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Abstract.

We propose a heuristic global optimization technique which combines combinatorial

and continuous local search. The combinatorial component, based on Reactive Search

Optimization, generates a trajectory of binary strings describing search districts. Each

district is evaluated by random sampling and by selective runs of continuous local search.

A reactive prohibition mechanisms guarantees that the search is not stuck at locally

optimal districts.

The continuous stochastic local search is based on the Inertial Shaker method:

candidate points are generated in an adaptive search box and a moving average of the

steps filters out evaluation noise and high-frequency oscillations.

The overall subdivision of the input space in a tree of non-overlapping search districts

is adaptive, with a finer subdivision in the more interesting input zones, potentially

leading to lower local minima.

Finally, a portfolio of independent CoRSO search streams (P-CoRSO) is proposed

to increase the robustness of the algorithm.

An extensive experimental comparison with Genetic Algorithms and Particle Swarm

demonstrates that CoRSO and P-CoRSO reach results which are fully competitive and

in some cases significantly more robust.

1. Introduction. Global optimization, in particular with stochasticity (Zhigl-

javsky and Žilinskas, 2007), presents a suite of techniques and theoretical results

for solving optimization problems. Now, it is generally assumed that competitive

results for a specific technique can be obtained only for selected classes of func-

tions, in particular for high-dimensional problems. While this paper has no space

for an extensive review of methods assuming specific properties of the functions

to be optimized, let’s mention a couple of notable examples.

A first context studied by many researchers assumes that functions satisfy the

Lipschitz condition (Sergeyev and Kvasov, 2015). If f(x) satisfies the Lipschitz

condition over the search hyper-interval with an unknown Lipschitz constant K,

a deterministic Divide-the-Best algorithm based on efficient diagonal partitions of

the search domain and smooth auxiliary functions is proposed in (Sergeyev and

Kvasov, 2015). The method adaptively estimates the unknown Lipschitz constant
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K and the objective function and its gradient are evaluated only at two vertices

corresponding to the main diagonal of the generated hyperintervals.

A second well-known case assumes that the functions satisfies some statistical

model, so that theoretically justified methods can be developed, in the framework

of rational decision making under uncertainty, to generate new sample points based

on information derived from previous samples, and to study convergence proper-

ties. The book (Zhigljavsky and Žilinskas, 2007) contains an in-depth presentation

of the topic. Let’s note that statistics is an essential part of machine learning: tech-

niques developed by different communities should be considered jointly in the bag

of tools to address challenging optimization instances. In particular, the models

of functions can be random processes in the case of functions of one variable, and

random fields in the case of functions of many variables. As an example, for a

Wiener process ξ(x) in one dimension (the limit of a random walk), one can de-

rive an analytical formula for the probability distribution of the minimum given

the previously evaluated sample points, and use it for a rational stopping con-

dition with a predefined tolerance. In multiple dimensions, random fields are a

possible model but with a high inherent computational complexity motivating the

study of simpler statistical models. The P -algorithm (Žilinskas, 1985) generates

the next point to be evaluated as the one maximizing the probability to improve

the current record, given the previously observed samples. In multiple dimensions,

if yon is the current record value and (xi, yi) are the previous evaluated points and

corresponding values, the next (n+ 1)-th optimization step is defined as:

xn+1 = argmax
x

Pr
{
ξ(x) 6 (yon − ε) | ξ(x1) = y1, ..., ξ(xn) = yn

}
.

The P -algorithm with simplicial partitioning is proposed in (Žilinskas and

Žilinskas, 2002) to obtain a practical algorithm. The observation points coincide

with the vertices of the simplices and different strategies for defining an initial

covering and subdividing the interesting simplices are proposed and considered.

The P ∗-algorithm, combining the P -algorithm with local search, is related to the

algorithm presented in this paper, which is also based on a combination of global

models and efficient local searches when the current area is deemed sufficiently

interesting.

Response surface methods substitute the real function with a surrogate model

learnt by means of the previously evaluated points. The surrogate model is then

optimized at each step in place of the original function, which can be very compu-

tationally efficient if evaluating f is very costly (like in engineering simulations)

and if the surrogate model is sufficiently fast to be optimized. For example, a

response surface built with radial basis functions centered on the evaluated points

is considered in (Gutmann, 2001).

In practical applications, verifying that a specific function obeys a given model

can be difficult, in particular if few instances are of interest, and not an infinite

collection of them. In this case, the use of theoretically justified methods is of
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course possible, in some cases highly desirable, but at the price of abandoning the

comfort zone of guarantees derived from the statistical analysis.

If the function does not possess a rich (“non-random”) structure, convergence

to the global optimum can become painfully slow and smart techniques become

comparable to, or even worse than, pure random search. As an example of the

“curse of dimensionality”, to reach an approximation of the global optimizer with

a specific probability, pure random search requires a number of iterations which

increases exponentially as the input dimension d increases. No structure, no hope

of efficient optimization!

On the other hand, most real-world problems have a “black box” nature. One

can evaluate the output given the inputs (for example by engineering simulators),

but no analytic form and no hints about the function structure are given a priori.

Furthermore, in many cases just a single relevant instance has to be solved at a

given time (like designing a new airplane wing to reduce fuel consumption). An

effective strategy in these cases consists of adopting machine learning methods to

learn some elements of the instance structure in an online (reactive) manner so

that the proper solution technique can be chosen or adapted (Battiti et al., 2008).

In this paper we design two reactive (adaptive) techniques, called CoRSO and

P-CoRSO, which integrate these elements: local-search building blocks scouting for

local minima (working with continuous variables) and a discrete (combinatorial)

prohibition-based search acting on search boxes identified by binary strings. The

method is related to the “branch and probability bound” technique described in

(Zhigljavsky and Žilinskas, 2007), being based on (i) branching the optimisation

set into a tree of subsets of the input space, (ii) making decisions about the

perspectiveness of the subsets for further search, and (iii) selecting the subsets

that are recognized as perspective for further branching.

CoRSO is based on C-RTS (Battiti and Tecchiolli, 1996), but focuses on the

Inertial Shaker method for continuous stochastic local search instead of the more

complex and less scalable Reactive Affine Shaker. P-CoRSO builds an additional

coordination level among a portfolio of independent CoRSO runs to increase the

robustness for some deceptive functions.

The specific proposal is to build a trajectory of subsets via local search (LS)

acting on binary strings, plus a prohibition mechanism for diversification which

ensures that LS is not stuck at locally optimal subsets. In addition, all previously

evaluated points are saved in memory and used for simple statistical inference

about the number of local minima present in a subset and to evaluate the per-

spectiveness of the subsets.

Local search on binary strings is an effective building block for solving complex

combinatorial optimization problems, and the local minima traps can be cured by

Reactive Search Optimization (Battiti et al., 2008). CoRSO extends RSO to the

case of continuous optimization problems, with input variables consisting of real

numbers, solved by a team of local searchers. CoRSO uses a framework for solving
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continuous optimization problems by a strategic use of memory and cooperation

among a team of self-adaptive local searchers.

The three pillars of CoRSO are: multiple local searchers in charge of districts

(portions of input space), mutual coordination, and continuous “reactive” learning

and adaptation.

CoRSO adopts a sociological/political paradigm. Each local searcher takes care

of a district (an input area), generates samples and decides when to fire local

search in coordination with the other members. The organized subdivision of the

configuration space is adapted in an online manner to the characteristics of the

problem instance. Coordination by use of globally collected information is crucial

to identify promising areas in configuration space and allocate search effort.

2. Intelligent coordination of local search processes. To fix the notation and

the direction, let’s assume that we aim at minimizing a function f(x) defined

over a set of continuous variables x. No constraints are present apart from sim-

ple bounds on each input variable. Models of cultural evolution inspire a set of

powerful optimization techniques known as Memetic Algorithms (MAs). Accord-

ing to a seminal paper (Moscato, 1989), memetic algorithms are population-based

approaches that combine a fast heuristic to improve a solution (and even reach a

local minimum) with a recombination mechanism that creates new individuals.

The fast heuristic to improve a solution is some form of local search. LS gen-

erates a search trajectory in configuration space X(t), depending on the iteration

counter t, so that the next point X(t+1) is selected from a set of neighbors, with

a bias towards points with lower function values. The motivation for the effec-

tiveness of stochastic local search for many real-world optimization tasks lies in

the correlation between function values at nearby points: The probability to find

points with lower values is larger for neighbors of points which are already at low

function values.

In many cases a given optimization instance is characterized by structure at

different levels, as explained with the big valley property (more details in (Bat-

titi et al., 2008)). If we reduce the initial search space to a set of attractors (the

local minima), again it may be the case that nearby attractors —having an at-

traction basin close to each other— tend to have correlated values. This means

that knowledge of previously found local optima can be used to direct the future

investigation efforts. Starting from initial points close to promising attractors fa-

vors the discovery of other good quality local optima, provided that a sufficient

diversification mechanism avoids falling back to previously visited ones.

In sequential local search the knowledge accumulated about the fitness surface

flows from past to future searches, while in parallel processes with more local

searchers active at the same time, knowledge is transferred by mutual sharing of

partial results. We argue that the relevant subdivision is not between sequential

and parallel processes (one can easily simulate a parallel process on a sequential

machine) but between different ways of using the knowledge accumulated by set
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of local search streams to influence the strategic allocation of computing resources

to the different LS streams, which will be activated, terminated, or modified de-

pending on a shared knowledge base, either accumulated in a central storage, or

in a distributed form but with a periodic exchange of information.

MAs fit in this picture, a set of individuals described by genes and subjected to

genetic evolution scouts the fitness surface to search for successful initial points,

while LS mechanisms (analogous to life-time learning) lead selected individuals

to express their full potential by reaching local optima through local search. The

Genetic Algorithms used in standard MAs follow the biological paradigms of se-

lection/reproduction, cross-over and mutation. While GAs are popular for many

applications, there is actually no guarantee that specific biologically-motivated ge-

netic operators must be superior to human-made direct mechanisms to share the

knowledge accumulated about the fitness surface by a set of parallel search streams

(a.k.a. population). Alternative coordination mechanisms have been proposed for

example in (Törn and Viitanen, 1992) with the name of “topographical” global

optimization, based on “clustering” methods (Törn and Žilinskas, 1989). The idea

is to identify possible attraction basins by first sampling points, then defining a

directed graph (each point is connected to a neighbor with higher function value,

for k nearest neighbors), and finally identifying points with all neighbors having

larger function values as candidate starting points for local optimization.

The rationale behind CoRSO is to design mechanisms with a higher level of

coordination to effectively manage many local search streams. One is not con-

strained by genetic algorithms but free to experiment with different and more

organized ways of coordinating search streams, following sociological and political

paradigms. Knowledge is transferred between different searchers in a way similar

to efficient political organizations, like a smoothly living community of monks.

3. CoRSO: a political analogy. Although not necessary, analogies can help

in reasoning about problems. But if we accept the helpfulness of analogies, we

prefer analogies derived from the human experience more that analogies based on

animals or genetics. Politics is a process by which groups of people make collective

decisions. Groups can be governments, but also corporate, academic, and religious

institutions.

Local search is an effective building block for starting from an initial configu-

ration of a problem instance and progressively building better solutions by mov-

ing to neighboring configurations. In an organized institution, like a corporation

composed of individuals with intelligent problem-solving capabilities, each expert,

when working on a tentative solution in his competence area, will after some time

come up with an improved solution. The objective is to strategically allocate the

work so that, depending on the accumulated performance of the different experts

and competencies, superior solutions are obtained.

Memetic Algorithms start from local search and consider a hybridized ge-

netic mechanism to implicitly accumulate knowledge about past local search
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performance by the traditional biologically-motivated mechanisms of selec-

tion/reproduction, mutation and cross-over. The first observation is that an indi-

vidual can exploit its initial genetic content (its initial position) in a more directed

and determined way. This is effected by considering the initial string as a starting

point and by initiating a run of local search from this initial point, for exam-

ple scouting for a local optimum. The term memetic algorithms (Krasnogor and

Smith, 2005, Moscato, 1989) has been introduced for models which combine the

evolutionary adaptation of a population with individual learning within the life-

time of its members. Actually, there are two obvious ways in which individual

learning can be integrated: a first way consists of replacing the initial genotype

with the better solution identified by local search (Lamarckian evolution), a sec-

ond way can consist of modifying the fitness function by taking into account not

the initial value but the final one obtained through local search. In other words,

the fitness does not evaluate the initial state but the value of the “learning po-

tential” of an individual, measured by the result obtained after local search. This

evaluation changes the fitness landscape, while the evolution is still Darwinian in

nature.

 

Fig. 1. Different ways of allocating local searchers: by Memetic Algorithms

(left) and by a political analogy of CoRSO (right). Crosses repre-

sent starting points, circles local optima reached after running local

search. In the second case each individual is responsible for an area

of configuration space. Some local search streams are shown.

When the road of cultural paradigms is followed, it is natural to consider mod-

els derived from organizations of intelligent individuals equipped with individual

learning and social interaction capabilities also in the strategic allocation of re-

sources to the different search streams. In particular, this work presents a hybrid

algorithm for the global optimization of functions, in which a fast combinatorial

component (the Reactive Search Optimization based on prohibitions) identifies

promising districts (boxes) in a tree-like partition of the initial search space, and

a stochastic local search minimizer (the Inertial Shaker — IS — algorithm) finds

the local minimum in a promising attraction basin.



CoRSO: Collaborative Reactive Search 7

The development of the CoRSO framework is guided by the following design

principles.

• General-purpose optimization: no requirements of differentiability or

continuity are placed on the function f to be optimized.

• Global optimization: while the local search component identifies a local

optimum in a given attraction basin, the combinatorial component favors

jumps between different basins, with a bias toward regions that plausibly

contain good local optima.

• Multi-scale search: the use of grids at different scales in a tree structure is

used to spare CPU time in slowly-varying regions of the search space and

to intensify the search in critical regions.

• Simplicity, reaction and adaptation: the algorithmic structure of CoRSO is

simple, the few parameters of the method are adapted in an automated

way during the search, by using the information derived from memory. The

intensification-diversification dilemma is solved by using intensification

until there is evidence that diversification is needed (when too many

districts are repeated excessively often along the search trajectory). The

tree-like discretization of the search space in districts is activated by

evidence that the current district contains more than one attraction basin.

• Tunable precision: the global optimum can be located with high precision

both because of the local adaptation of the grid size and because of the

decreasing sampling steps of the stochastic IS when it converges.

CoRSO is characterized by an efficient use of memory during the search, as

advocated by the Reactive Search Optimization. In addition, simple adaptive (feed-

back) mechanisms are used to tune the space discretization, by growing a tree of

search districts, and to adapt the prohibition period of RSO acting on prohibi-

tions. This adaptation limits the amount of user intervention to the definition of

an initial search region, by setting upper and lower bounds on each variable, no

parameters need to be tuned.

CoRSO fuses combinatorial Reactive Search Optimization with an efficient

stochastic Local Search component. An instance of an optimization problem is a

pair (X , f), where X is a set of feasible points and f is the cost function to be

minimized: f : X → R. In the following we consider continuous optimization tasks

where X is a compact subset of RN , defined by bounds on the N independent

variables xi, where BLi ≤ xi ≤ BU i (BL and BU are the lower and upper bounds,

respectively).

In many popular algorithms for continuous optimization one identifies a “local

minimizer” that locates a local minimum by descending from a starting point, and

a “global” component that is used to diversify the search and to reach the global

optimum. We define as attraction basin of a local minimum Xl the set of points

that will lead to Xl when used as starting configurations for the local minimizer.

In some cases, as we noted in our starting assumptions, an effective problem-
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Fig. 2. CoRSO : tree of search districts. Thick borders identify upper-level

boxes, crosses show the position of local minima found by the search

component; finer divisions are the tree leaves and partition the whole

function domain.

specific local search component is available for the problem at hand, and one

is therefore motivated to consider a hybrid strategy, whose local minimizer has

the purpose of finding the local minimum with adequate precision, and whose

combinatorial component has the duty of discovering promising attraction basins

for the local minimizer to be activated. Because the local minimizer is costly, it is

activated only when the plausibility that a region contains a good local optimum

is high. On the contrary, a fast evaluation of the search districts is executed by

the combinatorial component, and the size of the candidate districts is adapted

so that it is related to that of a single attraction basin. A district is split when

there is evidence that at least two different local minima are located in the same

district.

4. CoRSO: blending RSO with stochastic local search. In the hybrid CoRSO

scheme, RSO identifies promising regions for the local minimizer to be activated.

In this section we describe how the two components are interfaced. The specific

stochastic local search component Inertial Shaker (IS) will be presented in Section

4.4.

The basic structure through which the initial search region is partitioned con-

sists of a tree of districts (boxes with axes parallel to the coordinate axes), see Fig.

2. The tree is born with 2N equal-size leaves, obtained by dividing in half the ini-

tial range on each variable. Each district is then subdivided into 2N equally-sized
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("1000","1011")

("0","1")

("0","0")

("10", "11") ("11","11")

("11","10")("100","100") ("101","100")

("100!,!101")

("110","011") ("111","011")

("110","010") ("111","010")

("100","001")

("100","000") ("101","000")

("1010","1011")

("1011","1011")

("1010","1111")

("1110","1011")

("1010","1010")

("1010","1001")

("1010","0011")

("1011","0011")

("1011","0010")

("1010","0010")

("10100","00111")

("0010","1011")

Fig. 3. CoRSO : a concrete example of the tree of search districts. Thick bor-

ders and bold strings identify existing leaf-districts, hatched districts

show the neighborhood of district (1010,1011).

children, as soon as two different local minima are found in it. Because the sub-

division process is triggered by the local properties of f , after some iterations of

CoRSO the tree will be of varying depth in the different regions, with districts of

smaller sizes being present in regions that require an intensification of the search.

Only the leaves of the tree are admissible search points for the combinatorial com-

ponent of CoRSO. The leaves partition the initial region: the intersection of two

leaves is empty, the union of all leaves coincides with the initial search space. A

typical configuration for a two-dimensional task is shown in Fig. 3, where each

leaf-district is identified by thick borders and a bold binary string.

Each existing district for a problem of dimension N is identified by a unique

binary string BS with n×N bits: BS = [g11, ..., g1n, ..., gN1, ..., gNn]. The value n

is the depth of the district in the tree: n = 0 for the root district, n = 1 for the

leaves of the initial tree (and therefore the initial string has N bits), n increases by

one when a given district is subdivided. The length of the district edge along the

i-th coordinate is therefore equal to (BU i −BLi)/2
n. The position of the district
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origin BOi along the i-th coordinate is

BOi = BLi + (BU i −BLi)

n∑
j=1

gij
2j
.

The evaluated neighborhood of a given district consists only of existing leaf-

districts: no new districts are created during the neighborhood evaluation. Now,

after applying the elementary moves to the identifying binary string BS of a

given district B, one obtains N × n districts of the same size distributed over the

search space as illustrated in Fig. 3, for the case of BS = (1010, 1011). Because

the tree can have different depth in different regions, it can happen that some

of the obtained strings do not correspond to leaf-districts, others can cover more

than a single leaf-district. In the first case one evaluates the smallest enclosing

leaf-district, in the second case one evaluates a randomly-selected enclosed leaf-

district. The random selection is executed by generating a point with uniform

probability in the original district, and by selecting the leaf that contains the

point. This assures that the probability for a leaf to be selected is proportional to

its volume.

4.1. Evaluating opportunities for the different districts. While the RSO al-

gorithm for combinatorial optimization generates a search trajectory consisting of

points X(t), CoRSO generates a trajectory consisting of leaf-districts B(t). There

are two important changes to be underlined: firstly, the function f(X) must be

substituted with a routine measuring the potential that the current district con-

tains good local optima, secondly, the tree is dynamic and the number of existing

districts grows during the search.

The combinatorial component must identify promising districts quickly. In the

absence of detailed models about the function f to be minimized, a simple eval-

uation of a district B can be obtained by generating a point X with a uniform

probability distribution inside its region and by evaluating the function f(X) at

the obtained point. Let us use the same function symbol, the difference being ev-

ident from its argument: f(B) ≡ f(rand X ∈ B). The potential drawback of this

simple evaluation is that the search can be strongly biased in favor of a district in

the case of a “lucky” evaluation (e.g., f(X) close to the minimum in the given dis-

trict), or away from a district in the opposite case. To avoid this drawback, when

a district is encountered again during the search, a new point X is generated and

evaluated and some collective information is returned. The value f(B) returned

is then the minimum of the evaluated Xi: f(B) ≡ mini{f(Xi)}.
Let us consider the example of Fig. 3. The current district (1010,1011) has

the neighbors shown with a hatched pattern. The neighbor (0010,1011) in the

upper left part is not an existing leaf-district, it is therefore transformed into the

enclosing existing leaf-district (0,1). Vice versa the neighbor (1010,0011) in the

lower right part contains four leaves, one of them (10100,00111) is the output of
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Obtained Boxes

("1010","1011") ("0010","1011")

("1110","1011")

("1000","1011")

("1011","1011")

("1010","0011")

("1010","1111")

("1010","1001")

("1010","1010")

("0","1")

("11","10")

("100","101")

("1011","1011")

("10100","00111")

("10","11")

("101","100")

("1010","1010")

("10101","00110")

("10100","00110")

("10101","00111")

("10100","00111")

Starting box Neighbors

Fig. 4. CoRSO : Evaluation of the neighborhood of district (1010,1011).

a random selection. Fig. 4 specifies the complete final neighborhood obtained for

the given example.

4.2. Decision about activating Local Search in a given region. According to

the RSO dynamics the neighborhood districts obtained starting from a current

district are evaluated only if the corresponding basic move from the current point

is not prohibited. Only if the evaluation f(B(t)) of the current district is less than

all evaluations executed in the neighborhood, a decision is taken about the possible

triggering of the Local Search component (the Inertial Shaker). In other words,

a necessary condition for activating high-precision and expensive searches with

Local Search is that there is a high plausibility — measured by f(B) — that the

current region can produce local minima that are better with respect to the given

neighborhood of candidate districts. Given the greedy nature of the combinatorial

component, the current district B(t) on the search trajectory moves toward non-

tabu locally optimal districts, therefore it will eventually become locally optimal

and satisfy the conditions for triggering IS. Let us note that, if a given district

B loses the above contest (i.e., it is not locally optimal for RSO), it maintains

the possibility to win when it is encountered again during the search, because

the evaluation of a different random point X can produce a better f(B) value.

Thanks to the evaluation method CoRSO is fast in optimal conditions, when the

f surface is smooth and f(B) is a reliable indicator of the local minimum that can

be obtained in region B, but it is robust in harder cases, when the f(B) values

have a high standard deviation or when they are unreliable indicators of good

local minima obtainable with the Inertial Shaker.

The local optimality of the current district B is necessary for activating IS but

it is not sufficient, unless B is locally optimal for the first time, a case in which

IS is always triggered. Otherwise, if r > 1 is the number of times that district B

has been locally optimal during the search, an additional IS run must be justified

by a sufficient probability to find a new local minimum in B. Bayesian rules to
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estimate the probability that all local optima have been visited can be applied

in the context of a single district, where a multi-start technique is realized with

repeated activations of IS from uniformly distributed starting points. Because of

our splitting criterion, at most one local optimum will be associated to a given

district (a district is split as soon as two different local optima are found, see

Section 4.3). In addition, some parts of the district can be such that IS will exit the

borders if the initial point belongs to these portions. One can therefore partition

the district region into W components, the attraction basins of the local minima

contained in the district and a possible basin that leads IS outside, so that the

probabilities of the basins sum up to one (
∑W

w=1 Pw = 1).

According to (Boender and Rinnooy Kan, 1983), if r > W + 1 restarts have

been executed and W different cells have been identified, the total relative volume

of the “observed region” (i.e., the posterior expected value of the relative volume

Ω) can be estimated by

E(Ω|r,W ) =
(r −W − 1) (r +W )

r (r − 1)
; r > W + 1. (1)

The Inertial Shaker is always triggered if r ≤W+1, because the above estimate

is not valid in this case, otherwise the IS is executed again with probability equal

to 1−E(Ω|r,W ). In this way, additional runs of IS tend to be spared if the above

estimate predicts a small probability to find a new local optimum, but a new

run is never completely prohibited for the sake of robustness: it can happen that

the Bayesian estimate of equation (1) is unreliable, or that the unseen portion

(1− E(Ω|r,W )) contains a very good minimum with a small attraction basin.

The initial conditions for IS (described in Fig. 6) are that the initial search

point is extracted from the uniform distribution inside B, the initial search frame

is ~bi = ~ei × (1/4)× (BU i −BLi) where ~ei are the canonical basis vectors of RN .

The Inertial Shaker generates a trajectory that must be contained in the district

B enlarged by a border region of width (1/2)× (BU i−BLi), and it must converge

to a point contained in B. If IS exits the enlarged district or the root-district, it is

terminated, the function evaluations executed by IS are discarded. If it converges

to a point outside the original district but inside the enlarged district, the point

location is saved. In both cases the CoRSO combinatorial component continues

in the normal way: the next district B(t+1) is the best one in the admissible

neighborhood of B(t). In any case the “best so far” value is always updated by

considering all admissible points evaluated (those that are inside of the root-

district).

A possible exception to the normal CoRSO evolution can happen only in the

event that IS converges inside B(t) to a local minimum Xl. If Xl is the first local

minimum found, it is saved in a memory structure associated to the district. If

a local minimum Yl was already present, and Xl corresponds to the same point,

it is discarded, otherwise the current district is split until the “siblings” in the
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Fig. 5. A CoRSO tree structure adapted to a fitness surface. boxes (thin

lines), evaluated points (dots) and LS trajectories (thick lines).

tree divide the two points. After the splitting is completed, the current district

B(t) does not correspond to an existing leaf anymore: to restore legality a point is

selected at random with uniform distribution in B(t) and the legal B(t) becomes

the leaf-district that contains the random point. Therefore each leaf-district in the

partition of the initial district has a probability of being selected that is propor-

tional to its volume. The splitting procedure is explained in the following section.

4.3. Adapting the district area to the local fitness surface. As soon as two

different local minima Xl and Yl are identified in a given district B, the current

district is subdivided into 2N equal-sized boxes. If Xl and Yl belong to two dif-

ferent leaf-districts of the new partition, the splitting is terminated, otherwise the

splitting is applied to the district containing Xl and Yl, until their separation is

obtained.

In all cases the old district ceases to exist and it is substituted with the col-

lection obtained through the splitting. The local minima Xl and Yl are associated

with their new boxes. Numerically, the criterion used in the tests for considering

different two local minima Xl and Yl is that ‖Xl−Yl‖ < ε, where ε is a user-defined

precision requirement.

All local minima identified are saved and reported when CoRSO terminates.

An example of the tree structure produced during a run of CoRSO is shown

in Fig. 5, for the case of a two-dimensional function (the Goldstein-Price function

also used in experiments, see Sec. 5). The local optima are clearly visible as the
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zones in which boxes are recursively broken up, while the global optimum is in

x = (0,−1). One notices that the points evaluated (the points used to calculate

f(B)) are distributed quasi-uniformly over the search space: this is a result of

the volume-proportional selection, and it guarantees that all regions of the search

space are treated in a fair manner. The IS trajectories either converge to a local

minimum or are terminated when they exit from the enlarged district, as explained

in Section 4.2. Because of our splitting criterion, each district contains at most

one local minimum. Although it is not visible from the figure, most points (about

85% in the example) are evaluated during the local search phases, that are the

most expensive parts of the CoRSO algorithm.

We underline that CoRSO is a methodology to integrate a local search com-

ponent with a strategic allocation and sizing of districts and the generation of

starting points in a multi-dimensional space. Feel free to experiment with differ-

ent local search components, or different details about splitting the original space

and firing local searches.

4.4. Local Search with the Inertial Shaker (IS). RAS, the previous default

algorithm used in C-RTS (Battiti and Tecchiolli, 1996), requires matrix-vector

multiplications to update the search region, and therefore slows down when the

number of dimensions becomes very large. The simpler Inertial Shaker (IS) tech-

nique (Battiti and Tecchiolli, 1994) can be a more effective choice in this case: the

search box is always identified by vectors parallel to the coordinate axes (therefore

the search box is defined by a single vector β and no matrix multiplications are

needed) and a trend direction is identified by averaging the d previous displace-

ments where d is the domain’s dimensionality. An important parameter of the IS

heuristic is the amplification coefficient defined as fampl > 0 controls the extent

at which the trend direction modifies the search box.

RAS requires matrix-vector multiplications to update the search region, and

therefore slows down when the number of dimensions becomes very large. The

simpler Inertial Shaker (IS) technique (Battiti and Tecchiolli, 1994), outlined in

Fig. 6 can be a more effective choice in this case: the search box is always identified

by vectors parallel to the coordinate axes (therefore the search box is defined by a

single vector β and no matrix multiplications are needed) and a trend direction is

identified by averaging a number of previous displacements: the find trend function

used at line 7 simply returns a weighted average of the previous displacements:

δt = fampl ·

d∑
u=1

δt−ue
− u

h2
decay

d∑
u=1

e
− u

h2
decay

,

where the amplification coefficient fampl and the history decay factor hdecay are

defined in the algorithm; the number of past displacements in the weighted average
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f (input) Function to minimize

x (input) Initial and current point

β (input) Box defining search region R around x

δ (parameter) Current displacement

amplification (parameter) Amplification factor for future displacements

history depth (parameter) Weight decay factor for past displacement average

1. function InertialShaker (f, x, β)

2. t ← 0

3. repeat

4. success ← double shot on all components ( δ)

5. if success = true

6. x ← x + δ

7. find trend ( δ)

8. if f( x + δ) < f( x)

9. x ← x + δ;

10. increase amplification and history depth

11. else

12. decrease amplification and history depth

13. until convergence criterion is satisfied

14. return x;

Fig. 6. The Inertial Shaker algorithm, from (Battiti and Tecchiolli, 1994).

is chosen to be equal to the function’s dimensionality d in order to cut off negligible

exponential weights and to keep the past history reasonably small.

Fig. 7 shows how the double-shot strategy is applied to all components of

the search position x. A displacement is applied at every component as long as

it improves the result. If no improvement is possible, then the function returns

false, and the search box is accordingly shrunk.

4.4.1. On the importance of local search in CoRSO. The district separation

mechanism of CoRSO can be used to recursively divide the function’s domain into

smaller and smaller regions, therefore isolating local minimum points, without

the need for a local search algorithm; every time a district is evaluated to be

a local minimum, instead of executing an IS run starting from the district we

simply evaluate a new point and proceed at splitting the district as if a new local

minimum had been found.

The four charts in Fig. 8 show the effect of “switching off” the local search

component on two functions. The Rastrigin benchmark function used in the top

charts is multi-modal (it actually contains a grid of local minima, gradually de-

creasing towards the global one at x = (0, 0)). In the 105 evaluations allotted for

the test, both tests (with IS on the left, without on the right) correctly identify

the global minimum, although the version without local search finds it later and
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f Function to minimize

x Current position

β Vector defining current search box

δ Displacement

1. function double shot on all components (f, x, β, δ)

2. success ← false

3. x̂ ← x

4. for i ∈ {1, . . . , n}
5. E ← f( x̂)

6. r ← random in [−bi, bi]
7. x̂i ← x̂i + r

8. if f(x̂) > E

9. x̂i ← x̂i − 2r

10. if f(x̂) > E

11. bi ← ρcompbi
12. x̂i ← x̂i + r

13. else

14. bi ← ρexpbi
15. success ← true

16. else

17. bi ← ρexpbi
18. success ← true

19. if success = true

20. δ ← x̂ - x

21. return success

Fig. 7. The double-shot strategy from (Battiti and Tecchiolli, 1994): apply a

random displacement within the search box to all coordinates, keep

the improving steps; return false if no improvement is found.

with much more approximation.

The same can be said about the Rosenbrock function (bottom charts of Fig. 8);

the function is unimodal, with a deep parabolic valley that gets progressively

narrow towards the global minimum in x = (1, 1) (i.e., away from the paraboloid’s

vertex). The bottom of the valley can be traced both by the IS trajectories in the

left picture and by the finer districts in the right chart.

In both cases, the version without local search is much slower, due to the

need to maintain the district tree data structure with multiple subdivisions, and

becomes prohibitively slow for d > 3. For this reason, and for the higher precision

attained by allowing the local search phase, we can conclude that local search is

indeed a fundamental component in the proposed heuristic.
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Fig. 8. CoRSO tree structure with (left) and without (right) the local search

component, applied to the 2-dimensional Rastrigin (top) and Rosen-

brock (bottom) function.
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Fig. 9. Optimization history traces of all runs of CoRSO and its portfolio

version P-CoRSO on the order-5 Shekel function. The record value

is plotted against the number of evaluations.
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4.4.2. P-CoRSO: A portfolio of CoRSO optimizers As a preliminary test, the

left part of Fig. 9 tracks the execution of 150 runs of CoRSO on the order-5 Shekel

function (one of the benchmark functions used for testing, as described in Sec. 5).

For every run, the record value is plotted against the number of function evalu-

ations. In the top left, we can observe the interaction between the combinatorial

component and the Inertial Shaker. In some runs, the initial exploration by the In-

ertial Shaker gets stuck in a local minimum; in such case, we need to wait until the

IS termination condition is met before the combinatorial component can search a

more promising region and restart the local search phase. Once a good starting

point has been found, convergence to the global minimum is quite fast, but the

number of restarts needed can be high and unfortunate searches can exhaust the

evaluation budget.

This problem can be mitigated by maintaining a portfolio of CoRSO optimizers.

The P-CoRSO (Portfolio of CoRSO) technique works by initially maintaining

a set of 5 CoRSO searchers. In this initial phase, these searchers are executed

in a round-robin fashion until 1% of the evaluation budget is consumed. At this

point, the remaining iterations are reserved to the searcher having found the best

objective value. The P-CoRSO heuristic is shown in the right chart of Fig. 9.

Some unlucky cases are still possible, but the overwhelming majority of the runs

converges at the first try.

5. Experimental results. In this section we describe the experimental results

obtained by comparing CoRSO, and its portfolio version P-CoRSO, with other

state-of-the-art population-based meta-heuristics for continuous optimization:

• The Comprehensive Learning Particle Swarm Optimizer (CLPSO) (Liang

et al., 2006) is a PSO-based heuristic that prevents premature convergence

by using the historical best information of all particles1. The code is

implemented in MATLAB.

• Differential Evolution (DE) (Price et al., 2006) is a Genetic Algorithm

based on adding the difference between two population members to a

selected vector before crossing over, so that “no separate probability

distribution has to be used which makes the scheme completely

self-organizing”2. The C version has been used in this paper.

The CoRSO code described in this paper has been implemented in C++.

5.1. Benchmark functions. A subset of classical benchmark functions from

the GenOpt challenge3 has been used for testing, in particular the unimodal

Rosenbrock (d = 10, 30), Sphere (d = 10, 30) and Zakharov (d = 10, 30) func-

tion families, and the multi-modal Goldstein-Price (d = 2), Hartmann (d = 3, 6),

Rastrigin (d = 10, 30), and Shekel (d = 4, order = 5, 7, 10) families.

1Code available at http://www.ntu.edu.sg/home/epnsugan/.
2Code available at http://www1.icsi.berkeley.edu/~storn/code.html.
3Available at http://genopt.org/.
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5.2. Settings. All tests have been carried out on an 8-core 2.33GHz Intel Xeon

server running a 64-bit Linux OS with kernel 3.13.0. However, due to the large

performance gap between the MATLAB implementation of CLPSO and the other

algorithms, all comparisons are based on the number of function evaluations rather

than on physical time.

The relevant parameters of the CoRSO optimizer have been empirically tested

on short runs on the 5-dimensional Rastrigin and Rosenbrock functions (d = 5

is not used in the subsequent tests). The tabu period reduction factor, to which

the technique has proved to be very little sensitive, has been set to fred = 0.7;

the prohibition period is divided by fred whenever 3 boxes are re-visited 3 times.

The amplification factor of the Inertial Shaker has been set to fampl = 0.99. The

Inertial Shaker phase is stopped whenever the improving step size in the domain

is shorter than 10−8 ·
√
d, where d is the domain’s dimensionality.

Following the authors’ suggestions, the population size for the CLPSO algo-

rithm has been set to 10 for lower-dimensional functions (d ≤ 10), and to 40 for

d = 30, while the DE parameters are: NP = max{10 · d, 40}, F = 0.8, CR = 0.9.

In the subsequent tests, the main objective is to reach a pre-defined error

δ = 10−5 with respect to the function’s known global minimum, recording the

number of iterations required to achieve it. This kind of task is more representative

of many real-world situations in which a tolerance is given on the process to be

optimized, and the objective function is often noisy, so that arbitrarily low errors

are not realistic. The chosen error value is low enough to ensure that the algorithm

has correctly chosen the global minimum’s attraction basin in the case of the

multi-modal benchmark functions.

5.3. Comparison and discussion. The three meta-heuristics have been run for

at least 50 times on each benchmark function. Every run was interrupted at the

earliest of two occurrences: (i) an evaluation of the objective function produced a

value below fmin + δ, where fmin is the global minimum value of the function, or

(ii) the total budget of 2 · 105 evaluations was consumed.

The CoRSO heuristic was run 150 times for each benchmark function; with

this larger number of runs, the portfolio version could be simulated by aggregating

5 traces at a time, yielding 30 simulated P-CoRSO runs.

Table 1 reports the median number of evaluations required by each algorithm

to achieve the target objective value. For every benchmark function, the lowest

number is highlighted in boldface. As a measure of confidence in the winner, the

underlined values are those in which the inter-quartile ranges of the winner and

of the runner-up don’t intersect (i.e., the third quartile of the winning algorithm’s

runs is still below the first quartile of the second best algorithm).

CoRSO achieves good results in high-dimensional cases such as the Rastrigin,

Sphere and Zakharov function families (although in the 10-D Zakharov case DE

achieves a better median result) and in the Hartmann functions. DE works better

in most low-dimensional cases, in particular on the Goldstein-Price function and
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Table 1. Median iterations for 30+ runs of CoRSO, P-CoRSO, CLPSO, DE,

to get within 10−5 from the global minimum. Boldface numbers

indicate the best median; underlined if the IRQs don’t intersect

(see explanation in the text). No result if technique does not reach

the desired approximation within the allotted number of function

evaluations.

Function Dim CORSO P-CORSO CLPSO DE

Goldstein-Price 2 5276 2814 4021 716
Hartmann 3 804 2253 3291 1172
Hartmann 6 1847 3229 13306 —
Rastrigin 10 10190 11569 51241 —
Rastrigin 30 94401 64300 143952 —
Rosenbrock 10 80852 82159 — 29862
Rosenbrock 30 (20%) (3%) — —
Shekel 5 4 28127 4642 74757 4283
Shekel 7 4 40419 4843 30909 4006
Shekel 10 4 42972 5060 26264 4321
Sphere 10 2964 4366 15615 6044
Sphere 30 12174 13797 61440 —
Zakharov 10 18992 20181 28950 16254
Zakharov 30 172276 173163 — —

on the Shekel family. Unfortunately, DE is very fragile and it fails completely to

reach the desired approximation in the allotted budget in five cases for which the

median results are still very far.

While the portfolio version P-CoRSO only wins in one case (30-dimensional

Rastrigin), its capability of quickly identifying unfortunate situations put it on

par with DE on the Shekel family, where it achieves a dramatic reduction with

respect to the CoRSO heuristic alone.

It is also worth noting that, while DE can be very fast on certain function

classes, it is significantly underperforming in many other cases, where no runs

achieve the required target value within the allotted number of iterations. This

is possibly due to sensitivity to parameters, which (as a general rule) were kept

constant through all benchmark functions. The CoRSO heuristic achieved the

local minimum for all functions for at least a fraction of the runs.

Fig. 10 shows a more detailed comparison on four benchmark functions. In the

top two charts, referring to the Shekel 7 and Shekel 10 functions, the success of the

portfolio version P-CoRSO in lowering the median value of CoRSO is apparent.

However, in both cases we can see a heavy tail in the form of outliers (Shekel 7) or

a large IQR (Shekel 10). The bottom charts show two cases in which the portfolio

heuristic is ineffective in lowering the median.

As a specific example, let us follow the evolution in time of the algorithms

on the 3-dimensional Hartmann function, whose final outcomes are represented

in the bottom-right chart of Fig. 10. In Fig. 11 the median value of all the runs
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Fig. 10. Distribution of the number of iterations required to achieve the

target value for the four algorithms on four benchmark functions.

of each algorithm on the 3-dimensional Hartmann function is plotted against the

number of evaluations. In order to better appreciate the variability of the single

runs, error bars represent the interval between the first and the third quartile, so

that 50% of the runs actually pass within the error bar.

Fig. 12 shows the individual traces of all runs of the four algorithms on the

same benchmark function. The charts have the same scale as in Fig. 11. In this

figure, we can appreciate in particular the “outlier” CoRSO runs that do not

converge immediately, but need to be restarted from a better position. The same

outliers are visible in the bottom-right chart of Fig. 10 on the CoRSO column. The

relationship between CoRSO and P-CoRSO is explained by looking at the top-

left and top-right traces shown in Fig. 12. While the unlucky runs are removed by

the portfolio mechanism, the evaluation overhead introduced by the initial round-

robin evaluation delays the earliest successful runs by reducing their downward

slope. The net result is an increase of the median number of evaluations from 804

to 2253, even though outlier runs are eliminated.
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Fig. 11. Optimization history of the considered meta-heuristics on the 3-

dimensional Hartmann function. The median record value of all

runs is plotted against the number of evaluations. Inter-quartile

ranges are shown as error bars. Only the initial 3500 iterations are

shown.

6. Conclusions. Many optimization problems of real-world interest are com-

plex and need enormous computing times for their solution. The use of many

computers working in parallel (maybe living in the cloud, rented when they are

needed) comes to the rescue to reduce the clock time to produce acceptable so-

lutions. In some cases, one can consider independent search streams, periodically

reporting the best solutions found so far to some central coordinator. In other

cases, more intelligent schemes of coordination among the various computers lead

to a higher efficiency and effectiveness.

The CoRSO algorithm presented in this paper and its portfolio version P-

CoRSO deal with coordinating a team of interacting solvers through an organized

subdivision of the configuration space which is adapted in an online manner. The

main building block is local search, acting in two different levels. Combinatorial

local search with reactive prohibitions (RSO) manages an adaptive tree of search

districts and generates a trajectory of search boxes, biased towards more promising

areas. Continuous stochastic local search (Inertial Shaker) is started in a frugal

manner only when the current search district looks sufficiently promising.
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Fig. 12. Traces of all runs of the four algorithms on the 3-dimensional Hart-

mann function. Only the initial 3500 iterations are shown.

The experimental results of CoRSO and P-CoRSO, when compared with

widely used genetic and particle swarm algorithms, demonstrates either better

median results for some problems or a greater robustness level. In particular, the

competing techniques appear to be stuck with values very far from the global

optimum for some instances, within the allotted budget. In some cases DE and

CLPSO do not reach the desired approximation even if the budget is increased by

an order of magnitude.

As a future step it would be of high scientific and practical interest to compare

CoRSO with different strategies like the P -algorithm with simplicial partitioning

or Divide-the-Best algorithm based on Lipschitz assumptions and on efficient di-

agonal partitions. Possible adaptive hybrids which determine in an online manner

the best methods (or the best combination) to use based on preliminary results

are also of high scientific and practical interest. A possible context can be that of

scientific competitions like genopt.org.

Our experimental evidence supports the hypothesis that paradigms derived

from human organizations, characterized by “learning on the job” capabilities,
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can lead to superior or more robust results with respect to paradigms derived

from simpler living organisms or genetic principles.
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