
Trust And Reputation in Peer-to-Peer Systems

Leonardo L. Fernandes

University of Trento
leonardo.fernandes@dit.unitn.it

Abstract. Peer-to-peer (P2P) systems are distributed systems in which
nodes act as peers, in the sense that all of them have similar roles in the
network, being both providers and consumers of services. Such systems
are becoming very popular in applications like file sharing. In this kind
of architecture, trust and reputation are fundamental requirements for
the reliability of the system. Since services are provided by each user,
a reputation scheme is needed to properly inform other users, helping
them to decide in which peers to trust. Means to avoid malicious users to
sabotage the system by providing unauthentic files or services, or by con-
suming system resources without offering anything to peers in exchange
are necessary. Frequently, such systems must also provide reputation in-
formation preserving users anonymity, a feature of some popular P2P
applications. In this paper, the challenges involved in trust and reputa-
tion management on P2P systems are introduced, and some approaches
to the problem found in the literature are discussed.

1 Introduction

Peer-to-Peer (P2P) systems have been demonstrating a growing popularity in in-
numerous distributed applications. Different from the more traditional client/server
paradigm, on P2P systems all the nodes on the network are considered peers.
In other words, all nodes are identical. Peers should be able to provide/request
similar services to/from each other. Ideally there should be no difference at all
between peers implementation and potentialities.

In many current P2P applications such as Gnutella [3], BitTorrent [1] and
Kazaa [6], among others, thousands of peers are already deployed all over the
Internet. Such systems provide a huge infrastructure for file sharing among users
all over the world. Highly popular materials can be downloaded by large num-
bers of users simultaneously without overloading any central server, assuming
there are enough copies of the resource distributed in the network. Many other
applications for peer-to-peer systems can be envisioned. Peer-to-peer databases,
computeer games and multimedia broadcasting are just a few of the innumerous
possibilities of the new paradigm.

Unfortunately, there is a fundamental problem with P2P large networks. It is
not feasible to trust on all peers in the network as good providers of services. On
a client/server structure, a user can decide to trust in the organization that owns
and runs the server application and assume that such organization is taking the
required security measures. On a peer-to-peer architecture, in the other hand,



there is not one central server provider to be trusted or not. System services are
provided by a large number of peers possibly distributed all over the world. It is
clearly not wise to trust unknown users to provide services as they are expected
to. Of course, most of the users tend to cooperate and do their part for the
system to work, but still the opportunities for malicious peers to cause damage
are countless. Just to cite a couple of examples, malicious peers participating in
a file sharing service can distribute unauthentic files or files infected by virus.
Other peers can try to take advantage of system resources without providing
any service to the system. Furthermore, many services in peer-to-peer networks
actually rely on the existance of trusted peers. Peer sampling service [4] is just
one example of such kind of service.

Trust and reputation systems aim to provide mechanisms that allow users to
have at least an idea about the expected behavior of other nodes. By keeping
track of peers past behavior, nodes can make informed decisions on weather
to trust a given peer or not. Usually there is a reputation, or a trust value,
associated with any entity participating in the system. By choosing to interact
with peers with better trust values, users can take advantage of the services of
peers that are likely to be authentic, since such reputation should be earned
through a reasonable time of good service to the system.

Kamvar et al. [5] propose five design guidelines for the development of trust
architectures for peer to peer systems:

– The system should be self-policing, in the sense that peers themselves should
be responsible for defining and enforcing the trust mechanism.

– The system should maintain anonymity, since it is a desirable feature in
many P2P systems.

– The system should not assign any profit to newcomers. This is necessary
because otherwise malicious peers can take advantage of such profit by con-
stantly rejoining the system as a new user. For this reason usually the initial
reputation of peers is low.

– The system should have minimal overhead in terms of computation, infras-
tructure, storage, and message complexity.

– The system should be robust to malicious collectives of peers who attempt
to, as a group, subvert the system.

This paper presents and discusses some approaches found in the literature to
deal with the problem of trust in the peer-to-peer paradigm.

2 Trust Mechanisms

2.1 P2Prep

P2PRep [2] is a relative simple protocol aiming to be an extension to the popular
Gnutella [3] peer-to-peer file sharing system. The protocol is relatively simple.
Nodes just need to keep local trust values for the peers they have interacted
with.



Gnutella works in a very simple way. Each node is connected to a limited
number of nodes in the Gnutella network. When a user wants to download a
file, the host broadcasts a query to its k-hop neighborhood, being k a parameter
of the protocol. The nodes in this neighborhood that can serve the query send
a reply message back to the requester. The requesting node than arbitrarily
chooses one of the peers to download from, establishing a straight connection to
the chosen node.

P2PRep does not change the query and reply mechanism of Gnutella. The
only addition is the inclusion of two new phases in the protocol, namely polling
and vote confirmation. After the peer making the request receives the replies
from the nodes that host the desired file, the polling phase starts. The requester
sends a poll message asking for information about the nodes that are offering
their service. Such poll message is also broadcast k hops away. Every node that
receives the poll message and that has previously interacted with any of the
queried peers should reply with a vote message. Such vote contains a trust value
for one or more peers. By analyzing such votes the requesting user can decide
to download from the peer with the best reputation among the neighborhood
instead of choosing arbitrarily.

2.2 TrustMe

TrustMe [7] is a more secure approach. The protocol requires one or more trusted
bootstrap servers (BS). A bootstrap server server takes care of adding new nodes
to the system. For each new node in the system, a group of trust holding agents
(THA’s) is randomly selected among the available peers. Such agents have the
duty of keeping the trust information about the entering peer. Furthermore, the
BS generates a pair of public and private special encryption keys (SP and SB)
to be used only by the THA’s. The server generates a pair of keys to each node
in the system and make it available only for the respective THA’s.

When a node i wants to interact with a peer j, it broadcasts to the whole
network a message asking about the trust value of j. Usually such broadcast
includes requests for more than one node in order to make a choice between
them. When THA nodes for j receive such request, they encrypt the appropriate
trust value using the special private key SPj that they share and send it back to
the requesting node through the network. Based on the received trust value, node
i can then decide weather or not to interact with j. If the decision is affirmative,
then i interacts with j (e.g. downloads a file from it) and collects a proof of
such interaction. Such proof is a message signed by j confirming the interaction
happened. After the interaction is done, i broadcasts a message encrypted with
the special public key SBj , so that only j’s THA’s can read it, containing the
result (e.g. weather it was satisfactory or not) and the proof of the interaction.
The trust holding agents for j can then update j’s trust value accordingly.

The important detail is that using this process, and assuming the forwarding
scheme does not allow for identifying message initiators, the THA’s, as well as
the peers, remain completely anonymous. Also, the fact that the trust holding
agents are chosen randomly makes collective attacks very unlikely. Assuming



the attackers do not control the majority of the network nodes, they have a low
probability of having a majority in THA groups for any node. Even less probable
is for malicious nodes to have a majority of the THA’s of another malicious node.

2.3 EigenTrust

This protocol [5] is based on the calculation of the left principal eigenvector of
a matrix of local trust values. Local trust values are obtained by subtracting
the number of unsatisfactory transactions between each pair of nodes from the
number of satisfactory ones. Such values are then normalized so that each peer
has a local trust value c between 0 and 1 for each of the other peers.

A global trust value tij representing how much does i trust j could then be
obtained by the following formula:

tij =
∑

k

cikckj (1)

Note that the equation considers node i’s opinion about every node k as well
as the opinions of every node k about j. The result is a global trust value that
expresses how much i trusts j. If we express (1) in a vectorial form we have:

−→
ti = CT−→ci (2)

Where C is the matrix containing the local trust values. And by executing n
interactions of (2) we obtain:

−→
t = (CT )n−→c (3)

The vector t is the left eigenvector of C. The interesting about this vector is
that it represents a global trust value which is common to all peers. All solutions
of (2) for all peers converge to t if n is large enough.

The problem of implementing this algorithm in a peer-to-peer setting is that
there is no central server to collect all of the values that compose C and make
the calculations. Distributed EigenTrust is proposed. On the distributed version,
each peer can calculate its own trust value by obtaining just the relevant row
of C. It can be done by any given node i by collecting the values from all the
peers that have interacted with i in the past. For the remaining nodes the value
can be set to zero, since nodes that have never interacted with i can’t have an
opinion about it. The calculation needs to be synchronized, and in each of the
n iterations, intermediate values need to be exchanged again.

Since it is not wise to let nodes calculate their own trust values for security
reasons, one last extension to EigenTrust is provided. In secure EigenTrust, the
trust value of each node is calculated by a group of other nodes.

The protocol relies on a small number x of initially trusted peers. All other
nodes start with a trust value of zero while the trusted peer start with reputation
1
x . If there are no such special nodes, the algorithm is vulnerable to collective
attacks. Even small groups of malicious nodes can dominate the C matrix if
all peers start at an equal condition. With initially trusted peers that does not
happen, since the strong influence of such peers prevail.



3 Discussion

The protocols presented are all reasonable solutions to the trust problem in P2P
systems.

The main advantage of P2PRep is that it is a straightforward extension to
a very popular and widely deployed system. Another advantage is the relative
cheap cost in both communication and computation of the protocol. The problem
with the approach is that it is vulnerable to collective malicious peers attacks.
Malicious peers connected in neighboring areas of the Gnutella network can
easily manipulate the election scheme proposed by P2PRep.

The fact that anonymity is preserved is a major advantage of both TrustMe
and EigenTrust.

TrustMe provides a great level of security, since even a large number of col-
lective attackers are not likely to be able to subvert the trusting system sig-
nificantly. One drawback of the protocol is its overhead. Since the THA’s are
completely anonymous, every trust value request and interaction report must
be done through broadcasting to the whole network. This can severely limit
the protocol performance on large networks. Another problem is the need for a
bootstrap server, which is against the P2P paradigm.

EigenTrust provides a very consistent trust mechanism. The protocol achieves
the goal of having a completely distributed algorithm for finding global trust val-
ues that take in to account the knowledge of all non malicious peers in the system.
The authors of the protocol [5] demonstrate that the procedure to find eigen-
vectors converge reasonably fast, and since most values of the matrix tend to
be zero in large networks (because most nodes never interact with each other),
the protocol is not very expensive in terms of both communication and com-
putation. Unfortunately, the requirement of initially trusted peers for security
goes against the pure P2P idea, because such peers are not equal to the others.
Also if a malicious user has access to one or more of such trusted peers, he can
jeopardize the trust system.

4 Conclusion

This work demonstrates that it is possible to implement a reasonable level of
trust management in peer-to-peer systems. Assuming most nodes cooperate, the
protocols discussed tend to achieve the goals to which they were proposed in real
world applications. However, the studied approaches, for providing appropriate
security, still rely on some kind of central authority or initially trusted peers,
which are against the standard peer-to-peer idea, where all nodes in the system
should be identical peers with the same capabilities, potentialities and limita-
tions. Due to this fact we believe that the problem of trust in “pure” peer-to-peer
systems is still an open research matter.

References

1. Bram Cohen. Incentives build robustness in bittorrent, 2003.



2. E. Damiani, De Capitani, S. Paraboschi, and P. Samarati. Managing and shar-
ing servants’ reputations in p2p systems. Knowledge and Data Engineering, IEEE
Transactions on, 15(4):840–854, 2003.

3. Gnutella. http://gnutella.wego.com.
4. Mark Jelasity, Rachid Guerraoui, Anne-Marie Kermarrec, and Maarten van Steen.

The peer sampling service: experimental evaluation of unstructured gossip-based
implementations. In Middleware ’04: Proceedings of the 5th ACM/IFIP/USENIX
international conference on Middleware, pages 79–98, New York, NY, USA, 2004.
Springer-Verlag New York, Inc.

5. Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The eigen-
trust algorithm for reputation management in p2p networks. In WWW ’03: Pro-
ceedings of the 12th international conference on World Wide Web, pages 640–651,
New York, NY, USA, 2003. ACM Press.

6. Kazaa. http://www.kazaa.com.
7. Aameek Singh and Ling Liu. Trustme: Anonymous management of trust relation-

ships in decentralized p2p systems. In P2P ’03: Proceedings of the 3rd International
Conference on Peer-to-Peer Computing, page 142, Washington, DC, USA, 2003.
IEEE Computer Society.

This article was processed using the LATEX macro package with LLNCS style


