collaboration [39].

An important aspect of services is the separation between the interface and
the implementation part. The interface part defines the functionality visible to
the external world and the way it is accessed. The service describes its own in-
terface characteristics, e.g., the operations available, the parameters, data-typing
and the access protocols, in a way that other software modules can determine
what it does, how to invoke its functionality, and which result to expect in return.
In a typical interaction a service client uses the service interface description to
bind to the service provider and invoke its functionalities.

The implementation realizes the interface and the implementation details are
hidden from the users of the service. Different service providers using any pro-
gramming language of their choice may implement the same interface. One ser-
vice implementation might provide the direct functionality itself, while another
service implementation might use a combination of other services to provide
the same functionality [108, 43].

Nowadays service-oriented computing is rapidly becoming the prominent
paradigm for distributed computing and electronic business applications. Web
services are one of the most important example of service-oriented computing.
SOC allows for service providers and service application developers to con-
struct value-added services by combining existing services that are resident on
the Web. To achieve this, firstly, web services must be described in terms of the
standard web service definition language WSDL [146], published in UDDI reg-
istry [139], and subsequently must be inter-linked to express how collections
of web services work jointly to realize more complex functionalities typified
by business processes. Figure 2.1 [85] shows typical interactions in a service-
oriented architecture. A new web service is defined in terms of compositions of
existing (constituent) services on the basis of the standard Business Process Ex-
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Figure 2.1: Service publishing, discovery and binding.

ecution Language for Web Services (BPEL4WS or BPEL for short [23]). BPEL
models the actual behavior of a participant in a business interaction as well as
the visible message exchange behavior of each of the parties involved in the
business protocol. A BPEL process is defined “in the abstract” by referencing
and inter-linking portTypes specified in the WSDL definitions of the web
services involved in a process. A BPEL process is a reusable definition that can
be deployed in different ways and in different scenarios, while maintaining a
uniform application-level behavior across all of them. Service compositions in
BPEL are described in such a way (e.g., WSDL over UDDI) that allows auto-
matic discovery and offers request matching on service descriptions.

Service-oriented computing was mainly derived from distributed systems
concepts (see, e.g., [38]). It was primarily enabled after the announcement of
a set of XML protocols for platform-independent message exchange, service
description and service discovery. The concept of SOC platform-independent
framework is not new: most of the ideas were developed in CORBA [37]. The
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Figure 2.2: Web services protocol stack.

key difference between web service protocol stack and CORBA is that enabling
protocols for web services are light-weight, allow for fast implementation, and
are easy to be used in legacy applications.

Nowadays a lot of efforts are made to provide transaction and coordina-
tion behavior [36, 86, 123], service semantics [149], security mechanisms [63,
64], service discovery [91]. The web service protocol stack is shown in Fig-
ure 2.2 [39]. On the lower level of the stack one finds transport and encoding
layers, in the middle protocols for the service description, security, transaction
and coordination are located, and, finally, on the top level the protocol stack has
business process composition layer. A good introduction to service-enabling
protocol stack can be found in [109, 111].
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2.1.1 Service composition

Service composition is the cornerstone challenge to success of service-oriented
computing. Several initiatives have been proposed to enable integration be-
tween heterogeneous systems. In particular, as shown in Figure 2.2 the web ser-
vice protocol stack [39] includes the Web Service Description Language [146],
the Simple Object Access Protocol [131], Universal Description, Discovery
and Integration [139] that allows platform- and language-independent service
publishing, discovery and invocation. Business Process Execution Language
for Web Services [23] is focused on representation of web service executions,
where composition is known in advance. Choreography Description Language
defines, from a global viewpoint, observable inter-enterprise behavior, where
ordered message exchanges result in accomplishing a common business goal [67].

Despite all the efforts, service composition is still an extremely complicated
task. Complexity comes from different places:

• the number of services and partners available on the Web is high and
steadily increasing, making it difficult to choose the right service to find
and invoke;

• in a true service-oriented architecture, there is no single owner of the busi-
ness process, that is, every change to a process has to be approved by all
involved parties. Therefore, having consistent and stable business pro-
cesses that satisfy business goals of all participants and ensure correctness
at runtime is hard to be achieved;

• the execution of a business process depends on the behavior of involved
partners that is not known when the process is designed, thus, designer of
the process has to take into account all possible service behaviors.

That is why having a mechanism for automatic or semi-automatic service
composition is crucial for successful enterprise application integration. Several
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approaches have been proposed to achieve these issues. Service composition is
somewhat similar to composition of workflows [28, 42, 140] and techniques de-
veloped for workflows can be reused for composition of services. For example,
in [30] it is proposed a configurable approach to service composition. However,
workflow composition frameworks do not take into account issues specific to
service-oriented computing: dynamic binding, highly heterogeneous environ-
ments, absence of a single ownership and control over process execution. Ser-
vice orchestration based on object-oriented data models is presented in [49].
In [104] service composition rules are used for governing the business process
construction. In [6] authors model the service composition problem as a mixed
integer linear problem where both local constraints and global constraints can be
specified. A local constraint allows selection of a Web service according to a de-
sired characteristic. Global constraints are constraints over the whole compos-
ite service execution. There have been proposed several approaches for service
compositions, e.g., knowledge-based semantic web service composition [31],
service discovery and composition based on semantic matching [106], semi-
automatic composition of web services based on semantic descriptions [127].
All these approaches work under the assumption of having available rich se-
mantic service description and run-time information. In contrast to this, in a
pure service-oriented environment, there is little semantic description and, on
the other hand, one deals with incomplete knowledge about service behavior
and required information is gathered and analyzed during execution.

2.1.2 Monitoring of service compositions

In the web service literature there are several approaches dealing with the moni-
toring of the assertions over service-enabled business processes. The WS-Policy
framework [144] provides a general purpose model for describing a broad range
of service requirements, preferences, and capabilities. Typically it is used when
the provider describes the set of conditions the requester should satisfy before
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invoking the service. RuleML [58] is a powerful technique for expressing busi-
ness rules over semantically annotated service. On the negative side is the lack
of any support for runtime monitoring of the business rules. Extensions of
RuleML for distributed service-oriented environments are proposed in [100].
The eFlow [29] is a system that supports composite services for highly dy-
namic business environment. However, most of the previous work is stressed
on the verification of business processes [141, 119], rather than on tuning and
re-composition of the process on-the-fly if the process is failed to satisfy all
assertions, as it is done in this work.

A service-level agreement (SLA) is a contract between providers and clients
that specifies, usually in measurable terms, that a service provider and a ser-
vice client agree before starting to interact. Service-level agreement is often
described as series of Quality of Service (QoS) expressions. QoS includes both
functional and non-functional service quality attributes, such as service cost,
service performance metrics (e.g., response time and availability), security and
transactional attributes, scalability and reliability [109]. The WS-Policy [144]
provides a language that may be used to describe a broad range of service re-
quirements and preference capabilities.

In a distributed service-oriented computing environment, service consumers
like to obtain the guarantees related to services they use, often connected to
quality of service. However, quality of service and other guarantees that de-
pend on actual resource usage cannot be advertised as an invariant property of a
service. Instead, the service consumer must obtain state-dependent guarantees
from the service provider, represented as an agreement on the service and the
associated guarantees. Additionally, the guarantees on service quality should
be monitored and service consumers may be notified of a failure to meet these
guarantees. WS-Agreement [89, 90] defines a language and a protocol for ad-
vertising the capabilities of service providers and creating agreements based on
creational offers, and for monitoring agreement compliance at runtime. In [88]
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Cremona: An Architecture and Library for Creation and Monitoring of WS-
Agreements is introduced. Extensions to WS-Agreement that allows for run-
time monitoring of running service-level agreements is proposed in [50].

2.2 Automated composition using AI Planning

One of the most challenging areas in SOC is the composition of business pro-
cesses. Many researchers efforts aim at creating techniques to automatically
compose different services in order to achieve complex business goals. It is
shown (e.g., [132]) that problems in automatic business process composition
and service request processing and monitoring are similar to those in plan-
ning. Temporally extended goals, i.e., goals expressing not only desired states
to achieve but also conditions on how these are to be reached, are on expressive
way of defining complex business goals.

2.2.1 Automated planning as a part of AI

One of the closest areas in AI that deals with the problems similar to automatic
service composition is automated planning. Planning can be seen as a process
of reasoning over a set of goals that have to be achieved by organizing a given
set of possible actions in a way that their execution satisfies the goals. Actions
behavior is usually described via effects. Actions may also have preconditions,
denoting that some particular action can only be executed if its preconditions are
satisfied. Planning is known to be a complex problem [126], therefore it is gen-
erally looking for good feasible plans rather than optimal ones. Since there are
various types of actions, there are also various types of planning: robot motion
and navigation [68, 75], scheduling [51, 76, 128], space applications [15, 116],
web service composition [94, 127, 132].

There are two main kind of planning approaches: domain-dependent and
domain-independent planning. A natural, and often more effective, approach
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is to use domain-dependent problem representation with algorithms and tech-
niques adapted for the specific problem. However, there are many commonali-
ties between all the planning models and algorithms used. And, since it is much
more costly to address every new arising planning problem with a specific ap-
proach, it is wise to use domain-independent approaches whenever possible.

To be able to deal with various types of service composition problems, that
are possibly defined in different ways and standards, we are going to con-
sider only domain-independent planning, tackling web service specifics in an
abstract, domain-independent way. This allows us to deal with a wide range
of business domains without spending too much time to add domain-specific
knowledge.

Let us begin by formalizing the general planning problem. We refer to this
model throughout the rest of the work. The planning problem representation
given here is adapted from the conceptual planning model provided in [101].

Most of the planning approaches rely on a general model of a state-transition

system (also called discrete-event system). Formally, it is defined as follows:

Definition 1 (State-transition system). A state-transition system is a tuple

Σ = 〈S,A, E, γ〉, where:

• S = {s1, . . . , sn} is a finite or recursively enumerable set of states;

• A = {a1, . . . , am} is a finite or recursively enumerable set of actions;

• E = {e1, . . . , el} is a finite or recursively enumerable set of events;

• γ : S × A× E → 2S is a state-transition function.

A state-transition system can be represented as a directed graph with nodes in
S with edges from s′ to s′′ if there exists a and e such that γ(s′, a, e) = s′′.

Often it is convenient to define two state-transition functions instead of one:

• γ : S×A → 2S is a state-transition function that denotes transitions caused
by actions;
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• γ : S × E → 2S is a state-transition function that denotes transitions
caused by events.

Both events and actions can cause a state transition. However, there is an
important difference between them. Actions are transitions that are controlled
by the plan executor. That is, if γ(s, a) is not empty then invoking action a in
a state s results in one of the states γ(s, a). Events represent non-controlled

transitions that may possibly bring the system from state s to one of the states
γ(s, e) if γ(s, e) is non empty.

Given a state-transition system Σ, the planning problem is to find which
actions to apply in which states in order to achieve some goal. A plan is a
structure that contains the information for the executor regarding which action
to execute at the following step. The goal may be defined in several forms [101]:

• as a set of goal states Sg. In this case, the goal is satisfied if the planner
builds a plan, which, when executed, brings the system to one of the goal
states;

• as a set of conditions over sequence of states visited by the system to be
satisfied. For example, one might require to avoid some states, or define
states that must be visited during the execution, or prefer one sequence of
states to another;

• as an utility function that is specified for each state with penalties and
rewards, if a particular state is visited. A goal is either to optimize the
utility function or achieve some desired value.

Typically planning is performed off-line, and then the synthesized plan is
executed. Sometimes the planning system may want to react according to new
sensed information from execution by re-planning or tuning the originally syn-
thesized plan. In this case, the conceptual planning model is extended with an
executor (also known as controller). The resulting model is shown in Figure 2.3,
and it consists of three important parts:
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Description of Σ

Σ
events

observationsactions

plans

goals

initial state

execution status

Figure 2.3: Conceptual planning model (adapted from [101]).

• planner: given a description of the state-transition system, its initial state
and the goal, it works off-line to produce the plans;

• executor: given as an input the current state of the state-transition system,
it executes actions according to a synthesized plan. The executor may
try to sense the current state of the system. In general, it may have only
partial knowledge of the state of the system. Partial knowledge can be
modeled as an observation function η : O → 2S that maps observations
O = {o1, . . . , ok} to possible current states of the system. An executor
interacts on-line with the system;

• state-transition system Σ: represents the planning environment. It evolves
according to invoked actions and external non-controlled events.

The problem of automated planning is known to have high complexity [26,
87, 118]. That is why the first planning algorithms were applied to the restricted
version of the general conceptual model. The restricted version of planning is
known as classical planning, or STRIPS planning, referring to STRIPS, one
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of the first planners [48]. In STRIPS, each action has a precondition, add and
delete lists, and these may contain first-order logic expressions. However, pro-
viding a well-defined semantics for this formulation has proved to be hard; and,
in a subsequent work, preconditions and effects are allowed to contain only
atomic propositions [101].

Classical planning considers the following assumptions when dealing with
the planning problem [101]:

A0 (Finite Σ) The state-transition system Σ has a finite set of states;

A1 (Fully observable Σ) The state-transition system is fully observable, i.e.,
one has full knowledge about the current state of the system. In this case
the observation function η is a one-to-one function;

A2 (Deterministic Σ) The state-transition system Σ is deterministic if for ev-
ery state s, and for every action or event u, every transition has only one
possible destination state: |γ(s, u)| ≤ 1;

A3 (Static Σ) The state-transition system Σ is static, i.e., the set of non-controlled
events E is empty. The systems remains in the same state until the executor
invokes an action;

A4 (Restricted goals) The goal is restricted if it is represented via a set of ex-
plicitly defined goal states. Extended goals such as states to be avoided or
constraints over trajectories or utility functions are not handled;

A5 (Sequential plans) A solution plan to a planning problem is an ordered fi-
nite sequence of actions;

A6 (Implicit time) Actions and events have no duration, they are instantaneous
state transitions;

A7 (Off-line planning) The planner is not concerned with any change that may
occur in Σ while it is planning. It plans for the given initial state and a goal
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ignoring the current dynamics of the system.

Traditional search-based algorithms were not always successful with tack-
ling the classical planning problem [101]. In the late 90s were investigated sev-
eral alternative approaches to classical planning algorithms known to be a neo-
classical planning algorithms, including, but not limited to: graph-plan tech-
niques [20], encoding of the planning problem to SAT [65, 66] or CSP [133],
application of linear integer programming [142]. Most of the new created al-
gorithm outperform the traditional approaches [101]. However, the main ad-
vantage of new approaches is the following: combining with other fields, like
integer programming or CSP, it allows to use the benefits of the using fields, for
instance, CSP allows natively to use numeric variables, integer programming
allows to use optimal planning, etc. Potentially all this allows some relaxation
of the restrictive assumptions, that usually allows for more expressive or more
compact planning problem representation.

In [69] a form of template planning based on hierarchical template networks
and constraint satisfaction is introduced. The framework provides the infras-
tructure to rapidly construct new applications that extract information from mul-
tiple Web sources and interactively integrate the data using a dynamic, hierar-
chical constraint network. In [137, 135, 136] it is proposed data integration
techniques to support dynamic integration of data from web services and sup-
port dynamic composition of web services from existing web services.

In [13] services are modeled as execution trees represented by deterministic
finite state machines (FSM). The desired service (the goal) is also represented
by deterministic FSM and may be partially specified [14].

In [95] the Golog planner is used to automatically compose semantically
described services. Actions in [95] are described as Situation Calculus ac-
tions [56], and encoded in OWL-S. The approach is exploiting an OWL-S on-
tology of services by automatically instantiating the user specification with ser-
vices contained in such an ontology. When the outcome of service is unknown,
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the successor state is defined by executing knowledge-gathering services.

However, classical planning could not tackle some problems where only par-
tial knowledge of the domain is available, goals are not expressive enough,
there are no non-controlled events. Unfortunately, these issues are important in
the web service environment: information about service implementation is not
known before executing some of its operations, most of the service operations
are non-deterministic, goals constraint numeric variables as price or resource
quantity. There were several proposals for service composition planning with
relaxed classical planning assumptions.

In Hierarchical Task Network (HTN) approach for planning is done by prob-
lem reduction: the planner recursively decomposes tasks into subtasks, stopping
when it reaches primitive tasks that can be performed directly by planning op-
erators. In order to tell the planner how to decompose nonprimitive tasks into
subtasks, it needs to have a set of methods, where each method is a schema for
decomposing a particular kind of task into a set of subtasks. The HTN planner
SHOP2 was applied for web service composition in [148]. Extension of HTN
planner SHOP2 to gather information from the web in order to do web-service
composition is provided in [72]. In [8] an extension of SHOP2 is introduced to
do web service composition in environments when the world is changing while
the planning is going on.

Classical planning problem based on plan-graph techniques are extended to
deal with uncertainty in [129] and with limited form of partial observability
in [143].

Planning as model checking approach is used for domains under uncertainty
with non-determinism, partial observability, and extended goals. It is discussed
in details in Section 2.2.2.

Another example of planning under uncertainty and non-determinism is an
approach based on Markov-decision processes (MDP) [101, 22]. MDP takes a
very different view on planning comparing to other planning techniques. The
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domain is define as a state-transition system, with transitions labeled with prob-
abilities. Goal is represented in terms of state rewards (or action costs). The
planning problem is seen as an optimization problem. A utility function can
easily express preferences on states and actions, and many applications require
such preferences, as for example, web services. On the other hand, sometimes
it is not easy to formulate goals in terms of state rewards, and transition prob-
abilities are not always easy to define for many applications. Probabilities in
most cases are statistical estimates, they are not always accurate and often not
available, what is typical, for example, for web service composition problems.
There were made several attempts to use MDP planning for a particular service
composition issues. In [9, 10] the goal for MDP planning is expressed using
temporal logic.

In [41] it is proposed an approach based on MDPs to model workflow com-
position. To account for the uncertainty for dynamic environments, authors in-
terleave MDP-based workflow generation and Bayesian model learning. In [150],
authors present a hierarchical approach for composing web processes that may
be nested – some of the components of the process may be web processes them-
selves. They model the composition problem using a semi-Markov decision
process (SMDP) that generalizes MDPs by allowing actions to be temporally
extended. Authors use these actions to represent the invocation of lower level
processes whose execution times are uncertain and different from simple service
invocations. In [53] it is discussed a method for dynamic web service composi-
tion, which is based on Markov Decision Processes (MDP). It is defined on the
base of QoS description and addresses the issue of selecting web services for
the purpose of their composition. Web service composition patterns including
sequential, conditional, parallel and iterative are modeled in MDP.
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2.2.2 Planning as model checking

Planning by model checking (where model checking is an automatic technique
for verifying finite state concurrent systems [34], see Section 2.2.2, is an ap-
proach to planning under uncertainty that deals with non-determinism, partial
observability, and extended goals. The proof in model checking can be seen as
a plan in planning [101]. The planning as model checking approach is based on
the following concepts:

• a planning domain is a non-deterministic state-transition system, where an
action from a single state may lead to several different states. The planner
does not know the outcomes that will actually take place, when the action
will be executed;

• formulas in temporal logic express reachability goals, i.e., set of final de-
sired states, as well as conditions on the entire plan execution paths. They
can express requirements of different strength that takes into account non-
determinism;

• plans result in conditional and iterative behaviors, and, in general, they
are more expressive than simply mapping between states and actions to be
executed;

• given a state-transition system and a goal expressed as temporal formula,
planning by model checking generates plans that control the evolution of
the system so that all the system’s behavior makes the temporal formula
true. The plan validation process can be formulated as a model checking
problem;

• planning as model checking can use symbolic model checking techniques.
The set of states can be represented as propositional formulas and search-
ing through the states is performed by doing logical transformations over
propositional formulas.
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Planning as model checking for extended goals was first introduced in [73,
113] and is implemented in a planner called MBP [16]. Extensions toward in-
terleaving planning and execution in the above context are reported in [17]. The
latter work emphasizes on the state explosion problem rather than information
gathering. There are several attempts to apply the approach to solve web service
composition problem [115]. However, the traditional planning based on model
checking does not handle numeric values, which is an important issue for web
service environments, where numeric resources are used, e.g., price and time.
Another critical issue is that the planner MBP [16] is designed to work off-line,
and, by that, it has to take into account all possible service outcomes, while it
would probably more efficient to do knowledge gathering at run-time, and then
perform re-planning according to new available knowledge.

Our work can be seen as a further extension of ideas developed in planning
as model checking. However, there are important differences that are crucial for
services-oriented computing. Together with preserving the high expressiveness
of EaGLe [73], we extend them by introduction of preferences, optional goals
and numeric constraints. That required us to encode the planning problem as
a constraint satisfaction to deal with numeric constraints efficiently. Another
difference is in the way we deal with incomplete knowledge: we introduce the
framework of interleaving planning and execution, that gathers new knowledge
from services at run-time, and performs re-planning if needed.

Another implementation of the planning as model checking is MIPS [44],
which is based on BDDs [24]. The main strength of MIPS is its pre-compilation
phase that leads to a reduction of the state description length. However, MIPS
is limited to deterministic domains.

Using temporal formulas in planning is not limited to planning as model
checking. Several authors [12, 40] used them for guiding the search, in case
planning is domain-specific and some knowledge about domain is known in
advance. In contrast, in the thesis we focus on the general planning algorithms
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assuming we have no knowledge about the business domain we work with.

Model checking

Hardware and software systems inevitably grow in scale and functionality. Be-
cause of this increase in complexity, the likelihood of subtle errors is much
greater. Moreover, some of these errors may cause catastrophic loss of money,
time, or even human life. A major goal of software engineering is to enable
developers to construct systems that operate reliably despite their complexity.
One way of achieving this goal is by using formal methods, which are math-
ematically based languages, techniques, and tools for specifying and verifying
such systems. Use of formal methods does not a priori guarantee correctness.
However, they can greatly increase our understanding of a system by reveal-
ing inconsistencies, ambiguities, and incompleteness that might otherwise go
undetected [33].

Model checking is a set of formal techniques that is used to verify systems
against its specifications. Model checking includes various set of problems:
from infinite to finite systems, from linear to branching time structures. In this
work we assume that the system is described using the Kripke structure, as it
is defined in [34] and the specification is expressed by the temporal formula
either linear or branching [45]. A Kripke structure is a type of nondeterministic
finite state machine used to represent the behavior of a system. It is basically
a graph whose nodes represent the reachable states of the system and whose
edges represent state transitions. A labeling function maps each node to a set of
properties that hold in the corresponding state. Temporal logics are traditionally
interpreted in terms of Kripke structures [34].

There are several research efforts made in the formal verification of the ser-
vice compositions, in particular, for BPEL. In [122] BPEL is translated to a
Petri net model and then some correctness criteria are verified by further trans-
lation of the model to a model checking problem for alternating temporal logics.

34



2.3. CONSTRAINT SATISFACTION

Analysis of BPEL interactions on the data level is introduced in [52].

However, verifications are usually done off-line, when there is no or little in-
formation about service is available. Non-deterministic nature of services also
reduces the use of formal verification techniques in service-oriented computing:
the number of possible failures is usually large and not static. It is unfeasible
to describe such heterogeneous dynamic system with up-to-date formal model
to allow complete formal verification. That is why, even verified systems re-
quire careful monitoring of web service execution, especially monitoring of
composed services.

2.3 Constraint satisfaction

Constraint programming is the study of computational systems based on con-
straints. The idea of constraint programming is to solve problems by stating
constraints (requirements) about the problem area and, consequently, finding so-
lution satisfying all the constraints [11]. In constraint programming, constraints
are usually defined in forms of logical relations among several variables, each
taking a value in a given domain. By that, the constraints restrict the possible
values that variables can take.

A constraint satisfaction problem (CSP) is defined as [138]:

• a set of variables X = {x1, . . . , xn};

• for each variable xi, a finite set Di of possible values (its domain), and

• a set of constraints restricting the values that the variables can simultane-
ously take.

A solution to CSP is an assignment to the set of variables such that all its
constraints are satisfied. One may want to find an optimal solution, if some
objective function is given over CSP variables [138].
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There are several approaches developed to solve constraint satisfaction prob-
lems. Search with backtracking [102] is a method of solving CSP by incremen-
tally extending a partial solution that specifies consistent values for some of the
variables, towards a complete solution, by repeatedly choosing a value for an-
other variable consistent with the values in the current partial solution. Another
approach, forming consistency techniques, is based on removing inconsistent
values from variables domains until the solution is found. These methods are
often incomplete [70, 92] and used together with search. For consistency tech-
niques it is convenient to represent the constraint satisfaction problem (in a re-
duced binary form [11]) as a graph, where nodes are variables and edges are
labeled by constraints [97]. The most widely used technique is arc consistency.
It removes the values from the variable domains that are inconsistent with the
corresponding binary constraint.

The combination of both – search and consistency – is usually used to find
the solution for the constraint satisfaction problem. For example, look back

techniques (backjumping [54] and backchecking [60]) use consistency checks
among already instantiated variables. Look ahead schemas are used to prevent
the conflicts in the future, e.g., forward checking [99].

As an alternative to complete search algorithms, generalized stochastic searches
can be applied to find the solution for the constraint satisfaction problem: e.g.,
hill-climbing [102], random-walks [124], and tabu-search [57].

There are several research initiatives in the area of constraint satisfaction
towards service-oriented computing. For example, the authors of [46] introduce
the framework of open constraint satisfaction problems, that are common to
this work. As they pinpoint, for one party in the service it is often impractical to
provide the other parties with full information on its own constraints. However,
the framework proposed in this work encompasses this view in that it separates
the constraint reasoner, the executor and the monitor: so, in our framework, it
is not the constraint reasoner who is responsible for requesting and controlling
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the flow of information.

In [125] it is proposed a framework for handling workflows based on con-
straints, and a language for describing the workflow. The methodology adopted
is similar to ours; e.g., their workflow language is high-level and is based
on constraints. However, in the thesis we tackle non-deterministic processes,
while [125] does not; our high-level language and constraint modeling allow
for optional requests, preferences, execution constraints, and not only sequenc-
ing, price, task constraints.

To our knowledge, few constraint systems allow users to directly express
complex soft constraints; most of them only allow users to express preferences
on basic constraints via reification [4]. On the other hand, there is a consid-
erable amount of theoretical work in the soft constraint literature; e.g., see the
work [18, 19, 21] for an introduction to soft constraints and inference algo-
rithms, and [5] for more recent work on soft constraint reasoning at the in-
terface with game theory. Despite solid theoretical work done, to our knowl-
edge there is no stable widely available implementation of constraint solver
that reasons over preference constraints. That is why we use a general purpose
constraint solver [32] and deal with preferences by adopting reification tech-
niques [4, 121].

Another track of the constraint literature is focused on the resource alloca-
tion problem in a distributed scenario and its optimization (e.g., [59]); however
this is not an issue in this work, as we abstract from this problem. In fact, in this
work we are concerned with web service-oriented business processes and inter-
actions with them, and we propose a modeling as constraint-based problems.
Instead of having external constraints as, for instance, in the open constraint
setting of [46], we introduce two sorts of variables in our model: variables the
constraint system is free to choose values for, and variables that only external
parties can choose values for. Accordingly, the latter are called non-controlled

variables, and any solution to the problem should be independent of their possi-
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ble values.

2.4 Semantic Web

Semantic Web adds a machine-interpretable information to web contents (and to
web services in particular) in order to provide capabilities for automatic discov-
ery, composition, invocation and interoperation [74]. There are several formal
languages [35, 130] proposed to support rich declarative specification at a wide
variety of information about web services [112] and agents in the multi-agent
environments [62, 134] in order to allow involved parties for automatic dis-
covery and interaction. This languages are based on knowledge representation
languages and ontologies [96, 105, 106]. However, most efforts in Semantic
Web research on service composition is concentrated around discovery of new
services that match each other and the initial service request. These approaches
usually ignore complexity of service implementations, focusing on service in-
terface and service ontology matching [71, 117, 127].

Despite of its obvious promise, Semantic Web has a number of unresolved is-
sues to be directly applied for service composition problem. Only OWL-S [35]
defines composition at a semantic level but its model does not support dynamic
service selection. The heterogeneity of services is a vital issue to be resolved
yet data and process mediation is only mentioned in the WSMO [47] initiative.
Web service interoperation in Semantic Web does not have a clear semantic
model, choreographies are ambiguous when interpreted in OWL-S [35], and
WSMO [47, 120] does include choreography as a part of its conceptual frame-
work. Significantly, no initiative has yet considered for other web services
requirements, such as transactionality, security, trust and execution monitor-
ing [103] (solely QoS issues which have been well defined in Meteor-S [112]).
Some of the issues may be solved by enriching the available semantic defini-
tions, that brings large set of data needed to be provided to describe the specific
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service. The drawback of this approach is that it is difficult to maintain the se-
mantic descriptions up-to-date, making altering the service implementations a
very difficult process. In a web services world it is even more difficult, since
one has to ensure that all services share the same view on the data semantics
and ontology used. Several authors addressed this issue by introducing a data
mediator to bridge different vocabularies [25, 120]. Such mediators are able to
translate the output of one service to a suitable input of another.

In contrast, our work, as most of the work done in web service composition
(see, for example, [132]), does not require all the complexity of rich seman-
tic ontology-based definitions limiting the semantic description to the definition
of effects and preconditions of specific services. Using this approach, other
important information about service is usually (as it is done in this work) gath-
ered at run-time by intercommunicating with specific service providers. Within
weak semantic descriptions, the issue of data semantic heterogeneity between
services is open, but as real world experience demonstrates, it is reasonable to
assume that involved parties can agree on the shared view on the meaning of
the data passed between services.
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Chapter 3

Interleaving planning and execution

3.1 SOA business processes

Service-oriented computing allows service providers and service application de-
velopers to construct value-added services by combining existing services that
are resident on the Web. To achieve this, firstly, services must be described
in terms of a standard definition language (e.g., in case of web services in
WSDL [146]) and subsequently must be inter-linked to express how collec-
tions of services work jointly to realize more complex functionalities typified
by business processes. A new service can be defined in terms of composition of
existing services on the basis of the standard business process languages, e.g., in
BPEL [23]. These process definitions model the actual behavior of participants
in a business interaction as well as the visible message exchange behavior of
each of the parties involved in the business protocol. Such reusable definitions
can be deployed in different ways and in different scenarios, while maintaining
a uniform application-level behavior across all of them.

In this thesis, we consider business processes as a means to represent the
control flow of business logic and applications. This is achieved by introducing
the notion of a state and an action. A state represents the state of the process
execution. An action represents a business activity, which is modeled as a tran-
sition between given states. Each action is executed on behalf of a role. A

41



CHAPTER 3. INTERLEAVING PLANNING AND EXECUTION

role represents a set of business operations that relate to the same party, e.g., a
travel agency. Each role has a number of providers associated with it. Providers
are found by interacting with service registries. A provider is the actual party
that implements a role, e.g., a specific travel agency. It is convenient to define
the notion of a process variable, which is a variable associated with a process
changing values, e.g., travel packages, hotel reservations, and so on, as the pro-
cess progresses through its execution path and its states change. The use of
process variables guarantees that the execution of a business process can be
monitored during execution as the process traverses a set of states where con-
straints may need to be applied to these variables. Constraints on the variables
represent user goals and preferences.

The business process defined in this way is very similar to an AI planning
domain. However classical AI planning approaches, as described in Section 2.2,
cannot be directly applied since it is limited by the assumption of determinism:
it is assumed that the exact outcomes of the actions are known in advance, that
is, for any given plan and an initial state, the world will evolve towards a single
fully predictable state.

However, service-oriented business processes are typically non-deterministic.
Non-determinism is caused by several reasons, both functional and non-functional.
A bank service may reject the payment because some business rules are violated
as well as because of service internal technical problem. That is why, when
modeling the business process, a more realistic assumption is that the world is
non-deterministic: an action may have several possible outcomes, with no ad-
vance knowledge on which one will occur. The second source of uncertainty
in web services scenarios is the service implementations themselves: the values
for most of process variables representing service capabilities (e.g., ticket price)
are not known before execution. The system must invoke the service operations
to get this knowledge available. This type of uncertainty in the planning litera-
ture is usually referred to as planning under partial observability [101].
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In the following, we adapt the general definition of planning domain and goal
provided in Section 2.2. The planning domain represents the possible system
evolution, while the goal describes the set of conditions that the system is de-
sired to satisfy after the execution. In the context of this work, service planning
domain is extracted from business process definitions. As for a goal language,
an XML Service Request Language is introduced.

The service domain is the core formalization of the business process that is
expressed as a state-transition system with, possibly, non-deterministic actions.
The goal language is later introduced to express goals and preferences from the
user request. Formally, the service planning domain is defined as follows:

Definition 2 (Service domain). A service domain is a tuple

D = 〈S,V ,A,R, r, T ,F〉, where:

• S is a set of states;

• V is a set of process variables; each V variable v ranges over a process
domain Dv;

• A is a set of actions, representing process operations. Each action is

associated with some role from R by the mapping function r : A → R;

• T : S ×A → 2S is a transition function that represents the control flow

of the business process; if T (s, a) contains at most one state then a is

deterministic in s, else it is non-deterministic in s;

• for each v in V , fv ∈ F is an effect function fv : S ×A× 2Dv → 2Dv ,

where Dv is the domain of the process variable v; fv(s, a, D′
v), with

D′
v ⊆ Dv, is the effect of a on the variable v in s ∈ S .

To account for all the states the system can enter after the execution of an
action (in particular, of a non-deterministic action), we introduce the notion of
action outcome:
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Definition 3 (action outcome). Given a service domain D the triple (s, a, s′)

is an outcome of a in s if s′ ∈ T (s, a). If the set of T (s, a) is non empty, then

one of its elements is called normal.

The normal outcome of an action represents the “correct” execution of the busi-
ness process, whereas the other outcomes, if present, represent exceptional con-
ditions. For example, the result of booking a room operation may be either
successful reservation representing the “correct” behavior, or exceptional one
in case no room is available. The exceptional outcome may also arise from
non-functional source, e.g., due to a server crash. In the web services world
exceptional behavior is represented by the failures that are defined in WSDL
definitions.

Summarizing, the service domain represents the logic of a business process;
at every step in its execution, the process is in a state from which a number
of actions can be executed; such an action can also be non-deterministic, i.e., it
can lead the process to different outcomes. Roles, which represent service inter-
faces, are associated to actions and implemented by service providers, e.g., the
Hotel role may be implemented by particular service providers such as Hilton

Hotel and Astoria.
We distinguish a special type of action that acquires information from a

particular web service implementation by executing this action, e.g., getting
a hotel price from a particular hotel provider. We name this action knowledge-

gathering. Invocation of knowledge-gathering actions updates the system inter-
nal view on the actual world. In this work, it additionally triggers the invalida-
tion of the current plan and results in replanning.

A variable v is said to be unaffected by an action a for a particular out-
come o if the action does not affect the variable for all possible values x:
∀x : fv(a, o, x) = x.

The concept behind the presented formalization of the service planning do-
main is that a given business process is, at any instant of its execution, in a state
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from which a number of actions can be performed to move to a new state, possi-
bly non-deterministically. Roles, which represent service interfaces, are associ-
ated to actions and implemented by service providers, e.g., Hotel role that may
be implemented by particular service providers Hilton Hotel and Astoria.

3.2 Expressing goals and preferences: XSRL

In many situations it is desirable to let the user gain explicit control over the ex-
ecution of a service business process and dynamically change the nature of the
web service interactions conducted with a particular business partner depend-
ing on user goals and preferences. Consider for example the case of a traveler
deciding to change his hotel reservation to take advantage of an unexpectedly
lowly priced weekend offer. This implies that process execution must be made
adaptable at run-time to meet the changing needs of users and businesses. Ob-
viously, currently available business process specifications do not allow for the
required flexibility to react swiftly to unforeseen circumstances or opportunities
as choices are predefined and statically bound in process definitions. To meet
such requirements serious re-coding efforts are needed every time that there is
a need for even a slight deviation.

Such advanced functionality can be better supported by a service request
language and its appropriate run-time environment to allow users to express
their needs on the basis of the characteristics and functionalities of standard
business processes. A service request language provides for a formal means
of describing desired service attributes and functionalities, including temporal
and non-temporal constraints between services, service scheduling preferences,
alternative options and so on.

We introduce the XSRL language to express user goals and preferences. It
allows us to define both vital and preference constraints on process execution
trajectories, i.e. constraints over possible actions in the process execution and

45



CHAPTER 3. INTERLEAVING PLANNING AND EXECUTION

intermediate states possibly visited by the execution, as well as constraints that
deal with non-deterministic behavior of services, where resulting outcome is
not known before the invocation. Vital goals must be satisfied by any process
execution, while preference goals express desired constraints, some of which
might be more preferable than others.

To express requests for a composition of web services we propose the lan-
guage XSRL (XML Service Request Language). The goal language is recur-
sively defined as follows.

Definition 4 (goal language). Basic goals are formed using the following

unary operators: vital p, atomic p, vital-maint p, atomic-maint p, where p is a

proposition. A goal g is a basic goal or a combination of goals using the

following operators: achieve-all g1, . . . , gn,optional g, before g1 then g2,

prefer g1 to g2.

The intuitive semantics of XSRL constructs is presented in Table 3.1. The
BNF notation is provided in Appendix A.

The atomic objects of the language are propositions, that is, boolean combi-
nation of linear inequalities and boolean propositions. These can be either true
or not in any given state.

Before providing a detailed explanation of XSRL constructs, let us consider
an intuitive example of an XSRL request for a travel domain introduced in Sec-
tion 1.1. Suppose a user is planning a one night trip to Paris and is interested in
a number of possibilities in connection with this trip. These include making a
hotel reservation in Paris, avoiding to travel by train, if possible, and spending
an overall amount not greater than 300 euros for the whole package. Further,
the user prefers to spend less than 100 euros for a hotel room but, if this is not
possible, he may be willing to spend up to 200 euros for that room. The user
wants to pay under the condition that he receives a confirmation for the entire
package. Of course, the user would also need to specify dates for his trip and
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Goal Where satisfied Type of goal

vital p In a state where p holds to which there is a path
from the initial state modulo failures

reachability

atomic p In a state where p holds to which there is a path
from the initial state despite failures

reachability

vital-maint p In a state to which there is a path from the ini-
tial state modulo failures, p must hold in all states
along the path

maintainability

atomic-maint p In a state to which there is a path from the ini-
tial state despite failures, p must hold in all states
along the path

maintainability

prefer g1 to g2 In states where g1 is satisfied, otherwise the satis-
fiability of g2 is checked

preference

optional g States where g is satisfied are checked first, other-
wise the goal is ignored

preference

before g1 then g2 In states, to which there is a path from the initial
state, such that, states along these path where g1 is
satisfied preceding those where g2 is satisfied

sequencing

achieve-all g1, . . . , gn In states, to which there is a path from the ini-
tial state, such that, there are states along the path
where gi are satisfied

composition

Table 3.1: Goal language constructs.
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night stay in Paris. This will not be considered in this example as it provides
no additional explanation of the ideas behind the presented system. Omitting
XML tags, the sample request is defined as follows:

achieve-all
before

achieve-all
prefer vital-maint hotelPrice < 100 to

vital-maint hotelPrice < 200
optional-maint ¬trainBooked

vital confirmed ∧
location = ‘‘Paris′′ ∧
hotelReserved

then
atomic final

vital-maint price < 300

A number of operators take propositions as arguments. These are used to
express ‘how’ to satisfy the propositions. The vital p is satisfied if there exists
an execution, ignoring non-determinism, that reaches the state satisfying propo-
sition p, it fails otherwise. The atomic p means that p have to be reached from
the current state despite non-determinism of the domain. If there is no such
path to a satisfaction state, it fails. Note the requirements of this operator are
stronger than the vital. The vital operator does not guarantee satisfaction of the
goal if the execution of the plan is non-deterministically “takes the wrong path”,
this means that non-deterministic action invocation brings the system in a state
different from the one in which the final goal is achieved.

Reachability and maintainability goals are further combined by the modality
operators to form composite, sequencing, and preference goals. These opera-
tors are: achieve-all, before-then, prefer-to, and optional. The goal achieve-
all g1, . . . , gn succeeds when all subgoals g1, . . . , gn are satisfied, it fails if at
least one goal cannot be satisfied. The goal before g1 then g2 is satisfied, if g1 is
satisfied and, starting from the state where g1 is satisfied, g2 is also satisfied, it
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fails otherwise. The goal prefer g1 to g2 succeeds if g1 is satisfiable, if not, then
it succeeds if g2 is satisfiable, it fails if both g1 and g2 are unsatisfiable. Note that
by nesting preference statements, one may give a total order over any number
of sub-goals. The goal optional g is always satisfied as a goal. Its meaning is
that, if there exists a plan that satisfies g then this plan must be executed, other-
wise the goal is ignored. Summarizing, achieve-all provides a way of collecting
goals that have all to be satisfied, the goal before-then is a way of sequencing
goals, while prefer-to and optional enable the user to express user preferences
over goals.

3.3 Service planning problem

We are now ready to provide a general definition of what a planning problem is
in our setting, that is, with respect to our service planning domain from Defini-
tion 2 and goal from Definition 4:

Definition 5 (Service planning problem). A service planning problem is a

tuple P = 〈D, s0, g, I, im〉, where

• D is a domain from Definition 2;

• s0 is an initial state;

• g is a goal from Definition 4. All variables constrained by g are required

to be process variables;

• I is the set of service providers;

• im : R → 2P is a function that associates service providers with roles.

Given a service problem, a plan is a policy prescribing the actions to be
executed in any given state. To record the states traversed while executing non-
deterministic actions, the notion of a plan history is introduced. A plan in our
setting is thus formalized as follows.
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Definition 6 (plan). A plan for a service problem P = 〈D, s0, g〉 is a tuple

π = 〈Hπ,Aπ〉, where:

• Hπ, the plan history, is a finite set of sequences of outcomes o1, . . . , om,

m ∈ N, with the following properties:

– o1 = (s0, a, s) for some a and s;

– if oi = (s, a, s′) then oi+1 = (s′, a′, s′′);

• Aπ : S ×Hπ → A is the enabling action in s ∈ S depending on the given

state and history.

Intuitively, the execution of a plan is a particular instantiation of the plan.
Formally, it is defined as follows:

Definition 7 (Plan execution). An execution of the plan π is

σ = 〈s0, . . . , sn, h〉 where

• s0, . . . , sn is a sequence of states, s ∈ S , with s0 the initial state of the

service problem;

• h := o1, . . . , on is from Hπ.

The execution σ is valid if, for all i = 1 . . . (n− 1),

oi = (s,Aπ(si, o1, . . . , oi), s
′). The normal executions of π are the executions

of π which only contain normal outcomes.

From here on, we refer only to valid executions, unless stated otherwise. If an
execution σ1 of π repeats another execution σ2 of π until some state, σ1 is called
a sub-execution of σ2. Formally, an execution σ1 =

〈
s1
0, . . . , s

1
n; o

1
1, . . . , o

1
n

〉
of

π is a sub-execution of the execution σ2 =
〈
s2
0, . . . , s

2
m; o2

1, . . . , o
2
n

〉
of π, written

as π1 ⊆ π2, if n ≤ m and,

• ∀i ∈ {0, . . . , n} : s1
i = s2

i ,
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• ∀i ∈ {0, . . . , n} : o1
i = o2

i .

Intuitively, a solution to a service planning problem is such a plan, whose
executions, starting at the initial state, satisfy the goal extracted from the user
request. But to define it formally, first we have to define the formal semantics
of the service request language.

3.4 Formal semantics of XSRL

Let us now consider the formal semantics of XSRL. The goal of the formal
semantics is to define the meaning of XSRL expressions with mathematical
rigor. A rigorous formal semantics clarifies the intended meaning of the service
request language introduced in Section 3.2, and ensures that no corner cases are
left out, and provides a further reference for implementation. We also define the
solution to the service planning problem in terms of XSRL goal satisfaction.

At the initial state, most of the domain variables are assigned with initial
values. When the corresponding process is executed (e.g., according to pre-
synthesized plan), variables are changed according to effect functions of the
invoked actions. Since variables are being modified from state to state in the
execution, the goal propositions, that contains changing variables might be sat-
isfied in some particular states and are false in all others. We say that the propo-
sition p is satisfied in state s by execution σ started at the initial state s0, if
the effect functions of the enabling actions, that form the execution, satisfy the
proposition. Formally, we have the following definition:

Definition 8 (Goal proposition set). Goal proposition set P for goal g and

set of variables V is formed according to the two rules below:

• all boolean variables in g are in P . A boolean variable p is satisfied if the

corresponding variable in V is true;
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• all linear constraints appearing in g are added as boolean propositions in

P . A formed proposition p is satisfied if variables from V satisfy the

corresponding linear constraint.

Let us define the notion of a proposition satisfaction, that we use later for
introducing the formal semantics of XSRL:

Definition 9 (Proposition satisfaction). Proposition p is satisfied by a valid

execution σ = 〈s0, . . . , sn, h〉 for plan π in a domain D with enabling actions

ai if the proposition p is satisfied after applying effects of the enabling actions:

f(an, on, f(an−1, on−1, f(. . . f(a1, o1, D0)))), where D0 is a set of initial

values of variables. If σ satisfies p, we write:

σ |= p

The formal semantics of XSRL is introduced via goal satisfaction π |= g.
A goal satisfaction is defined in terms of the set of plan executions and their
satisfaction of goal propositions. Formally, the formal semantics of XSRL is
defined as follows:

Definition 10 (Formal semantics of XSRL). Let π be a plan for a domain D,

p is a proposition formed from goal g according to Definition 8. Then, the

52



3.5. ALGORITHMS FOR INTERLEAVING PLANNING AND EXECUTION

formal interpretation of the goal g is defined as follows:

π |= p iff ∅ |= p, where ∅ is an empty execution

π |= ¬p, p1 ∧ p2, p1 ∨ p1 iff ∅ |= ¬p, p1 ∧ p2, p1 ∨ p1 correspondingly

π |= vital p iff ∃ normal σ ∈ π : σ |= p

π |= vital-maint p iff ∀ normal σ ∈ π : σ |= p

π |= atomic p iff ∀h ∈ Hπ∃σ = 〈. . . , h〉 ∈ π : σ |= p

π |= atomic-maint p iff ∀σ ∈ π : σ |= p

π |= achieve-all g1, . . . , gn iff ∀i : π |= gi

π |= before g1 then g2 iff ∃σ1, σ2 ∈ π : σ1 |= g1, σ2 |= g2, σ1 ⊆ σ2

π |= prefer g1 to g2 iff π |= g1 or π |= g2 and 6 ∃π′ 6= π : π′ |= g1

π |= optional g iff π |= prefer g to >

The satisfaction of a goal is thus defined in terms of whether a particular plan
satisfies the goal or not.

A solution to an XSRL request is defined in terms of the plan that satisfies
the user goal. Formally, the solution is defined as follows:

Definition 11 (Solution). A solution for a domain D with respect to a goal g

from state s0 is a plan π that satisfies the goal:

π |= g

Therefore, a problem of interleaving planning and execution is the finding of
a solution, i.e. a plan, for a given domain, goal and initial state.

3.5 Algorithms for interleaving planning and execution

Two types of uncertainty for the transitions between business process states may
arise: non-deterministic failures and unknown outcomes from actions. Non-
deterministic failure occurs when an action has several possible outcomes which
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UDDI IMPLEMENTATIONS
WEB SERVICES

MONITOR
Goal (XSRL)

Business domain (BPEL4WS−like language)

PLANNER

Produce plan

User interaction

Collect new informationRetrieve providers

Update domain, goal, current state

Invoke WS

Request execution

Request plan

EXECUTOR

Figure 3.1: High-level XSRL architecture.

are not known before invocation. The list of possible outcomes is known a pri-
ori and thus modeled in the domain. The second type of uncertainty requires
additional processing before applying the planning techniques. Unknown out-
comes of action invocations can be properly handled only at run-time, there-
fore planning must be interleaved with execution. In a framework based on the
interleaving of planning and execution, information on the outcome of action
invocation is gathered at run-time and used to replan consistently with the orig-
inal goal. This idea leads to a planning framework that is based on the notion
of interleaving planning and execution.

We propose a planning architecture which works in the following way. The
framework receives a request from the user and tries to fulfill it against a stan-
dard business process, assuming that it is syntactically correct. The framework
returns a failure if the request cannot be satisfied in the given business process
under the current run-time circumstances, e.g., ticket dates or hotel prices are
not available. During execution the system interacts with the service registry to
find suitable service providers, in a web service enabled marketplace, and with
the user to ask confirmation or request additional information, if necessary.

The architecture presented in Figure 3.1 divides the framework into three

54



3.5. ALGORITHMS FOR INTERLEAVING PLANNING AND EXECUTION

main functional units: a monitor, a planner and an executor. In this section we
provide two algorithms for the monitor and the executor, leaving algorithms for
the planner for the following Chapter 4.

Algorithm 1 monitor(domain d, state s, goal g)
π = plan(d, s, g)
if π = ∅ then

return success
else

if π = failure then
if chooseNewProvider(provider) then

d′ = updateDomain(d)
return monitor (d′, s, g′)

else
g′ = generate-rollback-goal()
monitor(d, s, g′)
return failure

end if
end if
(d′, s′, g′) = execute(π, d, s, g)
return monitor (d′, s′, g′)

end if

The monitor (Algorithm 1) is responsible for invoking the planner, recover-
ing from failure and invoking the execution of plans. Starting with a domain, an
initial state and an XSRL goal, it invokes the planner requesting the synthesis of
a plan. Then monitor analyzes the plan. An empty plan means that the goal has
been reached and the request has been successfully met. If the planner returns
failure, i.e., the goal cannot be satisfied under the current execution context,
then it attempts to change a provider. chooseNewProvider contacts the execu-
tor module which has a list of possible providers for services and keeps track of
which providers have been considered during the execution of the plan. If a new
provider can be assigned, the execution proceeds, otherwise the monitor tries to
rollback all changes to a domain and returns failure. Finally, if a non-empty
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plan has been produced, the plan is passed on to the executor by invoking the
execute function. This function returns an updated domain, current state and
the new XSRL goal for which one needs to continue the monitoring.

Note that after the execution phase the original goal can be updated. This is
necessary for reachability goals only (goals that are not part of any maintain-
ability goal). The idea behind is simple: if one reserves a hotel he/she does
not need to look for plans that reserves hotels in the following iterations. We
eliminate such subgoals when they are satisfied.

Algorithm 2 execute(plan π, domain d, state s, goal g)
repeat

a = firstAction(π)
π = π − a

if webServiceAction(a) then
role = RolAct(a)
if noProviderForRole(role) then

providersList = contactUDDI(role)
provider = chooseProvider(providersList)

else
provider = previouslyChosenProvider(role)

end if
message = invoke(a, provider)

end if
(d′, s′, g′) = update(d, s, g, a,message)
if isKnowledgeGathering(a) ∨ goalFailed(g) then

return (d′, s′, g′)
end if

until π = ∅
return (d′, s′, g′)

The executor (Algorithm 2) starts with a plan, a domain, an initial state and
an XSRL goal. It iterates by attempting the execution of all the actions of the
input plan. The firstAction of the plan is stored in the variable a and then
removed from the plan. If this action requires an interaction with a web service,
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then one needs to seek for a provider for that action. The construct role stores
the role associated with the current action. If the executor has not assigned a
provider for that role during the execution so far, then the UDDI is contacted to
ask for providers for the given role. A provider is chosen from the list of pos-
sible providers using some heuristic function (the first provider who has good
references, etc.). If, on the other hand, a provider has already been assigned to a
role, then we must continue executing the following actions assigned to the role
with the same provider. Once the provider has been identified, the provider is in-
voked with action a and the possible return messages are stored in the message

variable. The next step is that of updating the domain, the current state and the
goal by the effects of having executed the action. This step is necessary as the
execution of the action may have brought the system into a new state, it may
have changed the values of some variables and it may have satisfied the sub-
goals of the current goal. If the action has been a knowledge gathering action,
we have acquired new information and return the current status to the monitor
in order to perform re-planning, otherwise we reiterate the cycle by looking at
the following action of the plan.

The algorithms for interleaving planning and execution, provided in this
chapter assume that the function plan in Algorithm 1 finds the plan accord-
ing with Definition 11. In the following chapter we present an approach based
on constraint satisfaction to find a solution to a service planning problem. In
Appendix B it is presented an approach based on planning as model checking
techniques that deals efficiently with domains with a limited number of numeric
constraints.
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Chapter 4

Service planning as constraint satisfaction

In this chapter we provide an approach for finding a solution to the service plan-
ning problem defined in Chapter 3 by reformulating it in terms of constraints.
The encoding is performed in two phases: in phase (i) the service planning
domain is encoded; in phase (ii) the goal is added to the encoding. After the
constraint problem is solved the plan is extracted from the assignment of the
variables.

We use constraint programming because it can be relatively easy extended
to support planning for service compositions dealing with uncertainty, non-
determinism, and numeric values. By using reification techniques[5, 121] it
can also handle user preferences. In service enabled environments values and
execution conditions are unknown until the actual service invocation. Using
constraints programming techniques, one can take advantage of reuse of the
previously generated plans in the replanning phases. In fact, a new value re-
turned by a service invocation may simply result in the addition of a constraint
to the solution space and no further replanning is necessary.

In this work, when we talk about non-deterministic actions we refer to their
outcomes (that is, states to which the action can take the system) which can
be different; yet, once an action is invoked, we assume that its outcome will
be always the same. In other words, any of its future invocations in a given
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execution will produce the same outcome for the same provider.

Our goal is to model a service domain, goal and assertions as a set of con-
straints over controlled and non-controlled variables. The constraints have the
following form:

[∀ξi :] cv ./ value, (4.1)

• value is a value from the domain of the variable v,

• cv is a vector of expressions of the form
∑

βi[ξi]ai,k with βi, ξi ∈ {0, 1},

• the ξi are non-controlled variables and the βi are controlled variables,

• ai,k is the effect function of the action ai for the outcome k,

• ./ is either <,>,≥, ≤ or =,

• and [·] denote that the expression is optionally present in the constraint.

There are two types of Boolean variables defined: controlled variables, denoted
by βi, and non-controlled variables, denoted by ξi. Controlled variables repre-
sent the action effects that are applied if the corresponding service is to be in-
voked. Non-controlled variables represent non-deterministic action outcomes.
The underlying idea is that the constraint solver is not necessarily free to choose
a specific value for a non-controlled variable, thus a solution to the problem may
be such regardless of the values assigned to the non-controlled variables.

The ratio behind the proposed constraint form defined by Equation 4.1 is the
following: cv represents the evolution of the system for some particular execu-
tion. If the basic goal g (one of the vital, vital-maint, atomic, atomic-maint)
restricts the variable vi, then corresponding constraint cv is added to a constraint
problem. After solving the problem the desired plan is extracted according to
the values of βs: if some βi is instantiated to 1 then its corresponding action ai is
added to the resulting plan. Complex goals (achieve-all, before-then, prefer-
to) do not add any new constraints but rather interrelate the βs for basic goals.
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For example, for achieve-all goal it is done to ensure that all sub-goals con-
straints choose the same actions in all branching points, for before g1-then g2 it
is guaranteed that actions chosen by g1 must also be chosen by g2. The described
encoding intuition is further described in details.

Let us now define the service constraint problem formally:

Definition 12 (service constraint problem). A service constraint problem is

a tuple CP = 〈β,N , ξ, C〉, where:

• β is a set of controlled boolean variables;

• N is a set of controlled variables ranging over natural numbers;

• ξ is a set of non-controlled boolean variables;

• C is a set of constraints, as in Equation 4.1, in which (i) if a

non-controlled variable occurs then it is universally quantified, (ii)

otherwise a value is available and substituted for the variable.

A solution to a service constraint problem is an assignment to controlled

variables such that all constraints are satisfied.

To arrive at the encoding of the service interaction problem as a set of con-
straints of the form of Equation 4.1, we follow a two phase process. In the first
phase, one encodes the service planning domain, while in the second phase, one
encodes the goal.

4.1 Encoding of a planning domain

During Phase 1 the service domain is encoded. Starting from a service domain
as in Definition 2, we arrive at a set of expressions cv as in Equation (4.1) plus
a set of linear constraints of the form

∑
βi ≤ 1. In the following, we adopt the

notation of Equation (4.1); in addition, n is a natural number that specifies how
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Domain Type of action Encoding

(A) s No action ∅

(B)

s1

s2
a

Single deterministic action βa

(C)

s1

s2
a1

a2
s3

Sequence of actions β1(a1 + β2a2)

(D)

s1

s2

a1

s3

a2

Deterministic branch point β1a1 + β2a2

β1 + β2 ≤ 1

(E) s2

a’

s3

a’’

s1

Non-deterministic branch
point

β(ξ1a
′ + ξ2a

′′)

ξ1 + ξ2 = 1

(F)

s1 s2

s3

s1

s ’
3

s2

s ’’
3

a1 a2
a1 a2

s0 s0 Cycle: state splitting ∅

(G)

s1

s3

s2

s4

s5

a1 a2

a3

a’4
a’’4

Cycle: directed cycle nξ(a1 + a2 + a′4)

Table 4.1: Encoding examples of the service domain.
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many times a cycle is followed, while ai is overloaded to represent not only the
action, but also its effects. We only consider linear effect functions.

The encoding is generated following Algorithm 3 that recursively visits the
service domain D, separately keeping track of cycles, and returns a set of con-
straints. Intuitive pictorial explanations of the encoding are shown in Table 4.1.

Algorithm 3 model(state s, domain D, path P ): constraint
set visited s

P = P ∪ s

if degree(s) == 0 then
// recursion base case
return ∅

end if
if s is visited ∧ s ∈ P then

// visited state: cycle is added, base case
put(s,P,add-cycle(s, D, P ),cycle)
return ∅

end if
if s is visited ∧ s 6∈ P then

// visited state: join point
update-cycles(P, s)

return encoding(s)
end if
// branch point
c =

∑degree(s) βi add-single-action(s, D, ai, P)+get(s,P,cycle)∑degree(s) βi ≤ 1, βi ∈ {0, 1}
P = P\s
return c

The algorithm starts from the initial state of the domain and recursively
works on outgoing edges. If it reaches a state with no outgoing edges it adds
a 0 (base case). If it finds an edge representing a single deterministic action a,
then the modeling is βa, where β is a controlled boolean variable. Then β = 1

means that action a must be in the resulting plan. The sequencing of determin-
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istic actions a1, a2 is modeled as follows: β1(a1 + β2a2). If β1 = 1 then action
a1 is added to the plan, and if also β2 = 1, then a2 is added to the plan right
after a1. If β1 = 0 then neither action a1 nor a2 are added.

When two or more actions start from the same state, there are two cases (Ta-
ble 4.1): (a) different actions or (b) the same action which is non-deterministic.
In the first case, β1a1 + β2a2, where β1 + β2 ≤ 1, means that at most one action
can be chosen. In the second case, the non-controlled variables ξ are introduced.
Then the modeling (for a non-deterministic action with two possible outcomes)
is the following: ξ1a

′ + ξ2a
′′, where ξ1 + ξ2 = 1. Since ξ1 and ξ2 are both

from {0, 1}, the constraint ξ1 + ξ2 = 1 defines that only one non-deterministic
outcome is returned from the corresponding action.

In case there is a directed cycle then a variable n ranging over integers is
introduced. The variable n denotes the possible number of iterations through
a cycle. The right-hand figure shows an example of a cycle and its modeling
starting from s1 with a deterministic branch at s2 and a non-deterministic one at
s3.

Algorithm 4 add-single-action(state s, domain D, action a, path P ): constraint
if a is non-deterministic then

// non-deterministic branch point
return

∑outcomes(a) ξi add-single-action(s, D, a′i, P)
⋃ ∑outcomes(a) ξi = 1,

ξi ∈ {0, 1}
end if
// single deterministic action outcome
snext = get-next-state(s, D, a)
return a + model(snext,D, P )

The whole process may be summarized as follows:

(A) Base case. If the degree of the arcs leaving the state s is 0, then there is no
constraint to be returned. Table 4.1.(A) illustrates this situation. Also the
case of the directed cycle, which is presented below, is a base case.
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Algorithm 5 add-cycle(state s, domain D, path P ): constraint
// identify last cycle in the path
P = 〈. . . s, t1, . . . , tr, s〉;
// let ai be the action going from state ti to ti+1

∀ non-deterministic actions ad a ξj

return n
∏

ξj ·
∑r+1 ai

(B) Single deterministic action a is encoded as βa, where β is a controlled
boolean variable. β = 1 means that action a must be in the resulting plan.

(C) Sequence of actions. This rule is applied to consecutive actions as follows
(for two deterministic actions): β1(a1 + β2a2). If β1 = 1 then action a1

is added to the plan, and if also β2 = 1, then a2 is added to the plan right
after a1. If β1 = 0 then neither action a1 nor a2 are added.

(D) Deterministic branching point. If there are several outgoing actions from
the state s and the system is supposed to choose only one of them to add
to the plan, then this situation (for two actions) is encoded as follows:
β1a1 + β2a2, where β1 + β2 ≤ 1 means that at most one action can be
chosen.

(E) Non-deterministic branching point. This rule takes care of non-determinism.
The encoding is similar to the case (D), but non-controlled variables ξi are
used to represent non-deterministic behavior.

(F) Cycle: state splitting. This rule is applied to undirected cycles. To proceed
we need to duplicate the state s already visited by creating state s′ and
recursively encode the duplicated state. There is no other encoding for this
case.

(G) Cycle: directed cycle. This rule is applied to directed cycles. Table 4.1.(F)
exemplifies a cycle situation in which there are simple deterministic ac-
tions (a1), actions taking out of the cycle (a3), and non-deterministic ac-
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Goal / Assertion Encoding

vital p ξ = ξ0: cv ./ v0

atomic p ∀ξ: cv ./ v0

vital-maint p ξ = ξ0: cv(ti) ./ v0, for all encoding steps ti

atomic-maint p ∀ξ: cv(ti) ./ v0, for all encoding steps ti

prefer g1to g2 All variables in g1 are instantiated before those in g2

optional g encoded as prefer g to >
before g1then g2 for all gi ∈ G1, gj ∈ G2, steps tk:

uk(g
i) 6= 0 ⇒ uk(g

i) = uk(g
j)

achieve-all g1, . . . , gn for all gi ∈ Gi, gj ∈ Gj , i 6= j, steps tk:
uk(gi) 6= 0 ∧ uk(gj) 6= 0 ⇒ uk(gi) = uk(gj)

Table 4.2: Goal and assertion language encodings.

tions that ‘might’ lead out of the cycle (a′′4). Variable n in the encoding
denotes the number of times the cycle is going to be executed.

4.2 Encoding of goals and preferences

During the second phase of the encoding of the service planning problem, one
takes a goal or assertion and the encoding of the service domain, and produces
a set of constraints which represent how to achieve the corresponding goal or
constraint. The goal/assertion is expressed in the goal and assertion language
of Definition 4. The Algorithm 6 parses the goal recursively distinguishing
the cases of the various operators and updating the set of constraints. Every
time a new basic goal constraint is added, a new set of controlled variables is
introduced.

Incidentally, notice that these sets of variables represent the same variable in
the original encoding. Choices in different variable sets, if made, are forced to
be the same by the relations defined by achieve-all and before-then.

(A) vital v ./ v0. If the goal is vital with respect to the variable v constrained by
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Algorithm 6 encode-goal(constraint c, goal g): goalset
// reachability goals
if g is ‘vital v ./ v0’ then

c
⋃

ξv = ξ0
v , cv ./ v0

return {g}
end if
if g is ‘atomic v ./ v0’ then

c
⋃ ∀ξ cv ./ v0

return {g}
end if
// maintainability goals
if g is ‘vital-maint v ./ v0’ then

for all steps ti do
c
⋃

ξv = ξ0
v , cv(ti) ./ v0

end for
return {g}

end if
if g is ‘atomic-maint v ./ v0’ then

for all steps ti do
c
⋃ ∀ξ cv(ti) ./ v0

end for
return {g}

end if
if g is ‘achieve-all g1, . . . , gn’ then

Gi = encode-goal(c, gi)

for all gi ∈ Gi, gj ∈ Gj , i 6= j, steps tk do
c
⋃

uk(gi) 6= 0 ∧ uk(gj) 6= 0 ⇒ uk(gi) = uk(gj)

end for
return {G1, . . . , Gn}

end if
if g is ‘before g1then g2’ then

Gi = encode-goal(c, gi), i ∈ {0, 1}
for all g1 ∈ G1, g2 ∈ G2, steps ti do

c
⋃

ui(g
1) 6= 0 ⇒ ui(g

1) = ui(g
2)

end for
return {G1, G2}

end if
if g is ‘prefer g1to g2’ then

Gi = encode-goal(c, gi), i ∈ {0, 1}
raise-priority(G1, G2)

return {G1, G2}
end if
if g is ‘optional g1’ then

return encode-goal(c, prefer g1to >)
end if
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the ./ operator on the v0 value, we restrict the constraint c to what concerns
variable v, denoting it by cv, and we add cv ./ v0 to the constraints set.
Since the goal is vital we also set all variables ξ associated with cv to ξ0,
by which we mean that the normal execution is followed, in place of the
non-deterministic failure ones.

(B) atomic v ./ v0. This case is analogous to the vital one, with the difference
that all non-deterministic executions must be considered, thus coming to a
universal quantification over the non-deterministic variables ξ.

(C) vital-maint v ./ v0. For maintainability goals we need to keep track of
all the states visited during a plan execution. Thus, we quantify over the
execution steps and we repeat the constraint as for the vital case above for
each step.

(D) atomic-maint v ./ v0. This case is analogous to the maintainability vi-
tal one, with the difference that all non-deterministic executions must be
considered, therefore we come to a universal quantification over the non-
deterministic variables ξ.

Now we consider the operators which aggregate basic sub-goals.

(E) achieve-all g1 . . . , gn. First, recursion is called for all sub-goals g1, . . . , gn.
Second, one considers all pairs of basic goals coming from the recursive
call and all execution steps (as done for the maintainability goals). In all
these cases, if during the execution some choices have been made for the
same branch point among different sub-goals, these choices have to be the
same. Therefore, we add to the set of constraints, expressions forcing the
choices for the execution of any subgoals to be the same. The expressions
introduce the execution choice variable u. Suppose that uj, j ∈ {1, 2} de-
notes the branch that has been chosen by the procedure that tries to satisfy
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an j-th goal, uj = 0 defines that there were no choice made and u = i de-
notes that the corresponding βi is set to 1 for the step under consideration.
Then the following constraints ar added: u1 6= 0 ∧ u2 6= 0 ⇒ u1 = u2.

(F) before g1 then g2. The principle behind the before-then operator is similar
to that of the achieve-all, with the difference that one forces the ordering
of the satisfaction of the subgoals. Again, first we recur on the subgoals,
then we introduce the execution choice variables u. The second subgoal g2

should repeat the path of the first subgoal g1, until the first is satisfied, and
only then the second expression is checked. This is ensured by expressions
of the form: u1 6= 0 ⇒ u1 = u2 which are added to the set of constraints.

(G) prefer g1 to g2. Preferences are handled not as additional constraints, but
rather appropriately instantiating the variables. The first step is to recur
on the two subgoals g1 and g2. Then the goals g1 and g2 are placed in a
disjunction. When constraints are checked for satisfiability, variables are
assigned in preference order. Optional goals are a sub-case of prefer-to
goal, in which g2 is simply true.

The encoding is summarized in Table 4.2.

4.3 Encoding the example

To illustrate how the encoding and framework work, let us introduce an exam-
ple that is a snippet of the travel process definition (Figure 4.1) defined in Sec-
tion 1.1. When deciding on a trip, the requester may first want to book the hotel
of the final destination and then book a carrier to reach the location of the hotel.
The first action a0: getHotelPrice retrieves the hotel price. The next action is
that of reserving a hotel (state s1). This action may non-deterministically result
in the successful booking of the room (state s2) or in a failure (return to state
s1). Finally, there are two ways to reach the state s3 in which a carrier to arrive
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a1’’: failure

a3: reserveFlight

a2: reserveTrain

s0

s2

s3

a1’’: failurea1’: bookHotel

a0: getHotelPrice

a4: getPrices

Hotel Provider

- prefers flight over train
- use  Visa card, if possible
- discounts for people over 60

Flight Provider

- cancellation is not available
- international valid insurance

Train Provider

- authenticated via PGP

knowledge-gathering 
actions

Figure 4.1: A part of a travel business process.

at the site of the hotel is booked. One may choose to fly or to take a train. This
is achieved by choosing one of the two actions reserveTrain or reserveFlight.
There are two knowledge-gathering actions introduced: a0: getHotelPrice and
a4: getPrices, that retrieve train and flight price from providers. The pro-
cess variables are: hotelBooked, trainReserved, flightReserved, which are
boolean, and hotelPrice, trainPrice, flightPrice, price, which are numeric.

The framework works in the following way. At first, the domain is encoded,
that is: β0(a0 + β1(ξ1nafail

1 + ξ2(a
ok
1 + ma4 + β2a2 + β3a3))), which represents

the paths from state s1 to s3 with n and m being the number of times the cycle is
followed. Additionally, the constraints on the choice variables β0, β1, β2, β3 ∈
{0, 1}, β2 + β3 ≤ 1, and the constraints on the non-controlled variables ξ1, ξ2 ∈
{0, 1}, ξ1 + ξ2 = 1. ξ1, ξ2 are introduced.

Say the requester provides the following goal

achieve-all

vital hotelBooked

vital trainBooked ∨ flightBooked

atomic-maint price < 100

The goal is encoded as follows. Every goal creates its own subset of con-
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trolled variables, which are correlated by the achieve-all constraint, according
to Table 4.2. The first subgoal to be parsed is vital hotelBooked. Since the
hotelBooked variable is influenced only by aok

1 outcome, that is +1, then the
encoding is β′1ξ2 = 1 and the non-controlled variables are assigned to normal
execution, i.e., ξ2 = 1, ξ1 = 0, thus β′1 = 1. By the same reasoning, one has the
encoding for the flight and the train: β′′′0 β′′′1 (β′′′2 + β′′′3 ) = 1.

The atomic goal atomic-maint price < 100 is slightly different as price <

100 has to be checked for each state. Since it is an atomic goal, we have to
introduce a universal quantification over the non-controlled variables. We as-
sume that afail

1 = 0, that is, no fee is paid for non-successful reservation. Hav-
ing in mind that a0 = 0 and a4 = 0 since getting price information comes
at no cost, only three actions affect the price (bookHotel, reserveFlight, and
reserveTrain), and they just add its price to the overall one. Thus, the en-
coding of the goal is ∀ξ2 : s0 : 0 < 100 s2 : β′′0β

′′
1ξ2hotelPrice < 100, s3 :

β′′0β
′′
1ξ2(hotelPrice + β′′3flightPrice + β′′2 trainPrice) < 100.

Applying achieve-all adds the following constraints: ∀i, j ∈ {0, . . . , 3} , i 6=
j, βi

2 + βi
3 = 1 ∧ βj

2 + βj
3 = 1 ⇒ βi

2 = βj
2 ∧ βi

3 = βj
3.

Actions getHotelPrice and getPrices are knowledge-gathering, and, there-
fore, must be executed before other actions use the corresponding variables:
βj

1 6= 0 ⇒ βj
0 6= 0 and βj

2 + βj
3 6= 0 ⇒ mj 6= 0.

The resulting constraint set is ∀ξ1, ξ2 ∈ {0, 1}:

- β′1 = 1

- β′′′0 β′′′1 (β′′′2 + β′′′3 ) = 1

- β′′0β
′′
1ξ2hotelPrice < 100

- β′′0β
′′
1ξ2(hotelPrice + β′′3flightPrice + β′′2 trainPrice) < 100

and ∀i, j ∈ {1, 2, 3} , i 6= j:

- β
(j)
1 ≤ 1 ∧ β

(j)
2 + β

(j)
3 ≤ 1
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- βi
2 + βi

3 = 1 ∧ βj
2 + βj

3 = 1 ⇒ βi
2 = βj

2 ∧ βi
3 = βj

3

- βj
1 6= 0 ⇒ βj

0 6= 0 ∧ βj
2 + βj

3 6= 0 ⇒ mj 6= 0

A solution is, for instance, β0 = β1 = β3 = m = 1, β2 = 0, that is,
getHotelPrice, reserveHotel, getPrices, reserveFlight. The executor in-
vokes action a0 and updates hotelPrice. The hotel provider insists on satis-
fying its assertions, that is, prefer vital flightBooked to vital trainBooked.
The following constraint is added: βiv

0 βiv
1 ξ2β

iv
3 = 1 ∨ βv

0β
v
1ξ2β

v
2 = 1, with

all variables in the first part with higher priority during variable instantiation.
Constraints on the right side of the constraint set above include new βs. When
checking this constraints, the constraint solver checks if a flight is available and,
only if it fails, the train is chosen. If the system fails to find a solution other ho-
tel providers are selected and, if all of them fail, then the framework returns an
overall failure.

Assume that the constraints are consistent with the current plan and the ex-
ecutor continues the plan execution with the actions bookHotel and getPrices.
The latter action retrieves prices for the flight and train and updates the corre-
sponding process variables. The constraint system checks if the updated con-
straint set still has a solution. If, for example, the price for the flight is too high
and it violates the constraints, then trains are checked, and, possibly, a new plan
is generated from the state s2, containing one action reserveTrain. By execut-
ing this action the framework satisfies the initial request and returns a success.
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Chapter 5

Monitoring service-oriented business
processes

We propose the use of an approach based on interleaving planning and execu-
tion in the context of non-deterministic domains to deal with assertions and user
expressed requests against standard business processes that result in initiating
and executing business processes from diverse organizations. The execution of
these business processes in the proposed framework is governed by assertions,
which are business rules applied to processes. The framework we propose deals
with non-deterministic domains, where it tries to satisfy a user request by tak-
ing into account how assertions that appear at different levels, e.g., business
process, role, and provider level, are applied during business process execution.
The framework focuses, in particular, on the application of business rules that
are associated with choreographies. The application of process choreography

assertions usually results in activating only selected business process segments
in different organizations. These are the business process segments that satisfy
the process constraints and consequently can be involved in the result of a user
request. In addition, the execution path of business processes is monitored to
make certain that environmental conditions, i.e., web service supplied infor-
mation, conform to the choreography assertions and user request requirements.
The proposed framework deals with three kinds of assertions depending on their
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operational context and complexity: simple assertions, where simple reachabil-
ity conditions are checked; preservation assertions, where maintenance of some
condition needs to be satisfied throughout a path comprising a set of states tra-
versed by the process during execution time; and business entity assertions,
where the evolution sequence of a particular variable is monitored for correct-
ness. In this thesis we are not concerned with the effect that choreography asser-
tions have on orchestration assertions (assertions that apply in the local context
of an organization). We henceforth use the term assertion to mean choreography
assertions. As final contribution, we illustrate how the language we propose for
expressing assertions can talk about functional as well as non-functional prop-
erties of services and their compositions.

5.1 Business processes

For the business process we mostly reuse the definition of the business process
from Definition 2. A process is a possibly infinite ordering of activities with a
beginning and an end; it has inputs (in terms of resources, materials and infor-
mation) and a specified output. We may thus define a process as any sequence of
steps that is initiated by an event, transforms information, materials, or business
commitments, and produces an output [61]. In this thesis, we consider business
processes as a means to represent the control flow of business logic and appli-
cations. This is achieved by introducing the notion of a state and an action. A
state represents the state of the process execution. An action represents a busi-
ness activity, which is modeled as a transition between given states. Each action
is executed on behalf of a role. A role represents a set of business operations
that relate to the same party, e.g., a travel agency. Each role has a number of
providers associated with it. The providers can be found by interacting with
service registries. A provider is the actual party that implements a role, e.g.,
a specific travel agency. It is convenient to also define the notion of a process
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variable, which is a variable associated with a process, e.g., travel packages,
hotel reservations, as the process progresses through its execution path and its
states change. The use of process variables guarantees that the execution of a
business process can be monitored during execution as the process traverses a
set of states where constraints may need to be applied to these variables. Con-
straints on the variables may represent user request or business rules.

5.2 Assertions

Actions within a business process are usually distributed between different par-
ties (organization which may play different roles) that can make their changes
in different portions of the process. A choreography language can guarantee the
consistency of service interfaces, message ordering and message invocations,
but it can not be used to check process runtime properties. Safe execution of the
business process can only be ensured by a monitoring mechanism that checks
the runtime properties of business process and possibly recovers from asser-
tion violations. The monitoring of the business process based on the assertions
violations is performed in the following way. First, assertions are published
by the party who wants his assertions to be applied to business processes and
monitored during execution. When executing the business process, the frame-
work allows only those executions to proceed where published assertions are
satisfied. If an assertion is violated then the system tries to find an alternative
execution path in the business process that does not violate the assertion, if any.
Assertions are published on different levels: business process, role or provider.
During execution, assertions defined on the business process level are always
taken into account; assertions defined by roles are checked only if operations
for that role are invoked; provider level assertions are considered if an action of
the particular provider is necessary.

More precisely, monitoring is a mechanism that ensures the execution of
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Table 5.1: Assertions classification.
Assertion Where satisfied

simple in a state, where assertion condition is satisfied
preservation for all states along the process execution

entity lifecycle specified entity must preserve evolution specified in assertion

a process is consistent with respect to choreography business rules and user
specified requests. As a business process spans several organizations, all of
them expect that their business rules are taken into account when executing the
process. Business rules are supplied by service providers and are enforced on
business processes that are associated with such rules during their execution.

Business rules are expressed in the context of a process by assertions. Next
we provide a definition of assertions.

Definition 13 (Assertion). An assertion is a condition that applies to the

execution of a business process.

We use the term assertion and business rule interchangeably. An assertion may
be satisfied or not during the execution of a business process, more formally:

Definition 14 (Assertion satisfaction). Given a business process and one of

its states, we say that an assertion is satisfied if the assertion is true in the

specified state and in all future states visited during process execution.

We classify assertions according to two different dimensions: (i) operational

assertions: on the basis of the operational context and complexity of the asser-
tion; (ii) actor assertions: on the basis of the ownership of the assertion. Oper-
ational assertions can be further classified into three categories (Table 5.1):

Simple assertion. A simple assertion is a condition to be satisfied in a given

state or a specific set of states in order to reach a state where the condi-
tion is satisfied. Simple assertions are also named reachability assertions.
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requested

rejected
accepted by

travel agency

approved by
client

package
completed

  

Figure 5.1: A travel package business entity assertion.
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An example of such an assertion in the context of a travel domain is the
requirement of having a medical insurance if the period of being abroad
is more than two weeks. To comply with this assertion we must ensure
that if the client requests a travel package with duration beyond two weeks
then a medical insurance must be subscribed before the business process
progresses successfully.

Preservation assertion. A preservation assertion is a condition to be main-
tained throughout all states touched during the execution of a business pro-
cess. Preservation assertions are also named maintainability assertions. In
the same travel example as above, consider a situation in which special of-
fers exist for clients who hold a frequent flyer loyalty card, e.g., OneWorld.
An assertion for the use of such card would require that all invoked ser-
vices accept the card to provide discount or points. To comply with this
assertion the execution of the business process will attempt to maintain the
execution on those paths where services adhering to the loyalty program
are available.

Business entity assertion. A business entity assertion is a property that applies
to the evolution sequence of a process variable during process execution.
For instance, a business entity assertion can be associated with the status
of a travel package, as shown in Figure 5.1. Initially, the “status” variable
assumes the value ‘requested’ when the travel package operation is started.
From this state, the request can be ‘rejected’, if the travel agency fails to
satisfy it and, eventually, return in a ‘requested’ status. Alternatively, the
status variable can be ‘accepted by travel agency’ and subsequently be ‘ap-
proved by client’ and finally become a ‘package completed’. To comply
with this assertion the execution of the business process must ensure that
the states of the travel package variable are reached in the prescribed se-
quence and only change value according to the valid states of the business
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Table 5.2: Assertion levels.
Assertion level Where stored Usage

business process domain description concatenated with user request
role service description applied if action of the role is invoked

provider service registry applied if provider action is invoked

entity assertion described above.

Assertions are not only classified on the basis of their operational dimension
but also on the basis of ownership. Based on the ownership criterion, we may
distinguish between three types of assertions (Table 5.2):

Business process-level. The business process level assertions are applied to the
whole business process. The business process execution environment ver-
ifies these assertions during all executions and for all used services. Asser-
tions of this type are maintained by the party who defines the choreography
message sequences. These assertions are stored together with the business
process itself. The business entity assertion defined in Figure 5.1 is an ex-
ample of business process level assertion. It defines the possible evolutions
of the status of travel package for all executions in the business process.
Another example is the following. Usually business processes have an as-
sertion of always reaching the final state despite of the non-determinism
inherent in dealing with web service implementations, e.g., purchase a
travel package. This assertion ensures process consistency with organi-
zation rules and policies.

Role-level. Role-level assertions are employed for all the providers implement-
ing a specific role. Typically these assertions represent the constraints de-
fined by the standardizing organizations, government, etc. For example,
due to governmental laws all travel agencies may require that together
with a flight ticket also a medical insurance is purchased, whenever the
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Role
Business 
Process

Business Entity

Provider

Preservation

Simple

Actor assertions (based on ownership)

O
perational assertions Travel package

Transactional 
consistency

Authentication Flight medical 
insurance

Positive
account balance Fidelity card

Figure 5.2: Two-dimensional classification of assertions, with examples.

final destination is in a particular set of locations where health risk exist.
These assertions are defined together with the service interfaces and stored
together with the service descriptions.

Provider-level. At the lowest granularity level assertions are published by a
particular service provider. These assertions are stored in service registries
together with service implementations. Provider-level assertions are used
when a particular provider wants to enforce consistency of the business
process and its business rules at runtime. For instance, provider role asser-
tions may involve payment service providers having additional constraints,
such as, protocol communication preferences, organization licensing, au-
thentication, etc.

Assertions are classified on both the operational and the ownership dimen-
sion. The examples provided during the current presentation are summarized in
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the matrix in Figure 5.2. An example of a simple provider assertion is a require-
ment of user authentication before using the asserted service. A specific bank
provider could require a preservation of a positive amount on the account. This
is an example of the preservation/provider assertion. For role-based assertions,
examples are the requirement for all travelers to have valid medical insurance
or, for travel agencies, that the travel package must be processed with respect to
the package entity assertion. Global business process assertion may include, for
example, transactional consistency requirement. The users of the business pro-
cess might have a special fidelity card, that gives them some advantages along
the whole execution of the business process.

5.3 Monitoring framework

In Chapter 3 we focused on developing a service request language for web ser-
vices in service-marketplaces that contains a set of appropriate constructs for
expressing requests and constraints over requests as well as scheduling opera-
tors. This language, named XSRL for XML Service Request Language [3, 107],
enables a user to formulate complex requests against standard business pro-
cesses. These standard processes are provided by a market maker (a consortium
of organizations) that brings the suppliers and vendors together. The market
maker assumes the responsibility of creating a service-marketplace adminis-
tration and performs maintenance tasks to ensure the administration is open
for business and, in general, provides facilities for the design and delivery of
business processes that meet specific business needs and conforms to indus-
try standards [111]. Standard business processes are described in a choreogra-
phy language such as Web Services Choreography Description Language (WS-
CDL) [67]. WS-CDL specifies the common observable behavior of all par-
ticipants engaged in business collaboration. Each participant could be imple-
mented by completely different languages such as web services applications,
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Figure 5.3: Handling of XSAL and XSRL requests.

whose implementation is based on executable business process languages like
BPEL, XPDL and BPML.

XSRL and its supporting framework are a powerful tool for enabling a user
to formulate requests against business processes but it lacks support for chore-
ography assertions supplied by service providers and/or market makers that can
be associated with the execution of a choreographed process. Assertions are
essential means for the actors delivering the services and market makers to ap-
ply enterprise/marketplace policies and conditions. This limitation of XSRL is
addressed by explaining how it is extended by means of an assertion language,
which we name XSAL (XML Service Assertion Language).

XSRL and XSAL work in tandem during the planning and monitoring of
business processes in order to satisfy the user requests in conjunction with ap-
plying service provider and marketplace maker supplied assertions. Figure 5.3
illustrates marketplace makers and actual service providers involved in the mar-
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Figure 5.4: Planning and monitoring framework.

ketplace. These are seen to provide a set of assertions in XSAL which govern
the behavior and execution of standard business processes. Assertions are asso-
ciated with the standard business processes against which requests are specified.
In Figure 5.3, a user or client states his requests in XSRL. These are combined
with the appropriate XSAL assertions and then forwarded to the planning and
monitoring framework presented in Figure 5.4. The planning and monitoring
framework interacts with the actual implementations of the services in the ser-
vice marketplace.

To deal with assertions and user requests we extend a system based on the
interleaving of planning and execution. The proposed framework, shown in
Figure 5.4, consists of four components: monitor, planner, executor and run-
time support environment and can be seen as an extension of the monitoring
framework introduced in Section 3.5.

The monitor manages the overall process of interleaving planning and exe-
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cution. It takes user requests, the business process, the business process level
assertions and starts interacting with the planner. The planner synthesizes a
plan and returns it to the monitor. The plan is a sequence of actions to be exe-
cuted. The planner returns a failure if there was no possible execution satisfying
the user request in the given domain without violating the assertions. In case
of a failure, the monitor eliminates eventual optional goals and assertions or it
tries to change service providers. For example, if the business process fails to
satisfy the assertion published by one hotel service provider, the framework can
try to switch to another hotel service provider whose assertions are less strict.
If the planner fails for all possible combinations then the overall execution of
the business process fails. Assume that a correct plan exists and therefore it
is synthesized. Then the monitor passes it to the executor. The executor is
responsible for executing the plan. While executing each action of the plan,
the executor may gather new information from the service registry or from the
service implementations. Whenever new information is obtained, replanning is
potentially needed and the domain updated with the just gathered information is
returned back to the monitor. The framework works iteratively until the request
is satisfied under the given assertions or there is no satisfying execution.

User requests and assertions are modeled as goals, the business process is a
domain and the web services and service registries are the environment. After
receiving a user request the system builds a plan based on the request, on the
assertions and on the business process. The framework is developed to work
with a state-based business processes where service invocations are represented
as transitions between states. When executing a process the system should re-
spect different constraints that are of two types: user requests and assertions.
Assertions are defined on different levels: business process, role and provider.
The latter two are stored in service registries. The system should satisfy role
and provider assertions only if it intends to use services of corresponding role
or provider, respectively. The framework returns success if it satisfies the re-
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quested goal without violating the assertions, it returns failure otherwise. When
executing a business process the system interacts with the service registry to
bind the process services, with web service implementations by invoking ser-
vices.

5.3.1 Service assertion language

In Section 5.2, we showed that the business rules can be expressed using asser-
tions. The assertions are defined as statements that either true or false in any of
the given state. They are classified into simple, preservation, and business entity
assertions. The assertions need to be stated in a uniform and unambiguous way
by the parties involved in the business process. XSAL (XML Service Assertion
Language) serves this purpose. The syntax of XSAL using BNF notation is
provided in Appendix A.

One may observe the similarity between XSAL and XSRL. In fact, these
two languages share the same expressive power and interpretation, though their
intended use is quite different as XSAL is used for expressing assertions while
XSRL is used for expressing user requests. Before assessing the formal con-
nection among these two languages we shall first provide the intuitive meaning
behind XSAL expressions.

The atomic objects of XSAL are propositions, that is, boolean combination
of linear inequalities and boolean propositions. These can be either true or false
in any given state. Propositions are further combined by sequencing operators
to form assertions. The sequencing operators are: achieve-all, before-then,
prefer-to, optional. The goal achieve-all succeeds when all nested assertions
are satisfied, it fails otherwise. The construct before-then is satisfied when
the first statement is satisfied and, from the state where the first statement is
satisfied, the second is also satisfied. It fails otherwise. The construct prefer-to
succeeds if the first statement is satisfiable, if not then it succeeds if the second
statement is satisfiable, it fails if both statements are unsatisfiable. The last
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operator (optional) is the least strict constraint and demands the satisfaction of
the assertion if possible, if not the assertion is ignored.

The operational assertions can be expressed using the XSAL language. All
of the following operators take propositions as arguments. The simple, or reach-

ability, assertions are expressed by XSAL reachability constructs. Formally,
reachability constraints require satisfaction of some proposition before execu-
tion of the service that has reachability assertion. But strictness of the satis-
faction depends on the particular operator. There are two corresponding XSAL
operators: atomic and vital. The atomic operator is used when an assertion is
strictly important for the party that specifies it and it must be satisfied regard-
less of any form of non-determinism. More formally, before executing a service
that has this type of assertion, constrained propositions must be true. If there
is no such execution then the execution fails immediately. The vital operator is
used when less strict assertions need to be applied. It tries to find a successful
execution to satisfy the constrained proposition. It executes until it has a chance
to reach the successful state and fails otherwise.

The preservation, or maintainability, assertions are expressed by XSAL main-
tainability constructs. This constructs are used when preservation of some value
is needed not only in a single state but during a whole execution sequence.
When executing a service with such type of assertions only execution that pre-
serves the constrained value can be followed. Retractable actions must be han-
dled with care. In fact, if such an action is invoked and later retracted all asso-
ciated assertions are ignored. As in the case with simple assertions, maintain-
ability assertions can be of different types from the point of their strictness. We
define two types: atomic-maint and vital-maint. The first one is used when the
proposition value must be preserved along the whole execution regardless of the
non-determinism. The second (vital-maint) is used when the maintenance as-
sertion must be checked only along the non-exceptional execution. The system
in this case should always intend to preserve the asserted proposition but if it
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fails then the execution stops and return failure.
The entity expression is used to form business entity assertions. This expres-

sion begins by relating to a particular variable. It specifies its starting value in
the start-from statement and it is continued by any number of follows state-
ments which specify the possible evolutions of the variable. Assertions of this
type are always strict.

The semantics of XSAL can be defined following two trajectories: (i) con-
sidering formal semantic definition based on execution structures over planning
domains; (ii) providing translation rules for transforming XSAL expressions
into XSRL and combining them with XSRL expressions. Recalling that the se-
mantics of XSRL has been defined we purse the second trajectory as it is more
intuitive and better shows the relation occurring between XSAL and XSRL.
As a point of notation, we add a .t postfix to denote the XSAL expression
translated into XSRL, (...) to denote the passing of a parameter to a rule,
e.g., start-from(var) and follows (var) takes var as a parameter. Expres-
sions where the translation is omitted are propagated unchanged. The symbol
’*’ in the reduction rule denotes the usual Kleene star.

xsal <- ’<XSAL>’ statement ’</XSAL>’

xsrl.t = ’<XSRL>’ statement.t ’</XSRL>’

entity <- ’<ENTITY VARIABLE = ’ var ’>’

start-from (var)

follows (var)*

’</ENTITY >’

entity.t = start-from.t +

’<THEN>’

’<ACHIEVE-ALL>’

follows.t*

’</ACHIEVE-ALL>’

’</THEN>’

start-from (var) <- ’<START-FROM>’ proposition ’</START-FROM>’
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start-from.t = ’<BEFORE>’ var proposition ’</BEFORE>’

follows (var) <- ’<FOLLOWS>’ proposition1 ’</FOLLOWS>’

’<BY>’ proposition2 ’</BY>’

follows.t = ’<BEFORE>’

’<EQUAL>’ var proposition1 ’</EQUAL>’

’</BEFORE>’

’<THEN>’

’<EQUAL>’ var proposition2 ’</EQUAL>’

’<THEN>’

From the translation one notes that the constructs on propositions, on se-
quencing and preference statements are the same in both languages XSAL and
XSRL. The XSAL business entity assertion construct is not present in XSRL
and is translated into the sequencing operators before-then binding the busi-
ness entity variable to propositions.

5.3.2 Service assertion problem

Using a framework based on interleaved planning and execution demands a for-
mal specification of the business process in terms of planning domains. None
of the existing business process definition languages can be straightforwardly
used as a domain description for our framework. For example, WS-CDL lacks
monitoring mechanisms, BPEL lacks choreography protocol support. How-
ever, one can devise extensions and modification to these protocols in order
to use them as domain descriptions. The domain representation that we adopt
is a state-transition system introduced in Section 3.1. It is able to represent
non-deterministic actions and potentially incomplete knowledge about the en-
vironment. Information that is unknown in advance is gathered at runtime by
invocations of web services and by contacting the service registry to obtain web
service generated information, e.g., current balances, debt histories, etc.
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As a service assertion domain we use the service planning domain, presented
in Chapter 3.3. To deal with assertions we rather adopt the definition of service
planning problem from Definition 5. Formally, the service monitoring problem
is defined as follows:

Definition 15 (Service monitoring problem). A service monitoring problem
is defined as tuple PA = 〈P ,Q, q〉, where:

• P is a service planning problem from Definition 5;

• Q is a set of assertions that can be potentially published;

• q : {D} ∪ R ∪ I → 2Q is a function that defines the set of assertions,

associated with the business process ({D}), roles (R), or providers (I).

The satisfaction of a assertion is defined in terms of whether a particular
plan satisfies the assertion or not with respect of whether associated roles and
providers have been used during execution of a plan.

A solution to a service assertion problem is defined in terms of the plan that
satisfies the combined user goal and published assertions. Formally, solution to
service assertion problem is adopted from Definition 11.

Definition 16 (Assertion problem solution). A solution for a problem PAs

is a plan π that satisfies the combined goal and assertions:

π |= achieve-all {g, q({D}), {q(r)|r ∈ Rπ} , {q(i)|i ∈ Iπ}} ,

where

• g is a goal extracted from the user request from Definition 4;

• q({D}) is an assertion associated with the business process;

• {q(r)|r ∈ Rπ} are assertions associated with roles. Rπ denotes those

roles that are used in the execution of the plan;
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• {q(i)|r ∈ Iπ} are assertions associated with providers. Iπ denotes those

providers that are used during the execution of the plan;

Therefore, a problem of monitoring of assertions is the finding of a solution,
i.e. plan, for given domain, goal, initial state and assertions associated with
involved parties.

Note that the problem of monitoring is more complex than the service plan-
ning problem: in monitoring the goal to be satisfied is updated on the fly, de-
pending on the execution chosen.

5.3.3 A domain instance

Let us revisit the example in the travel domain introduced in Figure 1.3 to ex-
plain the XSAL use and constructs. Next we present it according to the formal
definition of a domain D presented in Section 5.3.2.

There are fourteen states S = {1, 2, . . . , 14} in the upper half of the figure.
The set of variables V ar is {hotelReserved, hotelPrice, location, trainBooked,
trainPrice, flightBooked, flightPrice, confirmed, money}, among which
one distinguishes the boolean variables (hotelReserved, trainBooked, flightBook-
ed, confirmed), from the real variables (hotelPrice, trainPrice, flightPrice,
money), and a variable representing location names (location). In the set
of variables a subset is defined to be of knowledge variables. In the exam-
ple, we define hotelPrice, trainPrice, flightPrice to be knowledge vari-
ables. There are also nineteen actions that can be performed in the domain
Act = {a1, . . . , a19}.

Several roles are involved in the travel business process, that is, R = {user,
hotel, air, train, payment, insurance}. The user role represents the requesting
party. Typically it is a human user, but it could also be any application software
utilizing the business process. The set of actual providers for the roles R are
stored in the service registry.
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Arrows in Figure 1.3 are the process actions. For example, states (3) and (4)
are connected by the action reserveHotel of the hotel role. It has two out-
comes: normal, where the variable hotelReserved is set to true and excep-
tion, where the hotel remains unreserved. This action is an example of a non-
deterministic action. The two arrows from the state (4) represent different out-
comes for this action. Other examples of actions are bookFlight for the air role
and getTrainPrice for train role.

Assertions work in conjunction with the travel business process and are de-
fined in XSAL. The business process level assertion that ensures that the pro-
cess always reaches the final state is expressed in the following way: atomic

final. Here and in the following we omit XML tags for brevity. An examples of
a role-level assertion is the requirement for insurance in case of prolonged stay
abroad: vital (healthRisk → insuranceTaken), where → represents logical
implication and is expressed using the <NOT> and <OR> XSAL expressions, as
usual.

At the provider level, the hotel provider may prefer, for example, a specific
credit card type for payment: optional cardType = VISA.

The maintenance assertion for customers of loyalty services that was in-
troduced in Section 5.3.2 is encoded as follows: optional(loyaltyCard →
(roleType = acceptsLoyaltyCard)).

In the following we use XSAL to codify the business entity assertion that
was presented in Figure 5.1. The XSAL syntax for this assertion is:

entity travelPackage

start-from requested

follows requested by rejected ∨ accepted by travel agency

follows rejected by requested

follows accepted by travel agency by
rejected ∨ approved by client

follows approved by client by package completed

Additional details like precise hotel information, seats type, payment num-
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bers, etc. can be easily integrated in the above example. To do so, one should
add corresponding variables and modify the semantic functions of the actions to
take into account the introduced variables. Here we omit such additional details
to improve readability.

5.3.4 Planning and monitoring algorithms

Having introduced a planning and monitoring framework and the assertion lan-
guage XSAL, we present the algorithms which handle XSAL assertions to-
gether with XSRL requests. Referring to Figure 5.4, we recall that the frame-
work consists of three main components, that is, a monitoring, a executor and a
planner. We present algorithms for these components separately.

Algorithm 7 monitor(domain d, state s, goal g)
π = assert-plan(d, s, g)
if π = ∅ then

return success
else

if π = failure then
if chooseNewProvider(provider) then

d′ = updateDomain(d)
assertprovider = extractAssertions(provider)
g′ = updateGoal(g, assertprovider)
return monitor (d′, s, g′)

else
g′ = generate-rollback-goal()
monitor(d, s, g′)
return failure

end if
end if
(d′, s′, g′) = execute(π, d, s, g)
return monitor (d′, s′, g′)

end if

The monitor takes a domain d, that is built on the basis of the business pro-
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cess, an initial state s and a goal g. The initial request of the user to the system is
combined together with business process assertions, thus, the monitoring algo-
rithm is invoked initially with the following goal: achieve-all(request, assertbp),
where request is the user request and assertbp is the set of business process
level assertions.

The monitor (Algorithm 7) is the core of the interleaved planning and exe-
cution process. It invokes the planner and the executor in order to satisfy the
user requests and the assertions, and it recovers from failures. The algorithm
is an extension of the monitoring algorithm presented in [84], where the most
notable difference is the updating of the goal to take into account the provider
level assertions. When a new provider is chosen then the goal is modified in the
following way. First, assertions that are associated with the previously assigned
provider being de-assigned are eliminated from the goal. Second, assertions of
the new provider are added to a goal by using the achieve-all operator. The
modification of the goal to take assertions into account is performed by the
extractAssertions and updateGoal functions.

The executor (Algorithm 8) takes a plan and executes it in the marketplace.
It contacts the service registry when a service implementation for a given role
is necessary, it executes actions of the plan and it checks whether replanning is
required. When a new provider is requested from the service registry, its asser-
tions are added to the goal g in the following way achieve-all(g, assertprovider).
This is achieved via the extractAssertions and updateGoal functions.

During execution of the plan π, runtime information is gathered and new
assertions are taken into consideration. The plan π must be either compliant
with the updated information, or, if it is violated, replanning is performed from
the current state.

The function plan is the one presented in Chapter 4.
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Algorithm 8 execute(plan π, domain d, state s, goal g)
repeat

a = firstAction(π)
π = π − a

if webServiceAction(a) then
if noProviderForRole(rolea) then

providersList = contactServiceRegistry(rolea)
provider = chooseProvider(providersList)
assertprovider = extractAssertions(provider)
g′ = updateGoal(g, assertprovider)
return (d′, s′, g′)

else
provider = previouslyChosenProvider(rolea)

end if
message = invoke(a, provider)

end if
(d′, s′, g′) = update(d, s, g, a,message)
if isKnowledgeGathering(a) then

return (d′, s′, g′)
end if

until π = ∅
return (d′, s′, g′)
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Algorithm 9 assert-plan(domain d, state s, goal g)
π = plan(d, s, g)
if π 6= failure then
{asserta1 , . . . , assertan} = extractAssertions(π)
g′ = updateGoal(g, {asserta1 , . . . , assertan})
if g′ = g then

return π

else
return assert-plan(d, s, g′)

end if
else

g′ = checkViolatedActions(g, d)
if g′ = g then

return failure
else

return assert-plan(d, s, g′)
end if

end if

5.4 Monitoring a sample business process

To illustrate the application of the algorithms just presented in the context of
the planning and monitoring framework, we use the example presented in Sec-
tion 1.1 and formalized in Section 5.3.3. Suppose a user is planning a trip to
Nowhereland and is interested in a number of possibilities in connection with
this trip. These include making a hotel reservation, avoiding to travel by train,
if possible, and spending an overall amount not greater than 300 euro for the
whole package. Further, the user prefers to spend less than 100 euro for a hotel
room but, if this is not possible, may be willing to spend no more than 200 euro
for that room. This would be expressed by the following XSRL request:

achieve-all
achieve-all

prefer vital-maint hotelPrice < 100
to vital-maint hotelPrice < 200
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optional-maint ¬trainBooked

vital confirmed ∧
location = ‘‘Nowhereland′′ ∧
hotelReserved

vital-maint price < 300

In addition, suppose that two XSAL business process level assertion such
as atomic final and the business entity assertion of Figure 5.1 were pub-
lished. The system starts by combining the user request with the business pro-
cess assertions in an achieve-all construct. The monitor invokes the assert-
planner which in turn invokes the planner. The first actions of the initial plan
provided by the planner, given the above goal, the business process assertion
and the domain as shown in Figure 1.3, is the following sequence of actions:
getHotelPrice, reserveHotel.

The monitor then sends the plan to the executor to start interacting with
web service implementations. By these invocation a travel agency and a ho-
tel provider are selected and a room is reserved. Suppose that the government
considers Nowhereland to be a health risky location. Then the role level asser-
tion vital (healthRisk → insuranceTaken) coming from the service registry
together with the travel agency role is considered. At this point, the execu-
tor returns control to the monitor which in turn requests a new plan from the
assert-planner taking into account the given role-level assertion. The new plan
generated will now comprise an action bringing the process in the obtained a

medical insurance state.

Suppose further that the selected hotel is “MyHotel” which comes with the
provider level assertion optional cardType = VISA. Then, when the executor
runs the request payment from the user the cardType is asked to be VISA. If
the user refuses such option, execution nevertheless proceeds. Note that if the
assertion was vital cardType = VISA then the user’s refusal would result in a
assertion violation and thus a plan failure.
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As for a maintainability assertion, suppose that the travel agency is asked by
the client to provide services complying with a given loyalty card. Therefore,
the travel agency publishes the following assertion: optional(loyaltyCard→
(roleType = acceptsLoyaltyCard)). This is taken into account by the assert-
planner as soon as the user has specified the card in his request.

As for the business entity assertion requiring a travel package to be assem-
bled following specific rules (Figure 5.1), this assertion is always taken into
account by the assert-planner when providing new plans to the monitor. Finally,
the execution proceeds until the travel package is completed and the user ap-
proval is requested. At this point the business level assertion atomic final is
the last to be satisfied. This is achieved by a plan going to the final state of the
business process.

5.5 Discussion: expressing QoS properties

In Section 5.3.1 we introduced the XML Service Assertion Language and showed
how it can be used to express objectives and preferences of the parties involved
in the execution of a business process. These objectives may be exposed in
a service-level agreement (SLA). But SLAs are not limited to functional re-
quirements, often service providers want to expose to the users of their services
various quality of service features. These agreements, often in the form of legal
contracts, define what services the provider offers and define the quality of ser-
vice or QoS that they offer. Because of the formal nature of SLAs, the quality
of service needs to be specified in measurable terms, such as the guaranteed up-
time of the service, the guaranteed maximum and average response times of the
service, etc [98]. Various non-functional properties of services are the object of
SLAs, most notably: availability, accessibility, performance, reliability, secu-
rity, transactionality, and regulatory. There are several specification proposals
to address QoS and SLAs, for example, WS-Policy [144] or Web Service Level
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Agreement [147].
Interestingly, XSAL is able to capture most of these qualitative and quanti-

tative QoS properties in its assertions. Next we show examples of how XSAL
expression are used to express quality of service properties and be therefore
used as fundamental blocks of SLAs. The advantage of using XSAL for this
purpose is twofold. On the one hand, it has the appropriate expressive power
to express non-functional properties during the agreement negotiation, on the
other hand, it comes with a monitoring framework which serves the purpose of
checking at runtime that the SLA terms are not violated. At runtime, instead
of rejecting the violated service, the system tries to satisfy the failed assertion
or, if that fails too, checks if there are any other business process executions
that satisfy the original goal and preferences. For example, let us imagine that
the business process failed to present valid credentials to the bank service. The
framework first tries to check if there are any activities in the business process
that can possibly provide the necessary credentials. If that fails, then the system
tries either to ignore the service or select a different bank provider, if there are
more available.

Let us now consider what types of service-level agreements can be captured
by XSAL expressions. The most relevant categories for QoS requirements in
the context of web services are: availability, accessibility, performance, relia-
bility, regulatory, security and transactional behavior [93]. Let us consider them
individually.

5.5.1 Availability, accessibility, performance, and reliability

Availability is the quality of whether a web service is available and ready to
be invoked. It is defined as a probability of service availability. Sometimes,
the time to recover is also added to availability terms, defining the time it takes
to repair a temporally non-available service. Accessibility is expressed as a
probability measure to define whether the service is able to perform a given
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operation. The service could be available but not accessible if, for instance, the
hosting server is overloaded. Performance shows how fast the server processes
the requests and how many requests are served in the time unit. Reliability

represents the service degree of being capable of maintaining service quality.
All these properties define the ability of a service to process requests effi-

ciently. These kind of quality aspects are useful for mission-critical business
processes requiring high levels of availability and excellent performance.

An example of using XSAL to express availability assertion in the banking
domain follows. Suppose one service desires to get the latest financial infor-
mation in real time. In this case, the business process contains at least two ser-
vices: a requester and a service providing the necessary data. High performance
requirements are expressed in the requester assertion: vital dataFetched ∧
latency ≤ 20ms. Having this assertion the framework checks all the ser-
vices that provide the financial data (that is those services satisfying the variable
dataFetched) and selects only the services with the response time lower than
20ms. The information about the latency time is taken from the service-level
agreement of the provider service. The same schema can be applied to check
accessibility and reliability quality aspects.

5.5.2 Security

Security is a paramount aspect of service-oriented architectures in its various
facets [63, 7, 55], such as message encryption, authentication, and access con-
trol. Message encryption is usually handled at the platform level, therefore,
XSAL’s use is limited to simple encryption requirement expressions, e.g., vital encryption ≥
128bit.

More interesting is the case of authentication. Service-level agreements con-
tain an XSAL assertion that defines the required security information. For ex-
ample, the bank provider asks for a particular credential to be provided, e.g.,
atomic login = true ∧ provider = “V isa′′. When the framework processes
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this assertion, it tries to satisfy it by looking if there is an execution in the busi-
ness process that invokes the service operation that satisfies the variable login

and sets the security provider provider to “Visa”. If that fails, then the frame-
work tries to satisfy the initial request in a different way, not using the bank
or, if that is not possible, tries different bank providers. The key point of using
XSAL assertions is that the framework is delegated to adjusting the execution
of the business process according to the provider assertions.

Access control service-level agreements can also be expressed in XSAL.
Imagine a situation in which a bank exposes several service implementations.
Then, the particular implementation is unknown until instantiation of the providers:
every service implementation may contain different requirements, assertions,
and preferences based on user access rights, therefore, the future executions of
the business process strongly depend on the exposed constraints. In other words,
the behavior of the business process depends on the access control rights. For
example, say a travel agency considers two different types of users: normal

and loyal. The implementation for the second might contain the following as-
sertion: optional loyalpartner = true. This assertion requires the system to
prefer providers that are partners of the travel agency, that might offer special
discounts, finally allowing to provide better services to the agency’s client.

5.5.3 Transactionality

The loosely coupled and stateless nature of initial web service proposals has
posed new challenges for the execution of sequences of service operations which
needed to be treated, for instance, atomically. Transactionality of service in-
vocation demands different solutions from traditional database style transac-
tions [110].

Often sequences of service invocations have to support atomic behavior,
when, if some service fails, all intermediate changes have to be rolled back.
The question such as whether transactions are applicable in the web service en-
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vironment or what kind of transactions need to be supported (e.g., atomic or
long-lived with compensation) are out of the scope of the present thesis. How-
ever, XSAL with its atomic assertion guarantees some form of transactionality.

Consider the traditional transactional model, using two-phase commit with
satisfaction of all ACID properties. WS-AtomicTransaction [145] is a stan-
dard that deals with this kind of transactions. In this model, transactions are
always consistent and atomic. However, this is only achieved if all of the par-
ticipants support the corresponding transactional agreement. Sometimes this is
weakened and services control their desirable transactional behavior by publish-
ing corresponding attributes. For instance, a Java EJB specification may con-
tain the following attributes: notSupported, supports, required, requiresNew,
mandatory, never, and a bank provider exposing some of its data might ask
for all the invoked services to support transactionality. An XSAL assertion to
achieve such a guarantee is the following: atomic-maint attr 6= notSupported.
The framework takes the assertion and allows the publishing service to par-
ticipate in the transactions with all participants who support the assertion. In
the same way, transaction isolation levels could be set according with specific
service quality requirements.

For the long-lived transactions the situation is different. Special attention
has to be payed to consistency and atomicity, as transactions based on compen-
sation do not guarantee them. XSAL can express such requirements. First, one
could check the consistency of data lifecycle by using the entity assertion (e.g.,
Figure 5.1). In general, to ensure consistency and atomicity the following two
operators are used: atomic and atomic-maint. They ensure that execution sat-
isfies the assertion despite any possible non-deterministic failures. For example,
consistent is a variable that is true in all so-called consistent states and false in
all other. The assertion atomic consistent guarantees that the execution termi-
nates in one of the “consistent” states. That is, before executing a transaction,
the framework checks whether all possible executions end up in states that do
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not violate the assertion. This is a different notion from that of atomicity in
ACID transactions as no roll-back is involved, nevertheless is a form of guaran-
tee which starts a sequence of service invocations only if it is possible to arrive
to a final state despite any form of non-determinism.

5.5.4 Regulatory

In [93] it is defined the regulatory quality of service aspect which represents
the conformance of services to specified standards. This type of service-level
agreement is usually processed at the level of underlying platform, since it is
truly non-functional property. This kind of non-functional property sis beyond
the scope of the presented XSAL framework.
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Implementation

In Chapter 3 we introduced the framework for interleaving planning and exe-
cution, here we consider an implementation of it. The framework request lan-
guage XSRL is developed to empower users with explicit control over process
executions by describing desired service attributes and functionalities, including
temporal and non-temporal constraints between services. The reference model
instantiation is planned according to the goals and preferences specified by the
user and an appropriate plan is executed. The algorithms underlying it are based
on the idea of interleaving planning and execution. These algorithms are based
on model checking and on constraint programming.

The reference implementation of the XSRL framework is written in Java
1.5 using the Eclipse (www.eclipse.org) programming environment. The
framework constraint solver is based on the Choco constraint solver [32]. Choco
is a Java library for constraint satisfaction problems (CSP), constraint program-
ming (CP) and explanation-based constraint solving (e-CP). In a Web Service
scenario, users may wish to know why certain solutions are preferred to oth-
ers. Explanation-based constraint programming is a viable approach to tackling
such issues. This is one of the reasons that lead us to Choco, as Palm is an
explanation-based constraint system built on top of it.

Constraint programming languages allow us to model Boolean requests, nu-
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meric requests, symbolic requests, preferential and optional requests directly

and compactly, without modeling them into propositional formulas (as it would
be if we adopted a SAT based encoding [66]); this is already beneficial. Con-
straint programming aims at building and producing solutions in an interactive
manner, optimal or not: most constraint solvers are in fact incremental, which
allows us to add constraints at run-time. In Web Service scenarios this is a crit-
ical feature as some information becomes available only at run-time, and it is
totally unrealistic to assume the contrary.

SAT-based solvers do not usually provide off-the-shelf facilities to easily
program specific variable orderings, search and optimization strategies; SAT
solvers are highly tuned for dealing with decision problems, and the ‘quality’
of the solution, whether optimal or close ‘enough’ to optimal, is not of pri-
mary concern. Whereas constraint programming provides these facilities. This
smoothes the integration of a constraint programming reasoning system into
our framework for interleaving planning and execution, see Figure 3.1. For
instance search algorithms such as branch-and-bound are implemented in most
constraint programming systems; in general, implementations of constraint pro-
gramming algorithms provide optimality parameters which allow us to tune our
framework in a real-time Web Service environment.

We implement the modeling of the service problem into the service con-
straint problem, and we run some preliminary tests. In addition to the pro-
vided algorithms in Section 3.5, we implement a domain generator allowing the
tuning of the following parameters: number of states, branching factor, non-
determinism rate, maximum directed cycle length, and if the service domain
corresponds to a directed acyclic graph or a not. We then experiment with dif-
ferent XSRL requests of increasing complexity on different domains keeping
the whole constraint set in the 64Mb of main memory. We do not provide a full
evaluation of the system here, as we are interested in a preliminary feasibility
study, but we mention basic facts of implementation:
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• the system handles simple reachability requests on domains of up to 2000
states with low levels of branching and non-determinism on an average of
0,947 seconds;

• if we also allow for cycles the average execution time grows up to 1,737
seconds;

• increasing the complexity of the requests by using vital requests, the aver-
age execution time increases to 4,29 seconds and the maximum number of
state goes down to about 1000;

• further combining reachability and maintainability operators the average
execution time reaches 10,97 seconds.

The above values have no pretense of being an evaluation of the system
(for more information, please refer to XSRL Reference Implementation web
page [78]), but they do show the feasibility of the approach. It should be also
noticed that the number of maximum states reached depends on the limited use
of memory and the fact that the whole search space is kept into RAM. Neverthe-
less, we are to deal with domains which are considerably larger than the biggest
ones seen in practice (smaller than 200 states: H. Ludwig, IBM TJ Watson.
Personal communication. 2006).

6.1 Implementation details

The typical processing of the request from the low-level implementation view
is done in the following way. First, the business process is loaded by the frame-
work. This task is accomplished by an instance of the FreeBPCompiler class:
this class calls a parser, implemented in SAXFreeBPHandler, that uses the XML
SAX libraries in order to build the internal data structure. Once the domain is
read, the application creates a monitor that has the task to handle the execution
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of the plans and the request searching for providers if needed. The next step is
the definition of the problem itself: the application takes the user XSRL request:
it is then converted in a Goal object, which is used along with the business do-
main to build the problem to solve. At this point the monitor takes the control of
the execution; in particular it manages the creation of a planner and an executor
for the planning problem. The monitor starts iteratively invoking the planner
(to synthesize a plan) and executor (which has to process the actions defined
in the plan), checking in the mean time whether the new provider has to be
added to the problem. As a default planner implementation, Choco constraint
programming library is used.

Let us now go through implementation details of the framework java pack-
ages.

The org.xsrl.domain package contains the elements that are used in order to
represent the domain internally to the application. The most important classes
are:

- Problem: represents the problem as a whole, containing a domain and a
goal;

- Domain: represents the domain, composed of states, transitions between
states, variables, the roles implemented by the providers, the actions de-
fined for the transitions;

- Transition: a transition represents one transition in the control flow of the
business process. Depending on the action result, it may lead to different
states;

- State: it represents the state of the process;

- Variable: a variable defined in the business process. Can be defined on
different spaces: integer, reals and booleans. Additionally, variable may
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be in a “not yet defined” state to represent the unknown not yet observed
information;

- Action: it represents an operation of an arbitrary web service. An action
must refer to some role, and can have different results, that are defined
by ActionResults. represents a specific result from the execution of an
action. The nature of this class lets the domain to distinguish between
normal results and faulty ones;

- ActionEffect: this class represents a particular effect, given by the execu-
tion of an action with a specific returned result;

- DomainObject: the base class extended by all the other in the package.
Represents a generic object composing the domain;

Figure 6.1 shows the UML class diagram for the org.xsrl.domain package.
The org.xsrl.domain.goal package contains the definitions of the possible

goals that can be instantiated. All the classes implements Goal. BasicGoal

keeps the information about its nature, such as if it is a MAINTAINABILITY or
REACHABILITY goal, and whether it is a VITAL or ATOMIC. Complex goals
are presented by classes AchieveAllGoal, BeforeThenGoal, and PreferToGoal

that represent achieve-all, before-then, and prefer-to goals correspondingly.

In the org.xsrl.domain.spaces package classed for the supported types of
variable spaces in which a process variable, defined in the domain, can belong
to. Boolean, real and integer spaces are supported by the system.

The org.xsrl.framework package contains the class definition for the main
parts of the framework: monitor, executor, and abstract planner are defined. The
monitor has a crucial role in this implementation, in fact it has to accomplish
various tasks, including:

- the creation of the problem related to the underlying constraint engine (in
our case a Choco);

107



CHAPTER 6. IMPLEMENTATION

- the responsibility to call the classes (in particular it calls ChocoSolver

methods via the CPSolver) that encode the user’s requests and the domain;

- the retrieval of the solutions, in terms of values for the β variables, for the
problem filled with the constraints given by the last step;

- the responsibility to call the executor in order to execute the produced plan.

Executor processes the plan by invoking corresponding actions and updating
the domain internal representation with the new observed information from the
results of action execution. To assists executor, an arbitrary class ActionInvoker
is provided to implement a dynamic invocation of a particular action on a par-
ticular provider.

The org.xsrl.framework.registry package contains classes to work with
registries of services. It is used by the executor and the monitor, when provider
is needed for executing an action.

Abstract planner defined in org.xsrl.framework package provides general,
abstract view on planning operations. Actual encoding of the problem to a
constraint solver and retrieving the solution in terms of plans and actions is done
by classes in org.xsrl.framework.cp package. Figure 6.1 shows the UML view
on the package. It accomplishes the following tasks:

- representing the business domain in such a way that the algorithms can
easily handle it, using the elements in package org.xsrl.domain. This task
is mainly accomplished by the Encoding class.;

- implementing the algorithms to encode the domain and the requests, as
seen in Chapter 3. The implementation for this task is divided into sev-
eral classes: ChocoSolver encodes the domain (it gives the internal rep-
resentation for the business domain), detects the presence of cycles and
calls the methods that encode the user’s goal. For each type of possible
goal, there is a class devoted to the encoding of that particular goal(e.g.,
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AchieveAllEncoder, BeforeThenEncoder, VitalMaintEncoder, VitalGoalEncoder).
All these classes uses a registry containing the variables defined for the
domain (the instance of the class CPVarName); every basic goal class has
an internal registry for the variables defined while encoding a particular
goal. The complex goals, e.g., AchieveAllEncoder, relates the variables
from different subgoal encoders to ensure that all subgoals variables are
properly inter-related. The encoding of the cycles is a task demanded to
the CycleEncoder class, that provides methods to encode a list of cycles
starting from the same state.

The following sections provide an overview of an implementation for the
algorithms provided in Section 3.5.

6.1.1 Encoding algorithms implementation

The encoding algorithms provided in this section is based on Choco constraint
programming system. Choco is an open-source constraint-solving library writ-
ten in Java, developed under the BSD license, that can be easily used to express
and solve numeric constraints. Once the problem is solved, the constrained vari-
ables are assigned to the values that satisfy the conditions. It is possible to get
all the solutions, or the first one encountered by the solver. We use the latter
possibility since the framework guarantees the satisfaction of request expressed
in XSRL without checking whether the solution is optimal.

Internal representation of the domain

Inside the application, the representation of the business domain is made by
the class Encoding; it contains a reference to the state of the business domain
encoded, keeps the information about the cycles starting from the represented
state and the encodings of the states reachable from it. These information are
kept in a HashMap that has a transition as a key and another HashMap as value.
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This second map represents the relation between every possible result (the key)
for the transition with the encoding of the reached state (the value). This last
introduced encoding contains an instance of the class Encoding and an instance
of the class CPVar, that will be used to identify the mathematical expressions,
defined using the choco library, used for choose between alternative paths in the
graph. It is important to notice that the class CPEncoding contains an instance of
the class Encoding, while this one contains a number of CPEncoding inside the
“double-layer map” called nestedEncodings.

The UML schema for the classes involved in representing the internal view
of the domain can be seen in Figure 6.2, where it is represented the
org.xsrl.framework.cp package.

Recognizing and handling cycles

A sequence of transitions can generate a cycle; self-transitions can also be
present. This situation is recognized while the symbolic representation of the
graph is built; this is done recursively by the methods defined in the class
ChocoSolver from org.xsrl.framework package; in order to recognize and keep
track of the needed information describing the cycles, four stacks are used: one
containing the states, representing the path; one for the encodings for the states
in the path, one for the transitions followed and one for the results of these tran-
sitions. These info are kept in the Encoding class, representing the state from
which the cycle starts. It is possible to have more than one cycle originating
from the same state, so we have to save the info in another HashMap: given the
counter for the cycle (ni, the key) we get a set of lists, starting from which we
can build the mathematical expression for the cycle.

The code presented below is able to recognize the cycle and save the relevant
information related to it; first of all it checks if the state is contained in the stack
representing the path followed (starting from the initial state) and if the state has
already been visited; if that is true, a new cycle starting from the current state
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has been found and then the info about it have to be collected and stored. If
the current state has been visited, but it is not in the current path, then we have
found a converging point. The encoding has to be done separately for every
single transition coming into this state, so we simply forget we have already
visited this state and then (recursively) proceed. Finally, we come to the core
of this method: first, we set the current state as visited and we push the state in
the path stack; then, we check if the current state has no exiting transitions, in
which case we do nothing and return an empty encoding; otherwise we create a
new encoding for that state and, for every different transition that goes outside
of the state, we push the encoding and the transition in the appropriate stack and
then recursively build the encodings for the reached states. These actions affect
the encoding just pushed in the stack, filling the nestedEncodings map for the
current encoding. After that a transition has been taken into account we check if
the current state has been inserted in the list that contains all the “cycle starting”
states. If this is true, we remove all the occurrences of the current state from the
list and then add the list containing the information for all the cycles we have
found till now, starting from this state, to the encoding representing the state.
After this check we call the pop method on the encoding and on the transition
stacks. After that all the transitions for the current state have been considered,
we can safely pop the current state from the path and return the encoding filled
up with all the relevant information for the popped state.

encodeDomain(State state, Domain d)

if(state.isVisited() and path.contains(state))

collectCycleInfo(state);

return Encoding.emptyEncoding;

else if(state.isVisited())

state.setVisited(false);

encodeDomain(state, d);

else
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state.setVisited(true);

path.push(state);

if(state.isTerminating())

path.pop();

return Encoding.emptyEncoding;

Encoding stateEncoding = new Encoding(state);

for every transition t leaving from state

encodingStack.push(stateEncoding);

transitionStack.push(t);

encodeAction(stateEncoding, t, state, d);

if(statesWithCycles.contains(state))

do

statesWithCycles.remove(state);

while(statesWithCycles.contains(state));

stateEncoding.addCycles(cycleMap.get(state));

encodingStack.pop();

transitionStack.pop();

path.pop();

return stateEncoding;

collectCycleInfo(State state)

statesWithCycles.add(state);

for every state in the cycle

collect info from the stacks

cycle = new Cycle(infoCollected);

cycleList = cycleMap.get(state);

cycleList.add(cycle);

The UML schema for class CycleContents can be found in Figure 6.2: it
is noticeable that this class contains an instance of the CPVariable class. This
instance represents the variable that counts the number of times the cycle, de-
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scribed by the CycleContents class, is followed. Moreover, it is the key to get a
particular cycle description from the map inside the Encoding class.

The code shown below builds the mathematical expression for a list of cy-
cles, starting from the information retrieved from an instance of the Encoding

class; the encodings of the cycles starting from the same state have to be summed
up, so we keep them all in a list. For every cycle we have to consider the encod-
ings of the states involved, the transitions that keep the execution in the cycle
and the results for these transitions. These three lists contain all the informa-
tion needed for every single step of the cycle; if the result is not normal and
is anyway non-null (this is an internal definition), then we have to pick the ξ

associated with the result and store it in a multiplier variable; in any case we
sum up the effects. In the end, if the summation for the effects is non-null, we
have to keep the encoding of the cycle and store it in the list mentioned above,
otherwise we forget the expression for the cycle with no effects.

encodeCycleList(cycleInfoList list)

for every element c in list

encodeCycle(c);

return sum(cycleExp);

encodeCycle(cycleInfo)

encodingList = cycleInfo.getEncodings();

transitionList = cycleInfo.getTransitions();

actionList = cycleInfo.getActionResults();

for every transition t in transitionList

currentActionResult = actionList.getNext();

currentEncoding = encodingList.getNext();

currentCPE = currentEncoding.

nested.get(t).get(currentActionResult);

if(not(currentActionResult.isNormal()

and not(currentActonResult.isNullAction())

cpVar = currentCPE.getCPVar();

var = put(cpVar);
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multiplier = multiplier * var;

effect = chooseTheRightOne(getEffects(t,

currentActionResult));

cycleEnc = cycleEnc + effect;

multiplier = multiplier * n;

cycleEnc = cycleEnc * multiplier;

cycleExp.add(cycleEnc);

Implementing the vital constraint

The algorithm encoding the vital goal takes into account iteratively every pos-
sible transition and then encodes recursively the destination. Every transition is
associated with a multiplier (the boolean variable, controlled or non controlled)
and with a result, if the effects of the action modify the state of the variable
defined in the goal.

Expression encodeVital(Goal goal, Encoding encoding,Variable v)

Expression expression = new Expression(goal);

for every Transition t reachable from encoding

for every ActionResult result for t

CPEncoding cpEnc = encoding.nested.get(t).get(result);

mult = boolean variable associated with the result;

if (result is null)

nested = encodeVital(goal,cpEnc.getEncoding(),v);

if(nested is not empty)

expression += nested * mult;

else

effect = effect associated with the result for v;

nested = encodeVital(goal,cpEnc.getEncoding(),v);

if(nested is empty)

if (effect is not null)

expression += mult * (effect);
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else

expression += mult * (effect + nested);

return expression;

Implementing the vital-maint constraint

The algorithm that encodes the vital-maint constraint, operates recursively on
the internal representation of the domain, which is an instance of the Encoding

class. Every state visited is associated to a personal representation that encodes
the local choices, made among the leaving transitions. For encoding this par-
ticular constraint we have to take into account the effects related to the “future”
choices. For this reason the mathematical expressions related to the reachable
states, built in the recursive calls, are inserted into a list. Every element of this
list has to be put in relation with the expression of the state currently visited.
Moreover, we have to take into account the possibility of having cycles starting
from the current state. Generally, when we have an expression se coming from
the reachable states, we have to compose the current elements with it in this
way: mult (effect + se) + cycleEnc

where mult is the variable that expresses the choice among different paths that
leads to the creation of the expression se, effect is the action result returned by
the execution of the action related to the transition and cycleEnc is the expres-
sion for the cycles starting from the current state.

encodeVitalMaint(Encoding encoding, List history)

State currentState = encoding.getState();

if(encoding.hasCycles)

cycleEnc = encodeCycleList(encoding.getCycleList());
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for every Transition t leaving currentState

for every ActionResult result for t

List effects = getEffects(t, currentActionResult));

if(!effects.isEmpty())

mult = boolean variable associated with the

result;

effect = effect associated with the result;

update myPersonalEncode;

CPEncoding nested = encoding.nested.

get(t).get(result);

CPVar var = nested.getCPVar();

List historySon = new List();

encodeVitalMaint(nested.getEncoding(),historySon);

for every Expression se in historySon

Expression pe = history.get(se.index);

pe = pe + mult * (se + effect);

if(myPersonalEncode != null)

history.add(myPersonalEncode);

if(cycleEnc != null)

for every Expression exp in history

exp = exp + cycleEnc;

sumOfDeterm <= 1;

sumOfNondet = 1;

return history;

Implementing the achieve-all constraint

To encode this constraint we take the subgoals in pairs from a list. We then
check the nature of these goals: if both of them are vital goals, then we have
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to ensure that, if a choice is made in a deterministic branch point (this fact is
expressed checking the values of the sum variables), this has to be the same for
the two goals. If one is a vital-maint goal, then we have to ensure that the same
choice is made also for non-deterministic transitions. It is important to remark
that the constraint that imposes the selection of the same choice is triggered if
and only if a choice has to be made to achieve a goal.

encAchieveAll(goalList, Encoding encoding)

for every pair gi, gj in goalList, with j > i

encodeAchieveAll(gi, gj, encoding);

encodeAchieveAll(Goal gi, Goal gj, Encoding encoding)

if gi and gj are of type vital

if(encoding.isDeterm() and (encoding is a choice-point))

for every possible choice cpv in encoding

IntVar varGi = getVar(cpv, gi);

IntVar varGj = getVar(cpv, gj);

sumi = sumi + varGi;

sumj = sumj + varGj;

eq = makeAnd(eq,makeEq(varGi == varGj));

makeIfThen(makeAnd(sumi = 1, sumj = 1) , eq);

for every nested encoding ne in encoding

encodeAchieveAll(gi, gj, ne);

else if one is vital and the other is vital-maint

for every possible choice cpv in encoding

IntVar varGV = getVar(cpv, gVital);

IntVar varGVM = getVar(cpv, gVitalMaint);

sum = sum + varGV;

eq = makeAnd(eq, makeEq(varGV == varGVM));

makeIfThen(sum = 1, eq);

for every nested encoding ne in encoding

encodeAchieveAll(gi, gj, ne);
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Implementing the before-then constraint

The code for this constraint is very similar to the one for the achieve-all goal. In
this case the operator is binary, so we have to check only two goals, g1 and g2;
for this goal all the choices made along the path in order to achieving g1, have
to be the same to the ones made for achieving g2, even if they are related to non-
deterministic actions. In this way we express the fact that there is a temporal
sequence to be followed trying to achieve the two goals.

encodeBeforeThen(Goal g1, Goal g2, Encoding encoding)

for every possible choice cpv in encoding

IntVar varG1 = getVar(cpv, g1);

IntVar varG2 = getVar(cpv, g2);

sum = sum + varG1;

makeEq(varG1, varG2);

makeIfThen(sum = 1, eq);

for every nested encoding ne in encoding

encodeBeforeThen(g1, g2, ne);

6.2 Examples of encoding

6.2.1 Supply chain

Let us consider a supply chain example described as follows. A set of assem-
blers and element-vendors put together their business, giving users the possibil-
ity to book online a computer. We consider the simple business process snippet
adapted from [27]. We suppose that assemblers can always perform their task,
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while vendors could have some problems giving their services, for example
they could run out of particular elements, or they could be overwhelmed by the
current jobs and not being able to satisfy any other request.

The domain shown in Figure 6.2.1 is defined as follows: there are four states;
the transition t1 stands for the action related to contact the assembler, while t2

and t3 represent the possible alternatives for the element-vendors (say t2 for
AMD and t3 for Intel); t4 stands for concluding the transaction, for simplicity
we suppose no exceptional results for this transition.

An arbitrary user wants to buy a computer and he does not want to have total
cost more than 1000 euro. Following the definitions given in Section 3.2, he
expresses this request as follows:

achieve-all

vital-maint price ≤ 1000
vital concluded = true

In this case we suppose that in the domain the variable named “price” iden-
tifies the total price and that the variable “concluded”, if true, identifies the fact
that the transaction has been concluded successfully. With the first request the
user says that he wants the price to be maintained always less or equal to 1000
euro: this means that, if for a particular state the price goes beyond this thresh-
old and then goes down 1000 again (effect given by a discount, for example),
this request is not satisfied.

Encoding the domain

The result of the encoding, starting from state s1, is represented by the expres-
sion β1(a1 + β2(ξ1(a3 + β4(a4)) + ξ2(f3)) + β3(ξ3(a2 + β5(a4)) + ξ4(f2)) +

n1(ξ2)(a1 + f3) + n2(ξ4)(a1 + f2)), where ai stands for the effects of corre-
sponding actions.

The expressions identified by ni represent the two cycles that are present in
the domain. Expressions ξ1 +ξ2 = 1, ξ3 +ξ4 = 1 and β2 +β3 ≤ 1 are branching
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point constraints and define that only one branch of the process can be executed.

For the other states we proceed in the same way: for state s2 we get β2(ξ1(a3+

β4(a4)) + ξ2(f3)) + β3(ξ3(a2 + β5(a4)) + ξ4(f2)); for state s3 we get β4(a4),
and for its clone, created by the converging point, we get β5(a4), and finally, for
state s4 we get an empty encoding.

Encoding the request

Let us now take into account the user request. It is made of an achieve-all goal
containing a vital and a vital-maint goal. For simplicity we say that the ai stand
for the result of the action that touches the variable mentioned in the goal. To
differentiate the boolean variables encoded in different goals, we put a “v” (for
vital) and a “vm” (for vital-maint) at the foot of their names. For the vital goal,
supposing that the ai stand for the modifications that involve the variable AMD-

selected, the expression becomes: β1v(a1+β2v(ξ1v(a3+β4v(a4))+ ξ2v(f3))+

β3v(ξ3v(a2 + β5v(a4)) + ξ4v(f2)) + n1(ξ2v)(a1 + f3) + n2(ξ4v)(a1 + f2)) = 1.
We get the constraints that assure the normal path is followed: ξ2v = 0 , ξ4v = 0.
The vital-maint involves the encodings of all the states in the path, so we get a
list of constraints, where the ai stand for the modifications to the variable price;
since the actions related to the faulty transitions (the ones controlled by ξ2 and
ξ4) in this example do not modify this variable at all, and no sub-encodings are
present for them, they are not inserted in the expressions:

- 0.0 + β1vm ∗ (β2vm ∗ (ξ1vm ∗ (β4vm ∗ (a4) + a3)) + β3vm ∗ (ξ3vm ∗ (β5vm ∗
(a4) + a2)) + a1) + n1 ∗ (ξ2vm ∗ (a1)) + n2 ∗ (ξ4vm ∗ (a1)) <= 1000.0

- 0.0+β1vm ∗ (β2vm ∗ (ξ1vm ∗ (a3))+β3vm ∗ (ξ3vm ∗ (a2))+a1)+n1 ∗ (ξ2vm ∗
(a1)) + n2 ∗ (ξ4vm ∗ (a1)) <= 1000.0

- 0.0 + β1vm ∗ (a1) + n1 ∗ (ξ2vm ∗ (a1)) + n2 ∗ (ξ4vm ∗ (a1)) <= 1000.0

- 0.0 <= 1000.0
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We get the constraints on the nature of the path: ξ2vm = 0, ξ4vm = 0. For the
encoding of the achieve-all goal, we get the constraints that make the solutions
for the single goals follow the same path. A vital-maint goal is present, so the
choices for the variables must be the same even for the non controlled variables.
We get:

- if(β1v = 1)then(β1v == β1vm)

- if(ξ1v + ξ2v = 1)then((ξ1v = ξ1vm)and(ξ2v = ξ2vm))

- if(ξ3v + ξ4v = 1)then((ξ3v = ξ3vm)and(ξ4v = ξ4vm))

- if(β2v + β3v = 1)then((β2v = β2vm)and(β3v = β3vm))

- if(β4v = 1)then(β4vm = β4v)

- if(β5v = 1)then(β5vm = β5v)

In this case the constraints containing the ξ variables must always be true,
since, encoding the domain, we imposed exactly the expression in the “if” state-
ment.

Solution to the constraint problem

Suppose that the cost of the assembling process (a1) is to increase the price

value of 15 units; let us assume also that the cost of the computer given by a2

is of 800 units and that the cost of the one given by a3 is of 700. The shipping
cost, given by a4, is 250 units. Under these conditions only one solution exists.
the vital goal imposes that the state s4 has to be reached. After having followed
the first transition (that has only one possible result), we have to make a choice;
there is only one transition that respects the conditions given by the vital-maint
basic goal: it is the one controlled by the β2vm variable; the normal result must
be given, and this is expressed by the ξ1vm variable. The last transition, follow-
ing this path, is controlled by the β4vm variable. Cycles must not be followed.
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Here are the values for the variables controlled by the system; values held for
both goals are shown only once:

- n2 = 0

- n1 = 0

- β1 = 1

- β2 = 1

- β3 = 0

- β5 = 0

- β4 = 1

Execution based on these values reach the final state, therefore the vital goal
is satisfied. The values for the variable price along the execution are the follow-
ing: {0, 15, 715, 975}, so the vital-maint goal is satisfied as well.

6.2.2 Purchase order

Let us consider another example regarding a purchase order scenario in which
there are five actors: an user, two different sellers, a shipping service and a
banking service. The representation of this domain as a graph can be seen in
Figure 6.4.

The two types of sellers considered in the business domain (A and B) offer
similar goods; they both refer to an external service for shipment. The user
can review the process results if he does not like something, or he can confirm
the order before it is passed to the bank for processing the transaction. At this
point something can go wrong (if the transaction fails for some reason), and
the user is asked to proceed with a new confirmation: this is an example of

122



6.2. EXAMPLES OF ENCODING

non-determinism. When the transaction successfully finishes, the final state is
reached and the process terminates.

Business process is described in terms of state transition system in self-
describing XML format:

<business-process name="TestCase Domain">

<states>

<state name = "s1"/>

<state name = "s2"/>

<state name = "s3"/>

<state name = "s4"/>

<state name = "s5"/>

<state name = "s6"/>

<state name = "s7"/>

</states>

<roles>

<role name = "role" interface = "role-interface"/>

</roles>

<variables>

<variable name="price" type="int" value="0" />

<variable name="totPrice" type="int" value="150" />

<variable name="contactPrice" type="int" value="1" />

<variable name="contactBPrice" type="int" value="5" />

<variable name="ASel" type="boolean" value="false" />

<variable name="ShipSel" type="boolean" value="false" />

<variable name="BSel" type="boolean" value="false" />

<variable name="TrConcluded" type="boolean" value="false" />

</variables>

Actions and action effects:

<actions>

<action name = "contactA" role = "role"

activity = "invoke" type = "0">

<effects>

<effect operator="=" result="ASel" operand1="true" />

<effect operator="+=" result="price" operand1="contactAPrice" />

</effects>
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</action>

<action name = "contactB" role = "role"

activity = "invoke" type = "0">

<effects>

<effect operator="=" result="BSel" operand1="true" />

<effect operator="+=" result="price" operand1="contactPrice" />

</effects>

</action>

<action name = "shippingNeeded" role = "role"

activity = "invoke" type = "0">

<effects>

<effect operator="=" result="ShipSel" operand1="true" />

<effect operator="+=" result="price" operand1="contactPrice" />

</effects>

</action>

<action name = "prepareTerms" role = "role"

activity = "invoke" type = "0">

<effects>

<effect operator="+=" result="price" operand1="totPrice" />

</effects>

</action>

<action name = "revision" role = "role"

activity = "invoke" type = "0">

<effects>

<effect operator="=" result="review" operand1="true" />

</effects>

</action>

<action name = "accept" role = "role"

activity = "invoke" type = "0">

<effects>

<effect operator="+=" result="price" operand1="contactPrice" />

</effects>

</action>

<action name = "transaction" role = "role"

activity = "invoke" type = "0">

<effects>

</effects>

<fault name = "failed">
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</fault>

</action>

</actions>

Transitions representing the business process control flow:

<transitions>

<transition name = "s1->s2: contactA"

action = "contactA"

state-from = "s1"

state-to = "s2" >

</transition>

<transition name = "s1->s3: contactB"

action = "contactB"

state-from = "s1"

state-to = "s3" >

</transition>

<transition name = "s2->s4: contactSh"

action = "shippingNeeded"

state-from = "s2"

state-to = "s4" >

</transition>

<transition name = "s3->s4: contactSh"

action = "shippingNeeded"

state-from = "s3"

state-to = "s4" >

</transition>

<transition name = "s4->s5: prepareTerms"

action = "prepareTerms"

state-from = "s4"

state-to = "s5" >

</transition>

<transition name = "s5->s1: revise"

action = "revision"

state-from = "s5"

state-to = "s1" >

</transition>

<transition name = "s5->s1: proceed"

action = "accept"
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state-from = "s5"

state-to = "s6" >

</transition>

<transition name = "s6->s7: finish"

action = "transaction"

state-from = "s6"

state-to = "s7" >

<failed faultName = "transactionFailed" state = "s5" />

</transition>

</transitions>

</business-process>

A user may want the system to maintain the price below 155, being sure
that the transaction is successful, but a seller of type A must be selected. This
request is encoded as follows:

achieve-all

vital-maint price ≤ 155
vital ASel = true

vital TrConcluded = true

Encoding the domain

All transitions in the presented business domain are deterministic, apart from
the ones starting from the state s6, that are all transitions representing the result
of the transaction. This result is given by a set of factors (concurrent access,
for example) that cannot be controlled directly by the system: this is the rea-
son why these transitions are considered non-deterministic, while the others
in the domain follow a sequential and predefined behavior. The fact that the
two kinds of sellers rely upon the same service type for shipping, leads to the
presence of a converging point, while the possibility for the user to review the
results of the first part of the process creates a set of cycles: [s1,s2,s4,s5,s1] and
[s1,s3,s4,s5,s1]. Going further, the faulty transition coming from the failure of
the transaction creates again a set of cycles ([s5,s6,s5]). The encoding of the
domain gives the following set of expressions:
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- s1: β1(t1 + β4(t3 + β5(t5 + β6(t6) + β7(t7 + β8(ξ2(t8) + ξ1(fault1)))))) +

β2(t2 + β3(t4 + β5(t5 + β6(t6) + β7(t7 + β8(ξ2(t8) + ξ1(fault1)))))) +

n1(t2 + t3 + t5 + t6) + n2(t1 + t4 + t5 + t6)

- s2: β3(t4 + β5(t5 + β6(t6) + β7(t7 + β8(ξ2(t8) + ξ1(fault1)))))

- s3: β4(t3 + β5(t5 + β6(t6) + β7(t7 + β8(ξ2(t8) + ξ1(fault1)))))

- s4: β5(t5 + β6(t6) + β7(t7 + β8(ξ2(t8) + ξ1(fault1))))

- s5: β6(t6) + β7(t7 + β8(ξ2(t8) + ξ1(fault1))) + n3(ξ1)(t7 + fault1)

- s6: β8(ξ2(t8) + ξ1(fault1))

- s7: ∅

Encoding the request

The encoding of the achieve-all encoding is composed of four steps: three for
encoding the basic goals, and one for considering the relations between the
domain variables. The results are presented as the application processes them,
thus the indexes for the variables are expressed in a different way: the first
expresses the state in which the variable is defined, the second expresses the
index of the clone of the state (result of the encoding of a converging point),
while the third index expresses different possibilities in a single decision point.

The encoding of the vital-maint goal is represented by the following list of
constraints:

• 0.0 + beta_s1_0_0 *

*(beta_s3_1_0 *

*(beta_s4_2_0 *

*(beta_s5_3_0 *

*(beta_s6_4_0 *

*(xi_s6_5_0 * (1.0)) +

+ 1.0) +

+ n_1*(xi_s6_5_1 *
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*( contactPrice[1] )) +

+ 150.0) +

+ 1.0) +

+ 5.0) +

+ beta_s1_0_1 *

*(beta_s2_9_0 *

*(beta_s4_10_0 *

*(beta_s5_11_0 *

*(beta_s6_12_0 *

*(xi_s6_13_0 * (1.0)) +

+ 1.0) +

+ n_3*(xi_s6_13_1 *

*( contactPrice[1] )) +

+ 150.0) +

+ 1.0) +

+ 1.0)

+ n_2*(( contactBPrice[5] +

+ contactPrice[1] +

+ totPrice[150] ))

+ n_4*(( contactPrice[1] +

+ contactPrice[1] +

+ totPrice[150] )) <= 155.0

• 0.0 + beta_s1_0_0 *

*(beta_s3_1_0 *

*(beta_s4_2_0 *

*(beta_s5_3_0 * (1.0) +

+ n_1*(xi_s6_5_1 *

*( contactPrice[1] )) +

+ 150.0)

+ 1.0)

+ 5.0)

+ beta_s1_0_1 *

*(beta_s2_9_0 *

*(beta_s4_10_0 *

*(beta_s5_11_0 * (1.0) +

+ n_3*(xi_s6_13_1 *

*( contactPrice[1] )) +

+ 150.0)
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+ 1.0)

+ 1.0)

+ n_2*(( contactBPrice[5] +

+ contactPrice[1] +

+ totPrice[150] ))

+ n_4*(( contactPrice[1] +

+ contactPrice[1] +

+ totPrice[150] )) <= 155.0

• 0.0 + beta_s1_0_0 *

*(beta_s3_1_0 *

*(beta_s4_2_0 * (150.0)

+ 1.0)

+ 5.0)

+ beta_s1_0_1 *

*(beta_s2_9_0 *

*(beta_s4_10_0 * (150.0)

+ 1.0)

+ 1.0)

+ n_2*(( contactBPrice[5] +

+ contactPrice[1] +

+ totPrice[150] ))

+ n_4*(( contactPrice[1] +

+ contactPrice[1] +

+ totPrice[150] )) <= 155.0

• 0.0 + beta_s1_0_0 *

*(beta_s3_1_0 * (1.0)

+ 5.0)

+ beta_s1_0_1 *

*(beta_s2_9_0 * (1.0)

+ 1.0)

+ n_2*(( contactBPrice[5] +

+ contactPrice[1] +

+ totPrice[150] ))

+ n_4*(( contactPrice[1] +

+ contactPrice[1] +

+ totPrice[150] )) <= 155.0

• 0.0 + beta_s1_0_0 * (5.0)

129



CHAPTER 6. IMPLEMENTATION

+ beta_s1_0_1 * (1.0)

+ n_2*(( contactBPrice[5] +

+ contactPrice[1] +

+ totPrice[150] ))

+ n_4*(( contactPrice[1] +

+ contactPrice[1] +

+ totPrice[150] )) <= 155.0

• 0.0 <= 155.0

The initial value for price is 0. Contacting a service costs one, let say, euro.
A particular case is represented by the services of type B, for which the contact
costs 5 euro. The total cost is given by 150 (the basic cost) plus five times the
number of contacts to a service of type B, plus the number of contacts that the
system performs against another type of service. In the encoding of this goal
it is possible to see that there are four expressions for the cycles, while in the
graph representation it is easy to see that there are only three cycles. This is
not an error, but the result of the encoding of the converging point. In this case
n1, n3 are the counters for the cycle(s) formed by the faulty transition in state s7,
while n2, n4 are the counters for the cycles formed by the request of a revision.

The encoding of the vital ASel = true goal gives the following constraint:

false | beta_s1_0_0 & (beta_s3_1_0 &

&(beta_s4_2_0 &

&(beta_s5_3_1 & false))) |

| beta_s1_0_1 & (beta_s2_9_0 &

&(beta_s4_10_0 &

&(beta_s5_11_1 & false)) |

| true)

In this expression the only way to get the variable ASel being set to true is to
follow the part controlled by the second β variable in state s1: this variable, in
fact, multiplies a subexpression that is put in an or relation with true.

The encoding of the goal vital TrConcluded = true is expressed by the
following constraint:
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false | beta_s1_0_0 &

&(beta_s3_1_0 &

&(beta_s4_2_0 &(beta_s5_3_0 &

&(beta_s6_4_0 &

&(xi_s6_5_0 & true))))) |

| beta_s1_0_1 &

&(beta_s2_9_0 &

&(beta_s4_10_0 & (beta_s5_11_0 &

&(beta_s6_12_0 &

&(xi_s6_13_0 & true)))))

The variable TrConcluded, set to false at the beginning, is modified only by
the last transition, if the result is normal. This point in the system is reachable
following two different paths (contacting A or B), so the final expression is an
or between these two.

It is noticeable how only the effects that modify the state of the variable de-
fined in the goal are reported, while, if a nested expression modifies the state of
that variable, all the betas and xis regarding the nested expressions are consid-
ered.

This is the list of constraints given by the encoding of the branching points.
The converging point doubles the number of branching point after it, so there
are five constraints. These constraints are inserted (posted) three times, one
for every basic goal encoded: these conditions are related to the nature of the
domain itself, and not on the nature of the requests of the user.

- (s1): beta_s1_0_0 + beta_s1_0_1 <= 1

- (s5): beta_s5_11_0 + beta_s5_11_1 <= 1

- (s5): beta_s5_3_0 + beta_s5_3_1 <= 1

- (s6): xi_s6_5_0 + xi_s6_5_1 = 1

- (s6): xi_s6_13_0 + xi_s6_13_1 = 1
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The encoding of the achieve-all goal results in a list of implications. Also
in this case the number of constraints is increased by the presence of the join
point.

- if (vital_1_beta_s1_0_0 + vital_1_beta_s1_0_1 == 1)

then [ (vital_1_beta_s1_0_0 == vital-maint_0_beta_s1_0_0)

and (vital_1_beta_s1_0_1 == vital-maint_0_beta_s1_0_1) ]

- if (vital_1_beta_s3_1_0 == 1)

then [ (vital_1_beta_s3_1_0 == vital-maint_0_beta_s3_1_0) ]

- if (vital_1_beta_s4_2_0 == 1)

then [ (vital_1_beta_s4_2_0 == vital-maint_0_beta_s4_2_0) ]

- if (vital_1_beta_s5_3_0 + vital_1_beta_s5_3_1 == 1)

then [ (vital_1_beta_s5_3_0 == vital-maint_0_beta_s5_3_0)

and (vital_1_beta_s5_3_1 == vital-maint_0_beta_s5_3_1) ]

- if (vital_1_beta_s6_4_0 == 1)

then [ (vital_1_beta_s6_4_0 == vital-maint_0_beta_s6_4_0) ]

- if (vital_1_xi_s6_5_0 + vital_1_xi_s6_5_1 == 1)

then [ (vital_1_xi_s6_5_0 == vital-maint_0_xi_s6_5_0)

and (vital_1_xi_s6_5_1 == vital-maint_0_xi_s6_5_1) ]

- if (vital_1_beta_s2_9_0 == 1)

then [ (vital_1_beta_s2_9_0 == vital-maint_0_beta_s2_9_0) ]

- if (vital_1_beta_s4_10_0 == 1)

then [ (vital_1_beta_s4_10_0 == vital-maint_0_beta_s4_10_0) ]

- if (vital_1_beta_s5_11_0 + vital_1_beta_s5_11_1 == 1)

then [ (vital_1_beta_s5_11_0 == vital-maint_0_beta_s5_11_0)

and (vital_1_beta_s5_11_1 == vital-maint_0_beta_s5_11_1) ]

- if (vital_1_beta_s6_12_0 == 1)

then [ (vital_1_beta_s6_12_0 == vital-maint_0_beta_s6_12_0) ]

- if (vital_1_xi_s6_13_0 + vital_1_xi_s6_13_1 == 1)

then [ (vital_1_xi_s6_13_0 == vital-maint_0_xi_s6_13_0)

and (vital_1_xi_s6_13_1 == vital-maint_0_xi_s6_13_1) ]
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- if (vital_2_beta_s1_0_0 + vital_2_beta_s1_0_1 == 1)

then [ (vital_2_beta_s1_0_0 == vital-maint_0_beta_s1_0_0)

and (vital_2_beta_s1_0_1 == vital-maint_0_beta_s1_0_1) ]

- if (vital_2_beta_s3_1_0 == 1)

then [ (vital_2_beta_s3_1_0 == vital-maint_0_beta_s3_1_0) ]

- if (vital_2_beta_s4_2_0 == 1)

then [ (vital_2_beta_s4_2_0 == vital-maint_0_beta_s4_2_0) ]

- if (vital_2_beta_s5_3_0 + vital_2_beta_s5_3_1 == 1)

then [ (vital_2_beta_s5_3_0 == vital-maint_0_beta_s5_3_0)

and (vital_2_beta_s5_3_1 == vital-maint_0_beta_s5_3_1) ]

- if (vital_2_beta_s6_4_0 == 1)

then [ (vital_2_beta_s6_4_0 == vital-maint_0_beta_s6_4_0) ]

- if (vital_2_xi_s6_5_0 + vital_2_xi_s6_5_1 == 1)

then [ (vital_2_xi_s6_5_0 == vital-maint_0_xi_s6_5_0)

and (vital_2_xi_s6_5_1 == vital-maint_0_xi_s6_5_1) ]

- if (vital_2_beta_s2_9_0 == 1)

then [ (vital_2_beta_s2_9_0 == vital-maint_0_beta_s2_9_0) ]

- if (vital_2_beta_s4_10_0 == 1)

then [ (vital_2_beta_s4_10_0 == vital-maint_0_beta_s4_10_0) ]

- if (vital_2_beta_s5_11_0 + vital_2_beta_s5_11_1 == 1)

then [ (vital_2_beta_s5_11_0 == vital-maint_0_beta_s5_11_0)

and (vital_2_beta_s5_11_1 == vital-maint_0_beta_s5_11_1) ]

- if (vital_2_beta_s6_12_0 == 1)

then [ (vital_2_beta_s6_12_0 == vital-maint_0_beta_s6_12_0) ]

- if (vital_2_xi_s6_13_0 + vital_2_xi_s6_13_1 == 1)

then [ (vital_2_xi_s6_13_0 == vital-maint_0_xi_s6_13_0)

and (vital_2_xi_s6_13_1 == vital-maint_0_xi_s6_13_1) ]

- if [ (vital_1_beta_s1_0_0 + vital_1_beta_s1_0_1 == 1)

and (vital_2_beta_s1_0_0 + vital_2_beta_s1_0_1 == 1) ]

then [ (vital_1_beta_s1_0_0 = vital_2_beta_s1_0_0)

and (vital_1_beta_s1_0_1 = vital_2_beta_s1_0_1) ]

133



CHAPTER 6. IMPLEMENTATION

- if [ (vital_1_beta_s5_3_0 + vital_1_beta_s5_3_1 == 1)

and (vital_2_beta_s5_3_0 + vital_2_beta_s5_3_1 == 1) ]

then [ (vital_1_beta_s5_3_0 = vital_2_beta_s5_3_0)

and (vital_1_beta_s5_3_1 = vital_2_beta_s5_3_1) ]

- if [ (vital_1_beta_s5_11_0 + vital_1_beta_s5_11_1 == 1)

and (vital_2_beta_s5_11_0 + vital_2_beta_s5_11_1 == 1) ]

then [ (vital_1_beta_s5_11_0 = vital_2_beta_s5_11_0)

and (vital_1_beta_s5_11_1 = vital_2_beta_s5_11_1) ]

The branching variables considered in different goals must have the same
values, if a choice has been taken to solve these goals. For every decision point
there is an expression saying what has been exposed in Chapter 3: the controlled
decision points, implemented by β variables, are considered in any case, while
the non controlled ones, implemented by ξ variables, are considered only when
one of the two goals taken into account is a vital-maint one.

When all the constraints presented have been posted, the system is ready to
invoke the choco engine to search for a solution.

Solution to the constraint problem

When the choco engine finds a solution, it is given in output by the applica-
tion. The solution is composed of a set of values that have to be assigned to
the controlled variables and to the variables counting the number of cycle vis-
its. The application gives no value to the non-controlled variables, since this
depends on external events, and is therefore determined at run-time. The so-
lutions returned by the engine for the single goals are influenced also by the
implications given by the encoding of the achieve-all goal. The solutions, as
before, are presented as the application gives them in output. In particular, for
the vital-maint price ≤ 155 goal the system gives this list of values.

- n_1 = 0

- n_2 = 0
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- n_3 = 0

- n_4 = 0

- beta_s1_0_0 = 0

- beta_s1_0_1 = 1

- beta_s2_9_0 = 1

- beta_s3_1_0 = 0

- beta_s4_2_0 = 0

- beta_s4_10_0 = 1

- beta_s5_3_0 = 0

- beta_s5_3_1 = 0

- beta_s5_11_1 = 0

- beta_s5_11_0 = 1

- beta_s6_4_0 = 0

- beta_s6_12_0 = 1

The system, as a result for the vital TrConcluded = true goal, gives the fol-
lowing list of values:

- beta_s1_0_0 = 0

- beta_s1_0_1 = 1

- beta_s2_9_0 = 1

- beta_s3_1_0 = 0

- beta_s4_2_0 = 0

- beta_s4_10_0 = 1

- beta_s5_3_0 = 0

- beta_s5_3_1 = 0
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- beta_s5_11_0 = 1

- beta_s5_11_1 = 0

- beta_s6_4_0 = 0

- beta_s6_12_0 = 1

It is important to notice two facts: the solution does not contain any cycle
variable; this is due to the fact that there is no cycle defined in the domain that
affects the variable specified in the request. The second fact to underline is that
the solution has the same values as the one for the vital-maint goal. This is
guaranteed by the achieve-all semantic.

The application, solving the vital ASel = true goal, gives the following list
of values:

- beta_s1_0_0 = 0

- beta_s1_0_1 = 1

- beta_s2_9_0 = 0

- beta_s3_1_0 = 0

- beta_s4_2_0 = 0

- beta_s4_10_0 = 0

- beta_s5_3_0 = 0

- beta_s5_3_1 = 0

- beta_s5_11_1 = 0

- beta_s5_11_0 = 0

- beta_s6_4_0 = 0

- beta_s6_12_0 = 0

A choice is made at the first step; no more choices have to be taken, because
there is no other action that influences the value of the variable ASel, so the
other values are set to zero.
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Action

+Action(name:String,actionRole:Role,actionEffects:Map<String,
         List<ActionEffect>>)

+getActionEffect(result:ActionResult): List<ActionEffect>

+isSensing(): boolean

+getEffects(variable:Variable,result:ActionResult): List<ActionEffect>

Variable

+Variable(name:String,variableSpace:VariableSpace)

+Variable(name:String,variableSpace:VariableSpace,
          value:Object)

+getValue(): Object

+setValue(value:Object): void

+setValue(variable:Variable): void

+isDefined(): boolean

+getVariableSpace(): VariableSpace

+castToDouble(): double

DomainObject

+DomainObject(name:String)

+getName(): String

+equals(obj:Object)

Transition

+Transition(name:String,action:Action,fromState:State,
            toState:Map<String, State>)

+getAction(): Action

+getToState(result:ActionResult): State

+getResults(): Set<String>

+isDeterministic(): boolean

+getFromState(): State

State

+State(name:String)

+isTerminating(): boolean

+addOutgoingTransition(transition:Transition)

+isVisited(): boolean

+setNonVisited(): void

+setVisited(): void

+getTransitionSet(): Set<Transition>

Domain

+Domain(name:String,initialState:State,states:Map<String,
         State>,variables:Map<String, Variable>,
        actions:Map<String, Action>,transitions:Map<String,
         Transition>,roles:Map<String, Role>)

+loadFromFile(file:File): static Domain

+loadFromStream(stream:InputStream): static Domain

+clean(): void

+getCurrentState(): State

+getVariables(): Map<String, Variable>

+getActions(): Map

+getRoles(): Map

+getTransitions(): Map

+isInState(state:State): boolean

+update(transition:Transition,actionResult:ActionResult): void

+getVariableByName(name:final String): Variable

+getLastActionResult(): ActionResult

+getLastExecutedAction(): Action

+getLastExecutedTransition(): Transition

Figure 6.1: UML class diagram of the org.xsrl.domain package.
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CPVariable

+CPVariable(name:String,variableSpace:VariableSpace,
            transition:Transition,state:State)

+CPVariable(name:Name,variableSpace:VariableSpace,
            isDeterministic:boolean,transition:Transition,
            actionResult:ActionResult,state:State)

+CPVariable(name:String,variableSpace:VariableSpace,
            contents:CycleContents)

+isDeterministic(): boolean

+isNormal(): boolean

+isCycleCounter(): boolean

+toString(): String

+getState(): State

+getTransition(): Transition

+getContents(): CycleContents

ChocoGoalEncoder

+encodeGoal(goal:Goal,encoding:Encoding,
            problem:Problem,realModeler:RealModeler,
            chocoVars:CPVarName): Problem

BeforeThenEncoder

+encodeBeforeThen(g1:Goal,g2:Goal,encoding:Encoding,
                  problem:Problem,chocoVars:CPVarName): EncodedGoal

-addBeforeThenConstraints(g1:BasicGoal,g2:BasicGoal,
                          encoding:Encoding,
                          problem:Problem,
                          chocoVars:CPVarName): Problem

AchieveAllEncoder

+encodeAchieveAll(goals:List<Goal>,encoding:Encoding,
                  problem:Problem,realModeler:RealModeler,
                  chocoVars:CPVarName): EncodedGoal

-addAchieveAllConstraints(g_i:Goal,g_j:Goal,
                          encoding:Encoding,
                          chocoVars:CPVarName,
                          problem:Problem,
                          realModeler:RealModeler): Problem

CycleEncoder

+CycleEncoder(putter:CPVarPutter,rm:RealModeler,
              g:BasicGoal)

+encodeCycleList(l:List<CycleContents>)

+encodeCycle(cc:CycleContents)

+getStringRep(): String

+getExp(): RealExp

+getTotalStringExp(): String

+getTotalExp(): RealExp

-chooseTheRightEffect(effects:List<ActionEffect>,
                      g:BasicGoal): int

CPEncoding

-cpVariable: CPVariable

-encoding: Encoding

-transition: Transition

+CPEncoding(cpVariable:CPVariable,encoding:Encoding,
            transition:Transition)

+getCPVariable(): CPVariable

+getEncoding(): Encoding

+encode(): String

+toString(): String

CycleContents

+CycleContents(start:State,le:List<Encoding>,
               lt:List<Transition>,lar:List<ActionResult>)

+getStartingPoint(): State

+toString(): String

+getSRep(): String

+getExpRep(): RealExp

+getEncodings(): List<Encoding>

+getTransitions(): List<Transition>

+getResult(): List<ActionResult>

+getCPVar(): CPVariable

+getNextEncoding(e:Encoding): Encoding

+getNextTransition(e:Encoding): Transition

+getNextActionResult(e:Encoding): ActionResult

VitalMaintEncoder

+VitalMaintEncoder(problem:Problem,realModeler:RealModeler,
                   chocoVars:CPVarName)

+encodeVitalMaint(encoding:Encoding,goal:BasicGoal): List<Constraints>

-encodeVitalMaint(encoding:Encoding,goal:BasicGoal,
                  history:List<RealExp>,info:List<String>): List<RealExp>

-chooseTheRightEffect(effects:List<ActionEffect>,
                      goal:BasicGoal): int

VitalGoalEncoder

-realModeler: RealModeler

-problem: Problem

-chocoVars: CPVarName

-putter: CPVarPutter

-cycleEncoder: CycleEncoder

-goalVars: Map<CPVariable, IntVar>

+vitalGoalEncoder(problem:Problem,realModeler:RealModeler,
                  chocoVars:CPVarName)

+encodeVital(encoding:Encoding,goal:BasicGoal): EncodedGoal

+encodeVital(goal:BasicGoal,encoding:Encoding,
             v:Variable): ChocoConstraint

ChocoSolver

+synthetizePlan(domain:Domain,goal:Goal): Plan

+encodeDomain(state:State,domain:Domain): Encoding

+encodeCycle(state:State)

+encodeAction(encoding:Encoding,t:Transition,
              state:State,domain:Domain)

+encodeResult(result:ActionResult,state:State,
              domain:Domain,t:Transition): Encoding

Encoding

+Encoding(state:State,isDeterministic:boolean)

+emptyEncoding(): static Encoding

+addEncoding(transition:Transition,result:ActionResult,
             encoding:Encoding)

-addCPVariable(transition:Transition,actionResult:ActionResult): CPVariable

+isDeterministic(): boolean

+isBranchingPoint(): boolean

+getState(): State

+getNextEncoding(transition:Transition,result:ActionResult): Encoding

+getBranchVariables(): List<CPVariable>

+addCycle(cycle:CycleContents)

+getCycles(): List<CycleContents>

+clearCycles()

+addCycleInMap(cycle:CycleContents)

+getCyclesMap(): Map<CPVariable, CycleContents>

+getCyclesAsCollection(): Collection<CycleContents>

+getCycleCPVars(): Set<CPVariable>

org.xsrl.framework.Planner

Figure 6.2: UML class diagram of the org.xsrl.framework.cp package (only main classes).
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s1 s2 s3

t1:action1

price += 25

t3:action3

AMD−sel = true

price += 700

t2:action2

Intel−sel = true

price += 800

t3:fault3

t2:fault2

s4

t4:action4

concluded = true

price += 250

Figure 6.3: Graph representation of the example domain.

t2: buyB
BSel = true

price += 5

t1: buyA
ASel=true

price += 1

t3: shippingNeededForB
shipsel = true

price += 1

t4: shippingNeededForA
shipsel = true

price += 1

t5: shippingConditions
price += 150

t6: revisionNeeded
review = true

t7: accepted
price += 1

fault1: transactionProblem

t8: transactionFinished
TrConcluded = true

price += 1

User Seller A Seller B Shipper Bank

s1

s2 s3

s4

s5

s6

s7

Figure 6.4: Graph representation of the test case.
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Chapter 7

Conclusions

7.1 XSRL and its supporting framework

In the thesis we presented an approach for web service interaction based on
planning and constraint satisfaction and a service request language (XSRL) de-
veloped on the basis of this framework. The planning framework was developed
on the basis of a coherent view of the issues arising when planning requests
against web services under uncertainty (as plans inevitably do not execute as
expected) in dynamic environments where there is the constant need to be able
to identify critical decision trade-offs, revise goals and evaluate alternative op-
tions. This approach deals with an uncertain and dynamic world such as that
of web services a correspondence must be drawn between the actual business
process environment and the planers model of it. It then instantiates plans on
the basis of the plan model in terms of a user specific request and via interac-
tion with the service registries; and when if necessary, dynamically reconfigures
plans on the basis of user interaction. These design considerations are reflected
at the level of the request language that generates plans over web services resid-
ing in an e-marketplace and its run-time environment.

We defined the full semantics of XSRL in terms of execution structures and
we have provided algorithms that satisfy XSRL requests based on service reg-
istry supplied information and information gathered from web service interac-
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tions.

AI planning provides a sound framework for developing a web services re-
quest language and for synthesizing correct plans for it. Based on this premise,
we developed a framework for planning and monitoring the execution of web
service requests against standardized business processes. The requests taken in
the XSRL language are processed by a framework which interleaves planning
and execution in order to dynamically adapt to the opportunities offered by
available web services and to the preferences of users. The supporting frame-
work based in interleaving planning and execution has been implemented.

Having proposed a framework and having shown its feasibility does now
close the problem. In fact, there is a wide space for far more investigations.

One of the most important open issues is to find a proper balance between
off-line and on-line planning in the interleaved planning and execution frame-
work. This has a big impact on the efficiency of the approach. In the developed
framework, replanning is requested each time new information is acquired from
the environment. Instead, it can be useful to produce plans that “know” how to
react on the arrival of new information. Another efficiency issue is the enhance-
ment of service registries with better support for provider selection, e.g., based
on service quality characteristics or cached web services invocations.

An issue for future investigation is the interaction of the system with service
registries. In particular, service registry could be enhanced by providing bet-
ter support for provider selection, e.g., based on service quality characteristics.
From the point of view of planning, there are several aspects that need to be
addressed. For example, the current version of the planner does not keep track
of previous computations or “remember” history and patterns of interactions.

Finally, all necessary extensions to standard business process languages (e.g.,
BPEL) and description languages (e.g., WSDL) have to be identified. The
extension for BPEL is important because BPEL’s main intent is to orches-
trate the organizational workflows and it has lack of support of global inter-
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organizational choreography issues in which we are interested in.

7.2 Use of constraint programming

We proposed an approach to planning interactions with web services based on
a constraint programming encoding. The key characteristics of the encoding
are its dealing with non-determinism, its being unbounded, its representing the
possible executions on the domain including traversal properties. We provided
algorithms for encoding state representations of the domain together with user
requests given in an expressive goal language (XSRL). The proposed encoding
is particularly suited to deal with web service marketplaces and gives the user
the possibility to satisfy his desires. This is a major improvement with respect
to the previous frameworks to deal with web service requests based, for in-
stance, on a model based planner (discussed in Appendix B). In particular, with
the proposed approach we deal with numeric values in place of considering
boolean conditions coming from the satisfaction of an expression; we handle
preference goals by introducing an optimization function; while keeping the
desired properties of dealing with non-determinism, having primitives for exe-
cution properties (e.g., vital-maint goals) and having a framework to execute the
requests. This is an initial proposal to use constraints to encode the satisfaction
of a users request with respect to a set of autonomous web services.

The proposed framework is based on constraint programming. Such novel
modeling takes full advantage of constraint programming systems, being able
to build solutions incrementally, dealing with numeric values and preferences.
A number of issues are open for further investigation. Most notably, we have
not yet considered issues of efficiency of the proposed algorithms with respect
to the minimality of the encoding or of the propagation complexity or execu-
tion time. Future research, from the constraint programming point of view, also
demands a deeper evaluation of the “average” structure of the business graph
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and the resulting tightness of the related constraint problem; it is worth study-
ing the “right” balance between expressive power and simplicity of use with
respect to languages à la XSRL (e.g., think of web search engines, whose suc-
cess depends largely on the simplicity of the query languages); one may want to
“tune” the constraint modeling (e.g., via global constraints, soft constraints) and
the available resolution algorithms to handle service choreographies, but also to
be as efficient as possible. Encoding the problem into quantified constraints
problems allow us to model non-deterministic actions in a more compact man-
ner. However, to the best of our knowledge, in current constraint programming
languages one cannot directly model quantified constraint problems.

7.3 Monitoring of service compositions

We introduced the assertion language XSAL for expressing business rules in
the form of assertions over business processes. XSAL is deployable using the
framework we propose which is capable of automatically associating business
rules with relevant processes involved in a user request. This allows for con-
sistency and conformance to organizational rules and policies when executing
a business process. Additionally, it offers runtime control over its execution.
We have classified assertions with respect to two process characteristics: op-
erational context and ownership. With respect to the operational context, we
distinguish between simple, preservation and business entity assertions. Re-
garding ownership, we distinguish between business process, role and provider
level assertions. We then introduced a framework for planning user requests that
comply with assertions and monitoring their execution to recover from violat-
ing conditions. Specialized algorithms for planning, monitoring and executing
requests and assertions have been proposed for this framework. Finally, we
have shown how XSAL has the expressive power to define both functional and
non-functional properties in the assertions.
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The proposed framework and the XSAL language open interesting research
issues. One involves the performance of the framework, in particular, the way
providers are selected from the service registry is crucial for the efficiency and
effectiveness of the architecture. The current proposal does not address this
issue, in other words, providers are chosen randomly. A better solution is to
select providers based on provider-level assertions (for instance by comparing
active assertions), on reputation and history of previous interactions with the
provider, or optimizing some specific QoS parameter (e.g., cost of the service
or average latency of the service).

The proposed framework plans for requests and assertions, then monitors the
execution of the plans. If there is one possible execution path that can satisfy
the request and comply with its associated assertions, this will be found and
executed, if not, a failure will be returned. In case that a request succeeds no
information is currently provided regarding the quality of the execution. That
is, if more possible execution paths complying with the assertions and the user
request exist, then only one is guaranteed to be taken. An open issue concerns
the comparison of potential solutions (execution trajectories) against optimality
metrics, e.g., the shortest plan, the cheapest, the fastest or any other optimality
criteria. Solutions to the latter concerns could be addressed resorting to different
planning techniques to handle assertions.
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Appendix A

XSRL and XSAL in BNF notation

Let us first define the notation we use throughout the language definitions. The
notation is mostly based on BNF with the following assumptions:

• +element denotes multiple elements, at least one,

• [element] denotes optional element,

• <element> and </element> denotes starting and ending XML element tag
correspondingly,

• any trailing spaces before or after elements or XML tags are trimmed and
ignored.

In the proposed notation XSRL language is defined as follows:

xsrl <- ’<XSRL>’ goal ’</XSRL>’

goal <- achieve-all | then | prefer | optional

vital | atomic |

vital-maint | atomic-maint |

proposition

achieve-all <-

’<ACHIEVE-ALL>’ +goal ’</ACHIEVE-ALL>’

then <-

’<BEFORE>’ goal ’</BEFORE> <THEN>’ goal ’</THEN>
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APPENDIX A. XSRL AND XSAL IN BNF NOTATION

prefer <-

’<PREFER>’ goal ’</PREFER> <TO>’ goal ’</TO>’

optional <-

’<OPTIONAL>’ goal ’</OPTIONAL>’

vital <-

’<VITAL>’ proposition ’</VITAL>’

atomic <-

’<ATOMIC>’ proposition ’</ATOMIC>’

vital-maint <-

’<VITAL-MAINT>’ proposition ’</VITAL-MAINT>’

atomic-maint <-

’<ATOMIC-MAINT>’ proposition ’</ATOMIC-MAINT>’

proposition <- ’<CONST ATT="true|false">’ | var |

’<AND>’ +proposition ’</AND>’ |

’<OR>’ +proposition ’</OR>’ |

’<NOT>’ proposition ’</NOT>’ |

’<GREATER>’ var ’</GREATER>’

’<THAN>’ rval ’</THAN>’ |

’<LESS>’ var ’</LESS>’

’<THAN>’ rval ’</THAN>’ |

’<EQUAL>’ var rval ’</EQUAL>’

var <- a..zA..Z[rval]

rval <- +a..zA..Z0..9.

The XSAL language in the proposed notation is defined as follows:

xsal <- ’<XSAL>’ assertion ’</XSAL>’

assertion <- statement | achieve-all | then | prefer

achieve-all <- ’<ACHIEVE-ALL>’ +assertion ’</ACHIEVE-ALL>’

then <- ’<BEFORE>’ assertion ’</BEFORE>’

’<THEN>’ assertion ’</THEN>’

prefer <- ’<PREFER>’ assertion ’</PREFER>’

’<TO>’ assertion ’</TO>’

statement <- entity | vital | optional |
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atomic | vital-maint | optional-maint

entity <- ’< ENTITY VARIABLE = ’ var ’>’

start-from

follows*

’</ENTITY>’

start-from <- ’<START-FROM>’ proposition ’</START-FROM>’

follows <- ’<FOLLOWS>’ proposition ’</FOLLOWS>’

’<BY>’ proposition ’</BY>’

vital <- ’<VITAL>’ proposition ’</VITAL>’

optional <- ’<OPTIONAL>’ proposition ’</OPTIONAL>’

atomic <- ’<ATOMIC>’ proposition ’</ATOMIC>’

vital-maint

<- ’<VITAL-MAINT>’ proposition ’</VITAL-MAINT>’

optional-maint

<- ’<OPTIONAL-MAINT>’ proposition ’</OPTIONAL-MAINT>’

proposition <- ’<CONST ATT="true|false">’ | var |

’<AND>’ +proposition ’</AND>’ |

’<OR>’ +proposition ’</OR>’ |

’<NOT>’ proposition ’</NOT>’ |

’<GREATER>’ var ’</GREATER>’

’<THAN>’ rval ’</THAN>’ |

’<LESS>’ var ’</LESS>’

’<THAN>’ rval ’</THAN>’ |

’<EQUAL>’ var rval ’</EQUAL>’

var <- a..zA..Z[rval]

rval <- +a..zA..Z0..9.
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Appendix B

Service planning problem using planning
as model checking

In this chapter we show how to adapt the planner based on the planning as
model checking algorithms to solve the service planning problem defined in
Chapter 3. Planning as model checking supports extended goals over boolean
variables [114], but it cannot deal with numeric variables and constraints effi-
ciently. In contrast, XSRL in addition to dealing with boolean variables used in
typical goal languages, such as the one proposed in [73], deals with variables
that range over domains such as reals, integers, and so on. To allow for this we
introduce the notion of ‘booleanization’. The idea behind booleanization is that
constraints expressed in the goal over domains ranging over variables are treated
as boolean propositions. For example, consider the expression money < 100

with an integer variable money. After booleanization this becomes a boolean
proposition that can be either true or false.

Definition 17 (Booleanization). The booleanization of a domain D with

respect to a goal g is a tuple

BD = 〈S ′, P rop, Act, R, P, Out, Tr′, RoleAct, RoleP 〉 derived

from the original domain D in the following way. The set of variables V ar is

replaced by the set of boolean proposition Prop according to the following

rules:
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• all boolean variables in V ar are also in P ,

• all linear constraints appearing in g are added as boolean propositions in

P ,

• all variables in V ar that do not appear in g are omitted in P .

The set of states and transition function are changed to fit the above

introduction of boolean propositions.

An execution structure of a plan over a booleanized domain for a given goal,
represents the possible ways a plan can be executed and it is essential to deter-
mine the reachability of a given goal from a particular state.

Definition 18 (Execution Structure). The execution structure of plan π in

the booleanization of domain D with respect to goal g from state s0 is the

structure K = 〈S, R, L〉, where

• S = {(s, c) : action(s, c) is defined } is the set of states of the execution

structure,

• R = {((s, c), (s′, c′)) : if ∃(s, c) → (s′, c′) and

ctxt(s, c, s′) = c′} is the relation

• L(s, c) = {b ∈ P},

The execution structure of a plan in a domain represents how the domain is
traversed by the plan. Before defining the notion of goal satisfaction, we need
to introduce a few elements of notation. We use the symbol σ to denote finite

paths. S denotes the set of all states in the execution structure K. Given a set Σ

of finite paths, the set of minimal paths in Σ is defined as min{Σ} = {σ ∈ Σ :

∀σ′ < σ =⇒ σ′ 6∈ Σ}. Given a goal g, Sg(s) represents the set of finite paths
that lead to the satisfaction of goal g from state s, while Fg(s) represents the set
of finite paths that lead to a failure. A state s′ is said to be reachable from the
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state s if there exists a path starting from s and leading to s′. A plan is denoted
by π.

The notion of goal satisfaction K, s |= g is defined in terms of the set of fail-
ure states for the goal g on the execution structure K derived from a booleanized
domain with starting state s as follows

K, s |= g iff Fg(s) = ∅

The set of failure states Fg(s) for a goal g from a state s is defined inductively
in the following way:

p

S(s) = {(s)}, F (s) = ∅, that is, p ∈ L(s) for all proposition letters p of
the booleanized domain, otherwise S(s) = ∅, F (s) = {(s)}

¬p, p1 ∧ p2, p1 ∨ p1

not p, p1 and p1, p1 or p1

achieve-all g1..gn

S(s) = min{σ : ∃σ1 ≤ σ σ1 ∈ Sg1
(s) ∧ . . . ∧ ∃σn ≤ σ σn ∈ Sgn

(s)}
F (s) = min{Fg1

(s) ∪ . . . ∪ Fgn
(s)}

before g1 then g2

S(s) = {σ1; σ2 : σ1 ∈ Sg1
(s) ∧ σ2 ∈ Sg2

(last(σ1))}
F (s) = {σ1 : σ1 ∈ Fg1

(s)} ∪ {σ1; σ2 : σ1 ∈ Sg1
(s) ∧ σ2 ∈ Fg2

(last(σ1))}

prefer g1 to g2

S(s) = {σ1 : σ1 ∈ Sg1
(s)} ∪ {σ1; σ2 : σ1 ∈ Fg1

(s) ∧ σ2 ∈ Sg2
(last(σ1))}

F (s) = {σ1; σ2 : σ1 ∈ Fg1
(s) ∧ σ2 ∈ Fg2

(last(σ1))}

atomic p

if there is some infinite path ρ such that ∀s′ ∈ ρ s′ 6|= p then
S(s) = ∅, F (s) = {s}, otherwise:
S(s) = min{σ : first(σ) = s ∧ last(σ) |= p}, F (s) = ∅
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vital p

S(s) = min{σ : first(σ) = s ∧ last(σ) |= p}
F (s) = min{σ : first(σ) = s∧ ∀s′ ∈ σ s′ 6|= p∧ ∀σ′ ≥ σ last(σ′) 6|= p}

optional p

• if ∃π : π, s |= vital p, otherwise

• if ∀π′ 6= π : π′, s 6|= vital p

optional-maint p

• if ∃π : π, s |= vital maint p, otherwise

• if ∀π′ 6= π : π′, s 6|= vital maint p

vital-maint p

if K, s′ |= p holds for all states s′ reachable from s then

S(s) = ∅, F (s) = ∅, otherwise S(s) = ∅, F (s) = {s}

The satisfaction of a goal is thus defined in terms of whether a goal may fail
or not during execution.

A solution to an XSRL request is defined in terms of the plan and one of the
possible plan executions. This execution is required to satisfy all XSRL goal
propositions. Formally,

Definition 19 (Solution). A solution for a domain D with respect to a goal g

from state s0 is the tuple 〈π, σ〉, where:

π is a valid plan for domain D and goal g: KD,π, s0 |= g

σ is one of the possible executions of the plan π, that satisfies the goal g

A problem of interleaving planning and execution is the finding of a solution
for given domain, goal and initial state.
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Algorithm 10 plan(domain d, state s, goal g)
domainbool = booleanize(d)
repeat

goalbool= booleanize(g)
plan = MBPplan(domainbool,s,goalbool)
if plan != failure then

return plan
else

if there are untraversed combinations of optional goals then
modify g accordingly

else
return failure

end if
end if

until true
return failure

The planner function (Algorithm 10) is very short as it relies on an existing
planner (MBP). MBP is a model based planner which, given a domain descrip-
tion and a goal, synthesizes a plan for the given goal or returns failure if a plan
does not exist. Since MBP deals only with domains and goals in which the vari-
ables are boolean a preliminary step is necessary in order to adapt MBP to our
framework. This reduction, called booleanization, takes all linear constraints
over non boolean variables and turns them into boolean propositions which are
true, false or undefined in the current state of the domain. The same reduc-
tion is necessary for the goal. The planner returns a sequence of actions for
‘reaching’ the booleanized goal. For brevity, we do not give the full details of
booleanization here, but simply explain the basic concept behind it:

(i) The booleanized domain is as the original one except that instead of the
set of variables we have a set of proposition letters specified by the rules
(i) and (ii).

ii non-bool linear constraints in the goal are transformed into boolean propo-
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sitions. Note that two distinct propositions (e.g., price < 10 and price >

5) are introduced to take into account two constraints on the same variable.

(iii) The truth of the propositions is established recursively by starting from
the current state, looking at the current values of the variables and moving
along the actions using semantic rules to establish the truth of propositions.
In case of conflicting values for a proposition in a state (e.g., the case of two
actions with different semantic rules entering in the same state), the state
is divided into two states and then the propagation proceeds further from
each state. If an action enters an already visited state without proposition
conflicting value then the booleanization process is complete.

After the booleanization, the domain is passed to a model-based planner.
The planner is invoked until the plan is found or all combinations of optional
goals are attempted. The algorithm works with optional goals in the following
way. First, it processes them as vital and, in case of failure, the planner function
iterates through the optional goals, eliminating (or reintroducing) them from a
goal until it can synthesize a plan or all combinations of optional goals have
been taken into account. For instance, for an optional goal “booking a train, if
possible”: first the planner tries to find a plan with “booking a train” as a vital
condition and then, in case of failure, it tries to synthesize a plan without any re-
striction on trains. There is no particular rule on which goals are eliminated first
and in which order. The algorithm only ensures to the user a complete search
throughout all optional goals combinations. This approach gives us correct but
possibly non optimal solution, for instance, the algorithm may find a solution
with a hotel price equal to 200, where there may exist hotels with prices equal
to 180. This is caused by the non optimality of solutions generated a planner
such as MBP. An optimal search would require a higher level of complexity.

Despite the fact that planning as model checking algorithms are not efficient
with domains with large amount of numeric data and constraints (that is typical
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for web services scenario), it can be used for efficient planning for domains with
mostly boolean formulas with limited number of action effects over numeric
variables, like integers and reals.

However, the algorithms for planning as model checking based on booleaniza-
tion does preserve completeness in general. In order to be complete, there are
number of additional assumptions have to be held, as it is shown in the follow-
ing section.

B.1 Completeness and correctness of planning as model check-
ing with booleanization

Lemma 1 (Repeatable executions). Given a domain D, goal g and an

initial state s0, if the assumptions (ii) and (iii) are satisfied, then the execution

σ for a plan π is repeatable, that is, the execution σ of the plan π is invariant

from the number of times the plan π is executed.

Repeatable executions. An execution of a plan depends on an environment.
More precisely, it depends on the knowledge variables and on actions output
types. From assumption (ii) it follows that knowledge-gathering actions return
the same values being invoked in the same context. Thus, the environment for
all plan executions is the same. By assumption (iii) for the same knowledge
variables values actions have a deterministic outcome. It follows that all execu-
tions of a plan are the same.

Lemma 2 (Infinite executions). Given a domain D, goal g and an initial

state s0, if the assumptions (ii) and (iii) are satisfied, then the infinite execution

σ for a plan π is always successful, that is, KD,π, s0 |= g.

Infinite executions. The plan consists of finite number of states, contexts and
transitions between them, but it can imply executions that have infinitely many
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action invocations. When plan is executed, Algorithms 8 checks if the goal is
failed after every action. Thus, infinite execution is possible only when goal is
satisfied after each action, that is, if KD,π, s0 |= g.

Theorem 1 (Algorithm soundness and completeness). Given a domain D,

a goal g and an initial state s0, under assumptions (i)–(vi) Algorithms 7, 8

and 10 are sound and complete:

1. if there exists a non-empty set of solutions Ω, s.t.

∀ 〈π, σ〉 ∈ Ω : KD,π, s0 |= g and KD,σ, s0 |= g then plan π of one of the

solutions 〈π, σ〉 is found and its successful execution σ is executed by

Algorithms 7, 8 and 10.

2. if the set of solutions is empty Ω = ∅ then Algorithm 7 returns failure

Algorithm completeness. The proof is split in two parts. First, we prove that
if at least one solution 〈π, σ〉 exists then Algorithm 7 finds a plan π and ex-
ecutes a successful execution σ. Secondly, completeness property is proven:
Algorithm 7 returns a failure if there is no solution for the given input.

Soundness. From [73] it follows that the planner for extended goals based on
model checking always synthesizes a valid plan if at least one exists, and returns
failure otherwise. A valid plan is the plan that for a given booleanized domain
Dbool satisfies the goal g: KDbool,π, s0 |= g. From assumption (iv) it follows that
if a valid plan exists for domain D then it also exists for a booleanized one, and,
therefore, the model-based planner finds it.

Let us assume that solution 〈π, σ〉 exists s.t. KD,π, s0 |= g and KD,σ, s0 |= g.
From assumption (i) it follows that all actions are retractable. Therefore we can
always return to an initial state with the same critical variables values. Thus,
without loss of generality, we can assume that at start of every iteration the
corresponding compensated actions are executed to return the domain to an
initial state.
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Let us define the algorithm iteration as one pair of planner-executor invoca-
tion in Algorithm 7. As it follows from the theorem assumptions (ii) and (iii)
the number of algorithm iterations is finite. Therefore either an executor is stuck
in an infinite execution or the planner is invoked for all possible combinations
of providers. From Lemma 2 it follows that if an executor processes the infinite
execution then the execution satisfies the goal. On the other hand, if the planner
is invoked for all possible combinations of providers, it should, finally, synthe-
size a plan yielding a solution. From Lemma 1 it follows that each plan π has
a repeatable execution σ, and, therefore a synthesis of solution plan π implies
that executor processes the execution σ from a solution pair 〈π, σ〉.

Completeness. It is obvious that if the plan π is synthesized and its execution
completely processed, they form a solution. The synthesized plan is always
satisfies the goal: KD,π, s0 |= g, from other point, if the executor processes the
goal till the end, then this execution is successful. As follows from Lemma 2
infinite executions are always successful. Therefore, by definition of a solution,
a pair 〈π, σ〉 is a solution. We have already shown that the number of iterations
is finite, therefore, if there is no solution for the problem then Algorithm 7
returns failure.

Finally, we consider the domain integrity property.

Corollary 1 (Domain integrity). Given a domain D, a goal g and an initial

state s0, under assumptions (i)–(vi) domain integrity is preserved by

Algorithms 7, 8 and 10, that is, if Algorithm 7 returns failure then the critical

variables remain unchanged.

Domain integrity. We have already shown that Algorithm 7 returns failure if
there is no solution. Before returning a failure, the rollback plan is synthesized
and executed. It is always successful according to assumption (i), and, therefore,
the algorithm preserves domain integrity.
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