
Formal Tropos
Integrating Formal Methods and Software Engineering

Marco Roveri
joint work with M. Pistore, A. Fuxman, J. Mylopoulos, P. Traverso and L. Liu

roveri@irst.itc.it

ITC-IRST, Via Sommarive 18, 38055 Povo, Trento, Italy

Formal Tropos – p. 1

Outline

Motivations

The Formal Tropos Project

Results so Far: Model Checking Early Requirements

Conclusions and Future Works

Formal Tropos – p. 2

A Software Development Process

Late Requirements

Implementation

Architectural Design

Early Requirements

Detailed Design

Early Requirements amounts to the definition of the domain.

Late Requirements amounts to explicitly introduce the system and in
refining and completing the system definition.

Architectural Design amounts to describe how system components work
together.

Detailed Design amounts to refine the architectural components of the
system.

Implementation amounts to the effective coding.

Formal Tropos – p. 3

A Software Development Process

Late Requirements

Implementation

Architectural Design

Early Requirements

Detailed Design

Early Requirements amounts to the definition of the domain.

Late Requirements amounts to explicitly introduce the system and in
refining and completing the system definition.

Architectural Design amounts to describe how system components work
together.

Detailed Design amounts to refine the architectural components of the
system.

Implementation amounts to the effective coding.

Formal Tropos – p. 3

A Software Development Process

Late Requirements

Implementation

Architectural Design

Early Requirements

Detailed Design

Early Requirements amounts to the definition of the domain.

Late Requirements amounts to explicitly introduce the system and in
refining and completing the system definition.

Architectural Design amounts to describe how system components work
together.

Detailed Design amounts to refine the architectural components of the
system.

Implementation amounts to the effective coding.

Formal Tropos – p. 3

A Software Development Process

Late Requirements

Implementation

Architectural Design

Early Requirements

Detailed Design

Early Requirements amounts to the definition of the domain.

Late Requirements amounts to explicitly introduce the system and in
refining and completing the system definition.

Architectural Design amounts to describe how system components work
together.

Detailed Design amounts to refine the architectural components of the
system.

Implementation amounts to the effective coding.

Formal Tropos – p. 3

A Software Development Process

Late Requirements

Implementation

Architectural Design

Early Requirements

Detailed Design

Early Requirements amounts to the definition of the domain.

Late Requirements amounts to explicitly introduce the system and in
refining and completing the system definition.

Architectural Design amounts to describe how system components work
together.

Detailed Design amounts to refine the architectural components of the
system.

Implementation amounts to the effective coding.

Formal Tropos – p. 3

Formal Methods and
Software Development Process

Formal Methods provide a very powerful specification and early
debugging techniques, but. . .

The gap between these two disciplines limits the applicability and
effectiveness of Formal Methods in practice (e.g. language).

Formal Methods are usually applied to advanced stages in Software
Development Processes.

Formal Verification

Late Requirements

Implementation

Architectural Design

Early Requirements

Detailed Design

System too big to be efficiently handled.
Possible bugs discovered too late.

Formal Tropos – p. 4

Formal Methods and
Software Development Process

Formal Methods provide a very powerful specification and early
debugging techniques, but. . .

The gap between these two disciplines limits the applicability and
effectiveness of Formal Methods in practice (e.g. language).

Formal Methods are usually applied to advanced stages in Software
Development Processes.

Formal Verification

Late Requirements

Implementation

Architectural Design

Early Requirements

Detailed Design

System too big to be efficiently handled.
Possible bugs discovered too late.

Formal Tropos – p. 4

Formal Methods and
Software Development Process

Formal Methods provide a very powerful specification and early
debugging techniques, but. . .

The gap between these two disciplines limits the applicability and
effectiveness of Formal Methods in practice (e.g. language).

Formal Methods are usually applied to advanced stages in Software
Development Processes.

Formal Verification

Late Requirements

Implementation

Architectural Design

Early Requirements

Detailed Design

System too big to be efficiently handled.
Possible bugs discovered too late.

Formal Tropos – p. 4

Formal Methods and
Software Development Process

Formal Methods provide a very powerful specification and early
debugging techniques, but. . .

The gap between these two disciplines limits the applicability and
effectiveness of Formal Methods in practice (e.g. language).

Formal Methods are usually applied to advanced stages in Software
Development Processes.

Formal Verification

Late Requirements

Implementation

Architectural Design

Early Requirements

Detailed Design

System too big to be efficiently handled.
Possible bugs discovered too late.

Formal Tropos – p. 4

The Formal Tropos Project

Formal Tropos extends the Tropos approach with Formal Specification and
Verification and Validation techniques.

Provides an uniform approach.

One specification language for all the phases.

Smooth borders between the phases.

Modeling concepts: actors and their dependencies.

Very general: appropriate for large systems.

Compositional verification techniques are applicable.

Change of perspective: start from the early requirements:

Formal verification can be very convenient in this phase.

GOAL: an effective integration and harmonization of Formal Methods in the
Tropos Software Development Process.

Formal Tropos – p. 5

The Formal Tropos Project

Formal Tropos extends the Tropos approach with Formal Specification and
Verification and Validation techniques.

Provides an uniform approach.

One specification language for all the phases.

Smooth borders between the phases.

Modeling concepts: actors and their dependencies.

Very general: appropriate for large systems.

Compositional verification techniques are applicable.

Change of perspective: start from the early requirements:

Formal verification can be very convenient in this phase.

GOAL: an effective integration and harmonization of Formal Methods in the
Tropos Software Development Process.

Formal Tropos – p. 5

The Formal Tropos Project

Formal Tropos extends the Tropos approach with Formal Specification and
Verification and Validation techniques.

Provides an uniform approach.

One specification language for all the phases.

Smooth borders between the phases.

Modeling concepts: actors and their dependencies.

Very general: appropriate for large systems.

Compositional verification techniques are applicable.

Change of perspective: start from the early requirements:

Formal verification can be very convenient in this phase.

GOAL: an effective integration and harmonization of Formal Methods in the
Tropos Software Development Process.

Formal Tropos – p. 5

The Formal Tropos Project

Formal Tropos extends the Tropos approach with Formal Specification and
Verification and Validation techniques.

Provides an uniform approach.

One specification language for all the phases.

Smooth borders between the phases.

Modeling concepts: actors and their dependencies.

Very general: appropriate for large systems.

Compositional verification techniques are applicable.

Change of perspective: start from the early requirements:

Formal verification can be very convenient in this phase.

GOAL: an effective integration and harmonization of Formal Methods in the
Tropos Software Development Process.

Formal Tropos – p. 5

The Formal Tropos Project

Formal Tropos extends the Tropos approach with Formal Specification and
Verification and Validation techniques.

Provides an uniform approach.

One specification language for all the phases.

Smooth borders between the phases.

Modeling concepts: actors and their dependencies.

Very general: appropriate for large systems.

Compositional verification techniques are applicable.

Change of perspective: start from the early requirements:

Formal verification can be very convenient in this phase.

GOAL: an effective integration and harmonization of Formal Methods in the
Tropos Software Development Process.

Formal Tropos – p. 5

Applying FM to Early Requirements

Early Requirement Specification is a crucial phase in the development
process.

Formal Methods are commonly used in advanced stage of the
development process.

Formal Methods are difficult to apply in Early Requirements:

The typical approach that amounts to validate an implementation
against requirements does not apply.

Formal Methods require a detailed description of the behavior of the
system.

The concepts of Formal Methods are not appropriate for Early
Requirements.

Formal Tropos – p. 6

Applying FM to Early Requirements (II)

Formal Methods in Early Requirements cannot be used to prove
correctness of specifications.

However they can . . .

show misunderstanding and omissions in the requirements that
might not be evident in an informal setting.

assist the requirement elicitation by helping the interaction with
stakeholders.

add expressive power to the requirement specification formalism.

Formal Tropos – p. 7

The RBC case study in Tropos

T01T02

T3T1 T2

MA1 MA2

T4 T5

Train RBC

Pos

Avoid
Collision Generate

MARespect
MA Send MA

Reach
Dest.

There are different instances of actors, goals, dependencies, and
relations among these instances.

Strategic dependencies have a temporal evolution (they arise, they are
fulfilled, . . .).

Formal Tropos – p. 8

The RBC case study in Tropos

T01T02

T3T1 T2

MA1 MA2

T4 T5

Train RBC

Pos

Avoid
Collision Generate

MARespect
MA Send MA

Reach
Dest.

There are different instances of actors, goals, dependencies, and
relations among these instances.

Strategic dependencies have a temporal evolution (they arise, they are
fulfilled, . . .).

Formal Tropos – p. 8

The RBC case study in Tropos

T01T02

T3T1 T2

MA1 MA2

T4 T5

Train RBC

Pos

Avoid
Collision Generate

MARespect
MA Send MA

Reach
Dest.

There are different instances of actors, goals, dependencies, and
relations among these instances.

Strategic dependencies have a temporal evolution (they arise, they are
fulfilled, . . .).

Formal Tropos – p. 8

The RBC case study in Tropos (II)

Interlocking

RBC

Emergencies

Train

Go On

Respect
MA

Signal
Position

Assign
MA

Gnenerate
Valid
MA

Signal
Emergencies

Send MA

Get TDS
Status

Get
Train

Position

Handle
Train

Registartion

Interlocking
works

correctly

Get Emerg.
Status

Get
MA

Register
New RBC

Efficently
use network

Set
Routes

Handle
Precedencies

Compute
Position

TDS

Compute
TDS Status

TrainPositionTrainRegistration

RouteStatus TDSStatus

Emergency
Status

Correct
Functioning

Moving
Authority

Avoid
Collision

Moving
Authority
Exclusive

Generate
Mutually

Exclusive MA

Get Riute
tatus

Formal Tropos – p. 9

The RBC in Formal Tropos

Actor Train
Goal AvoidCollision
Goal RespectMA
Goal ReachDestination

Actor RBC
Goal GenerateMA

Dependency Pos
Type resource
Depender RBC
Dependee Train

Dependency SendMA
Type Goal
Depender Train
Dependee RBC

Formal Tropos – p. 10

The RBC in Formal Tropos (II)

Adding the “class” layer . . .

Entity Track
Entity MovingAuthority

Attribute tracks : set of Track
Entity Position

Attribute track : Track
Actor Train

Goal AvoidCollision
Goal RespectMovingAuthority
Goal ReachDestination
Attribute

pos : Position
ma : MovingAuthority

.

Formal Tropos – p. 11

Modeling the temporal aspects

Formal Tropos places special emphasis in modeling the “strategic” aspects of
the evolution of the dependencies.

The focus is on the two central moments in the life of dependencies and
entities: creation and fulfillment.

Formal Tropos allows the designer:

to specify different modalities for the fulfillment of the dependencies
(e.g.: is it a maintain or an achieve goal?)

to specify temporal constraints on the creation and fulfillment of
dependencies and goals.

Formal Tropos – p. 12

The RBC in Formal Tropos (III)

Adding goal modalities . . .

Actor Train
Goal AvoidCollision

Mode maintain
. . .
Goal ReachDestination

Mode achieve
Dependency Pos

Type resource
Mode maintain
Depender RBC
Dependee Train
. . .

Formal Tropos – p. 13

The RBC in Formal Tropos (IV)

Adding behavioral properties . . .

Actor Train
Goal AvoidCollision

Mode maintain
Fulfillment condition

exists rma : RespectMA (rma.actor = self ∧ Fulfilled(rma))
. . .

Dependency SendMA
Type goal
Mode maintain
Depender Train Dependee RBC
Creation condition

exists gma : GenerateMA
(gma.actor = dependee ∧ Fulfilled(gma))

. . .

Formal Tropos – p. 14

Constraints Properties in Formal Tropos

Constraint properties determine the possible evolutions of the objects in
the specification.

Constraint properties are specified with formulas given in a first-order
linear-time temporal logic with past operators.

Three kinds of properties:

creation properties.

invariants.

fulfillment properties.

Creation and fulfillment properties may express:

necessary conditions (for creation, fulfillment. . .).

sufficient conditions, or triggers.

necessary and sufficient conditions, or definitions.

Formal Tropos – p. 15

Formal Analysis in Formal Tropos

Formal Tropos allows for the following kinds of formal analysis:

consistency check:

“the specification admits valid scenarios”.
“all the class will be created”.
. . .

possibility check: “there is some scenario for the system that respects
certain possibility properties”.
assertion validation: “all scenarios for the system respect certain
assertion properties”.
animation: the user interactively explores valid scenarios for the system.

Gives immediate feedback on the effects of the constraints.
Makes it possible to catch trivial errors.
Is an effective way of communicating with the stakeholder.

Formal Tropos – p. 16

Formal Analysis in Formal Tropos

Formal Tropos allows for the following kinds of formal analysis:

consistency check:

“the specification admits valid scenarios”.
“all the class will be created”.
. . .

possibility check: “there is some scenario for the system that respects
certain possibility properties”.
assertion validation: “all scenarios for the system respect certain
assertion properties”.
animation: the user interactively explores valid scenarios for the system.

Gives immediate feedback on the effects of the constraints.
Makes it possible to catch trivial errors.
Is an effective way of communicating with the stakeholder.

Formal Tropos – p. 16

Formal Analysis in Formal Tropos

Formal Tropos allows for the following kinds of formal analysis:

consistency check:

“the specification admits valid scenarios”.
“all the class will be created”.
. . .

possibility check: “there is some scenario for the system that respects
certain possibility properties”.

assertion validation: “all scenarios for the system respect certain
assertion properties”.
animation: the user interactively explores valid scenarios for the system.

Gives immediate feedback on the effects of the constraints.
Makes it possible to catch trivial errors.
Is an effective way of communicating with the stakeholder.

Formal Tropos – p. 16

Formal Analysis in Formal Tropos

Formal Tropos allows for the following kinds of formal analysis:

consistency check:

“the specification admits valid scenarios”.
“all the class will be created”.
. . .

possibility check: “there is some scenario for the system that respects
certain possibility properties”.
assertion validation: “all scenarios for the system respect certain
assertion properties”.

animation: the user interactively explores valid scenarios for the system.

Gives immediate feedback on the effects of the constraints.
Makes it possible to catch trivial errors.
Is an effective way of communicating with the stakeholder.

Formal Tropos – p. 16

Formal Analysis in Formal Tropos

Formal Tropos allows for the following kinds of formal analysis:

consistency check:

“the specification admits valid scenarios”.
“all the class will be created”.
. . .

possibility check: “there is some scenario for the system that respects
certain possibility properties”.
assertion validation: “all scenarios for the system respect certain
assertion properties”.
animation: the user interactively explores valid scenarios for the system.

Gives immediate feedback on the effects of the constraints.
Makes it possible to catch trivial errors.
Is an effective way of communicating with the stakeholder.

Formal Tropos – p. 16

Possibility Check in Formal Tropos

A possibility:

describes expected, valid scenarios of the specification;

is used to guarantee that the specification does not rule out any wanted
execution of the system.

Example: “It is always possible for a train to achieve P1 and then P2”.

T01

T3T1 T2 T4 T5

P1 P2

Global possibility
exists t : Train F ((t.pos = P1) ∧ F (t.pos = P2))

Formal Tropos – p. 17

Possibility Check in Formal Tropos

A possibility:

describes expected, valid scenarios of the specification;

is used to guarantee that the specification does not rule out any wanted
execution of the system.

Example: “It is always possible for a train to achieve P1 and then P2”.

T01

T3T1 T2 T4 T5

P1 P2

Global possibility
exists t : Train F ((t.pos = P1) ∧ F (t.pos = P2))

Formal Tropos – p. 17

Assertion Validation in Formal Tropos

An assertion:

describes expected conditions for all the valid scenarios;

is used to guarantee that the specification does not allow for unwanted
scenarios.

Example: “It is never the case that two different trains occupy the same
position if they respect their moving authority.”

T01T02

T3T1 T2

MA1 MA2

T4 T5

Global assertion
forall t1 : Train (forall t2 : Train

(t1 6= t2) ∧ respectma(t1,t1.ma) ∧ respectma(t2,t2.ma))
→ (t1.pos 6= t2.pos)))

Formal Tropos – p. 18

Assertion Validation in Formal Tropos

An assertion:

describes expected conditions for all the valid scenarios;

is used to guarantee that the specification does not allow for unwanted
scenarios.

Example: “It is never the case that two different trains occupy the same
position if they respect their moving authority.”

T01T02

T3T1 T2

MA1 MA2

T4 T5

Global assertion
forall t1 : Train (forall t2 : Train

(t1 6= t2) ∧ respectma(t1,t1.ma) ∧ respectma(t2,t2.ma))
→ (t1.pos 6= t2.pos)))

Formal Tropos – p. 18

The technical details

Our approach consists of the following 3 steps:

1. The analyst writes a Formal Tropos specification.

2. T-Tool automatically translates the specification into an Intermediate
Language.

3. NuSMV performs the formal analysis on the Intermediate Language
specification.

The Intermediate Language is:

a small core language with a clean semantics.

independent from Formal Tropos (the Intermediate Language may be
applied to other requirements languages).

independent from any particular analysis technique (model checking,
LTL satisfiability, theorem proving).

Formal Tropos – p. 19

The technical details

Our approach consists of the following 3 steps:

1. The analyst writes a Formal Tropos specification.

2. T-Tool automatically translates the specification into an Intermediate
Language.

3. NuSMV performs the formal analysis on the Intermediate Language
specification.

The Intermediate Language is:

a small core language with a clean semantics.

independent from Formal Tropos (the Intermediate Language may be
applied to other requirements languages).

independent from any particular analysis technique (model checking,
LTL satisfiability, theorem proving).

Formal Tropos – p. 19

The technical details

Our approach consists of the following 3 steps:

1. The analyst writes a Formal Tropos specification.

2. T-Tool automatically translates the specification into an Intermediate
Language.

3. NuSMV performs the formal analysis on the Intermediate Language
specification.

The Intermediate Language is:

a small core language with a clean semantics.

independent from Formal Tropos (the Intermediate Language may be
applied to other requirements languages).

independent from any particular analysis technique (model checking,
LTL satisfiability, theorem proving).

Formal Tropos – p. 19

The technical details

Our approach consists of the following 3 steps:

1. The analyst writes a Formal Tropos specification.

2. T-Tool automatically translates the specification into an Intermediate
Language.

3. NuSMV performs the formal analysis on the Intermediate Language
specification.

The Intermediate Language is:

a small core language with a clean semantics.

independent from Formal Tropos (the Intermediate Language may be
applied to other requirements languages).

independent from any particular analysis technique (model checking,
LTL satisfiability, theorem proving).

Formal Tropos – p. 19

The technical details

Our approach consists of the following 3 steps:

1. The analyst writes a Formal Tropos specification.

2. T-Tool automatically translates the specification into an Intermediate
Language.

3. NuSMV performs the formal analysis on the Intermediate Language
specification.

The Intermediate Language is:

a small core language with a clean semantics.

independent from Formal Tropos (the Intermediate Language may be
applied to other requirements languages).

independent from any particular analysis technique (model checking,
LTL satisfiability, theorem proving).

Formal Tropos – p. 19

So far we have. . .

Formal Tropos, a formal language for specifying early requirements.

a methodology to extend the requirements with assertions on expected
behaviors of the system.

a prototype tool (based on NuSMV) to support the proposed approach.

The approach is

feasible: we obtained feedback from the formal analysis even when
dealing with just a few instances.

useful: we were able to identify ambiguities and problems in the informal
requirements (e.g. insurance company).

heavy: it is difficult to write LTL specifications.

Formal Tropos – p. 20

So far we have. . .

Formal Tropos, a formal language for specifying early requirements.

a methodology to extend the requirements with assertions on expected
behaviors of the system.

a prototype tool (based on NuSMV) to support the proposed approach.

The approach is

feasible: we obtained feedback from the formal analysis even when
dealing with just a few instances.

useful: we were able to identify ambiguities and problems in the informal
requirements (e.g. insurance company).

heavy: it is difficult to write LTL specifications.

Formal Tropos – p. 20

So far we have. . .

Formal Tropos, a formal language for specifying early requirements.

a methodology to extend the requirements with assertions on expected
behaviors of the system.

a prototype tool (based on NuSMV) to support the proposed approach.

The approach is

feasible: we obtained feedback from the formal analysis even when
dealing with just a few instances.

useful: we were able to identify ambiguities and problems in the informal
requirements (e.g. insurance company).

heavy: it is difficult to write LTL specifications.

Formal Tropos – p. 20

Ongoing Works

Evaluation of the approach on a more complex case study to. . .

. . . stress the scalability.

. . . evaluate applicability and practicality (i.e. the RBC).

Extension of the scope of the approach by. . .

. . . formalizing goal decomposition.

Enhancement of the tool by . . .

. . . improving the interaction with the user.

. . . enhancing the animation techniques.

. . . developing specifically tailored verification algorithms.

Formal Tropos – p. 21

Ongoing Works

Evaluation of the approach on a more complex case study to. . .

. . . stress the scalability.

. . . evaluate applicability and practicality (i.e. the RBC).

Extension of the scope of the approach by. . .

. . . formalizing goal decomposition.

Enhancement of the tool by . . .

. . . improving the interaction with the user.

. . . enhancing the animation techniques.

. . . developing specifically tailored verification algorithms.

Formal Tropos – p. 21

Ongoing Works

Evaluation of the approach on a more complex case study to. . .

. . . stress the scalability.

. . . evaluate applicability and practicality (i.e. the RBC).

Extension of the scope of the approach by. . .

. . . formalizing goal decomposition.

Enhancement of the tool by . . .

. . . improving the interaction with the user.

. . . enhancing the animation techniques.

. . . developing specifically tailored verification algorithms.

Formal Tropos – p. 21

Ongoing Works

Evaluation of the approach on a more complex case study to. . .

. . . stress the scalability.

. . . evaluate applicability and practicality (i.e. the RBC).

Extension of the scope of the approach by. . .

. . . formalizing goal decomposition.

Enhancement of the tool by . . .

. . . improving the interaction with the user.

. . . enhancing the animation techniques.

. . . developing specifically tailored verification algorithms.

Formal Tropos – p. 21

Future Works

Extend the scope of the approach by allowing for the use of different
specification languages (e.g. KAOS, UML, . . .).

Extend to later phases of the Tropos development process

same concepts / different interpretations / different V&V techniques.

automatic generation from the requirements.

Integration of the informal and formal layer

graph transformations.

Formal Tropos – p. 22

Future Works

Extend the scope of the approach by allowing for the use of different
specification languages (e.g. KAOS, UML, . . .).

Extend to later phases of the Tropos development process

same concepts / different interpretations / different V&V techniques.

automatic generation from the requirements.

Integration of the informal and formal layer

graph transformations.

Formal Tropos – p. 22

Future Works

Extend the scope of the approach by allowing for the use of different
specification languages (e.g. KAOS, UML, . . .).

Extend to later phases of the Tropos development process

same concepts / different interpretations / different V&V techniques.

automatic generation from the requirements.

Integration of the informal and formal layer

graph transformations.

Formal Tropos – p. 22

Future Works

Extend the scope of the approach by allowing for the use of different
specification languages (e.g. KAOS, UML, . . .).

Extend to later phases of the Tropos development process

same concepts / different interpretations / different V&V techniques.

automatic generation from the requirements.

Integration of the informal and formal layer

graph transformations.

Formal Tropos – p. 22

Formal Tropos and Late Requirements

In Late Requirements the system component is explicitly added and it is
refined by introducing new actors, goals and dependencies.

Train

RBC

Pos

Avoid
Collision

Generate
MA

Respect
MA Send MA

Environment System

Reach
Dest.

In this phase the focus is in the refinement of the system to be.

Formal Tropos – p. 23

Formal Tropos and Late Requirements

Train

RBC

Pos

Avoid
Collision

Generate
MA

Respect
MA Send MA

Environment System

Reach
Dest.

The specification approach is similar to the approach used in early
requirements, but here more details are added.

Provided the system shows a “certain behavior at the interface”
(Assume), then the environment works “correctly” (Guarantee).

Verification/Validation can be performed using Assume/Guarantee
reasoning.

The process can be iterated within the system, thus allowing for a
compositional approach.

Formal Tropos – p. 24

	Outline
	A Software Development Process
	A Software Development Process
	A Software Development Process
	A Software Development Process
	A Software Development Process

	Formal Methods and\ Software Development Process
	Formal Methods and\ Software Development Process
	Formal Methods and\ Software Development Process
	Formal Methods and\ Software Development Process

	The Formal Tropos Project
	The Formal Tropos Project
	The Formal Tropos Project
	The Formal Tropos Project
	The Formal Tropos Project

	Applying FM to Early Requirements
	Applying FM to Early Requirements (II)
	The RBC case study in Tropos
	The RBC case study in Tropos
	The RBC case study in Tropos

	The RBC case study in Tropos (II)
	The RBC in Formal Tropos
	The RBC in Formal Tropos (II)
	Modeling the temporal aspects
	The RBC in Formal Tropos (III)
	The RBC in Formal Tropos (IV)
	Constraints Properties in Formal Tropos
	Formal Analysis in Formal Tropos
	Formal Analysis in Formal Tropos
	Formal Analysis in Formal Tropos
	Formal Analysis in Formal Tropos
	Formal Analysis in Formal Tropos

	Possibility Check in Formal Tropos
	Possibility Check in Formal Tropos

	Assertion Validation in Formal Tropos
	Assertion Validation in Formal Tropos

	The technical details
	The technical details
	The technical details
	The technical details
	The technical details

	So far we haveldots {}
	So far we haveldots {}
	So far we haveldots {}

	Ongoing Works
	Ongoing Works
	Ongoing Works
	Ongoing Works

	Future Works
	Future Works
	Future Works
	Future Works

	Formal Tropos and Late Requirements
	Formal Tropos and Late Requirements

