
GOSH! Gossiping Optimization Search Heuristics

Mauro Brunato, Roberto Battiti, Alberto Montresor

Università di Trento, Dipartimento di Informatica e Telecomunicazioni

via Sommarive 14 — I-38050 Trento — Italy

brunato|battiti|montresor@dit.unitn.it

January 16, 2007

Abstract

While the use of distributed computing in search and optimization

problems has a long research history, most efforts have been devoted to

parallel implementations with strict synchronization requirements or to

distributed architectures where a central server coordinates the work of

clients by partitioning the search space or working as a status repository.

In this paper we discuss the distributed implementation of global func-

tion optimization through decentralized processing in a peer-to-peer fash-

ion, where relevant information is exchanged among nodes by means of

epidemic protocols.

A key issue in such setting is the degradation of the quality of the

solution due to the lack of complete information about the global search

status. A tradeoff between message complexity and solution quality must

be investigated.

Preliminary computational results in a simplified setting, reported in

the experimental section, show that research in the field is motivated.

1 Motivation and Scenario

The use of parallel and distributed computing for solving complex optimization
tasks is an area which has been investigated extensively in the last decades, see
for example [20], for a recent book on the subject, and [1] for an old contribution
by our research group.

Most of the previous work assumes the availability of either a dedicated
parallel computing facility, or, in the worst case, specialized clusters of net-
worked machines that are coordinated in a centralized fashion (master-slave,
coordinator-cohort, etc.). While these approaches simplify management, they
normally show severe limitations with respect to scalability and robustness.

Recently, the peer-to-peer (P2P) paradigm for distributed computing has
demonstrated that networked applications can scale far beyond the limits of
traditional distributed systems, without sacrificing efficiency and robustness;
applications composed of millions of nodes are not uncommon. The applicative

1

area is not limited to content distribution (file sharing), but covers also scientific
purposes related to solving massive computation problems in the absence of
a dedicated infrastructure (see for example the BOINC [18], project, which
unifies several pre-existent distributed computing applications under the same
umbrella).

P2P systems are characterized by an high level of dynamism: nodes join and
leave the system continuously, often in an unexpected and “rude” manner. This
phenomenon is called churn. Together with the large scale, churn constitutes a
significant problem for P2P systems; no node may have an up-to-date knowledge
of the entire system, and the maintenance of consistent distributed information
becomes difficult if not impossible.

Originated in the context of databases [8], epidemic and gossip protocols
have proved to be able to deal with the high levels of unpredictability associated
with P2P systems. Apart from the original goal of information dissemination
(messages are “broadcast” through random exchanges between nodes), they are
now used to solve several different problems: membership management [13],
aggregation [14, 16], topology management [12], resource sharing [], etc.

In this position paper, we propose to adopt the P2P paradigm, and in par-
ticular the epidemic and gossip-based approach, to perform global function op-
timization in a completely decentralized manner. The goal is to enable the
exploitation of unused computational resources (such as personal desktop ma-
chines) to parallelize the optimization process, without requiring a fixed and
centralized infrastructure as the one associated with Grids.

We focus our attention onto stochastic local search [10] schemes based on
memory, where little or no information about the function to be optimized is
available at the search. In this context, the knowledge acquired from function
evaluations at different input points during the search can be mined to build
models so that the future steps of the search process can be optimized. An
example is the on line adaptive self-tuning of parameters while solving a spe-
cific instance proposed by Reactive Search [3]. Recent development of interest
considers the integration of multiple techniques and the feedback obtained by
preliminary phases of the execution for a more efficient allocation of the future
effort (see for example the a-teams scheme in [7], the portfolios proposals [11, 9],
the racing schemes [6, 19], dynamic restart policies [15])

In the P2P scenario depicted above, the crucial issues and tradeoffs to be
considered when designing distributed optimization strategies are:

Coordination and interaction One has a choice of possibilities ranging from
independent search processes reporting the end results, to fully coordi-
nated “swarms” of searchers exchanging new information after each step
of the search process.

Synchronization In a peer-to-peer environment the synchronization must be
very loose to avoid wasting computational cycles while waiting for syn-
chronization events.

Type and amount of exchanged information It ranges from the periodic

2

exchange of current configurations and related function values (see for
example PSO [17] and genetic algorithms []) to the exchange of more ex-
tensive data about past evaluations, possibly condensed into local heuristic
models of the function [5].

Frequency of gossiping, convergence issues We consider a simple basic in-
teraction where a nodes picks a random neighbor, exchanges some infor-
mation and updates its internal state (memory). The spreading of the
information depends both on the gossiping frequency and interconnection
topology. Tradeoffs between a more rapid information exchange and a
more rapid advancement of each individual search process are of interest.

Effects of delays on “distributed snapshots” Because of communication
times, congestion and possible temporary disconnections, the received in-
formation originated from a node may not reflect accurately the current
state, so that decisions are made in a suboptimal manner.

2 Epidemic Protocols

The research on the application of epidemic/gossip protocols in distributed sys-
tems started with the seminal work of Alan Demers [8], who proposed several
models for the decentralized dissemination of database updates. The models
are as follows:

Anti-Entropy Each node periodically selects a random peer and performs an
information exchange with it; the exact meaning of exchange depends on
the specific application. In the case of database updates, exchanges may
be characterized as push – the originator of the exchange sends its own
updates to the peer; pull – the originator asks for updates from the peer;
push-pull – both the operations are performed.

Gossip Whenever a node receive an update, it selects a small number k of
peers and sends the update to them; if the update has already been re-
ceived, the node may also decide to stop the spreading of the update with
probability p. Values k and p presents a trade-off between the probabil-
ity of reaching all the nodes and the communication overhead given by
redundant messages.

One of the key requirement for implementing an epidemic protocols is the
capability of selecting a random peer among all nodes. This is easy when the set
of participants is fixed, small and known a priori; it is a problem by itself in case
of dynamic, large-scale distributed systems. To solve this issue, the concept of
peer sampling service has been devised; this service provides each node with a
uniform random sample of the entire population of a P2P networks [13]. Inter-
estingly enough, protocols implementing the peer sampling service are epidemic
as well: push-pull exchanges are performed, in which random subsets of nodes
are shuffled among the nodes.

3

Once this issue is solved, a large collection of problems may be solved on
top of the peer sampling service. Different problems require specific exchange
mechanisms; for example, it is possible to compute the average aggregation
over a collection of values stored at peer nodes by simply averaging the values
exchanged by a pair of nodes [14].

3 Memory-based search heuristics

Hard optimization problems can often be expressed as objective function mini-
mization tasks, and in the general case the only available feature of the resulting
function is its point-wise evaluation.

Under these narrow assumptions (the entire knowledge about the function
must be deduced from function evaluations, without help from partial deriva-
tives - like gradients or Hessians — or from specific smoothness conditions like
Lipschitz continuity), a global optimization algorithm just performs a sequence
of point-wise evaluations, possibly driven by some heuristic approximation of
function properties such as local minima distribution. Therefore, an optimiza-
tion algorithm is inherently sequential: the next evaluation point is determined
by the past search history, possibly by the current state alone (Markovian algo-
rithms).

In particular, we are considering two sequential search schemes Particle
Swarm Optimization (PSO [17]) and Memory-based Reactive Affine Shaker (M-
RASH [5]). Both schemes rely on global information for different purposes,
therefore their distributed implementation is not straightforward

3.1 Particle Swarm Optimization

Particle swarm optimization [17] is a population-based stochastic optimization
technique, inspired by the social behavior of bird flocking, for finding global
optima of functions of continuous variables. Search is performed along a small
number n (usually in the tens) of trajectories, the i-th trajectory being repre-
sented by a “particle” whose status information includes the current position
vector xi, the current speed vector vi, the optimal point p

i
along the past

trajectory and its value f(p
i
).

The only global information maintained by the algorithm, and accessible to
all particles, is the global optimum position g, chosen among the particle’s best
positions p

1
, . . . , p

n
.

The algorithm proceeds by updating one particle at a time: first, the speed
vector is modified by adding random components oriented towards the particle’s
best position p

i
and the global best position g. Second, the particle’s speed is

added to the position vector xi. The function is computed at the new position
and optimal values are updated as needed.

4

3.2 Memory-based RASH

The RASH optimization heuristic [2, 4] defines a single trajectory (as opposed
to the multiple trajectories that characterize PSO) that rapidly converges to
a local minimum. The critical parameter in the RASH optimizer is the initial
point in the trajectory: trajectory evolution can be seen as a dynamical system
where local minima work as trajectory attractors, which approximately partition
the function domain into attraction basins (the approximation is caused by the
stochastic component of the algorithm).

Every optimization run provides information that can be used to determine
which starting point is best suited in the next run. Every run yields informa-
tion in the form of a starting point and a final objective function value. The
collection of information from all previous runs can be used to build a partial
representation of the overall function landscape to answer one of the following
questions:

• Where should the next run start from, in order to achieve the best expected
final value?

• Or else: which starting point has an estimated error bar on the expected
value which could possibly lead to a value less than the best encountered
so far?

In the first case, the next starting point is the one that, based on prior informa-
tion, should yield the best improvement. In the second case, we shall likely select
a starting point in a region which has not been explored, and whose outcome
can provide a better result than expected.

Our preliminary experiments indicate that search efficiency of a RASH op-
timizer increases with its immersion within a memory-based iterated scheme
(M-RASH [5]).

4 GOSH! Gossiping Search Heuristics

The distributed realization of a global optimization algorithm ranges between
two extremes:

• Independent execution of stochastic processes — Global optimiza-
tion algorithms are stochastic by nature; in particular, the first evaluation
is not driven by prior information, so the earliest stages of the search re-
quire some random decision. Different runs of the same algorithm can
evolve in a very different way, so that the parallel independent execution
of identical algorithms with different random seeds permits to explore the
tail of the outcome distribution towards lower values.

• Complete synchronization and sharing of information — Some
optimization algorithms can be modeled as parallel processes sitting in
a multi-processor machine supporting shared data structures. Processes

5

can be coordinated in such a way that every single step of each process
(i.e., decision on the next point to evaluate) is performed while taking into
account information about all processes. A paradigm of this case is the
Particle Swarm algorithm, where the optimum is searched along multiple
trajectories whose evolution depends both on personal and global history
through a very simple rule. The particle swarm method is usually im-
plemented as a single process operating on an array of evaluation points,
but its parallelization is straightforward, provided that the cost of shar-
ing global information does not overcome the advantage of having many
function evaluations performed simultaneously.

Between the two extremal cases presented above (no coordination or com-
plete information), a wide spectrum of algorithms can be designed to per-
form individual searches with some form of loose coordination. Some paradig-
matic cases of “collaborative search” are now collected under the BOINC ini-
tiative [18]. Although distributed, these projects are based on the repetition of
a simple loop: every involved machine receives from a central server a subset
of the search space (signal samples, number intervals), performs an exhaustive
coverage of the subset and reports the results, receiving another search subset.

If the configuration space is to be searched by stochastic means, as opposed
to exhaustive, these distribution methods are less appealing: having a central
coordinator choose a partition of the search space may not be the best choice if
the search space is large and only a small portion can be visited, hopefully by
concentrating the search in the most promising areas.

We investigate the distribution of the two heuristics described in Sections 3.1
and 3.2 by using epidemic protocols to maintain a loose coordination among all
processes.

• Gossiping Particle Swarms — Distributing the computational effort
(objective function evaluation and trajectory update) among many peers
is possible, but not straightforward, given that coordination through the
knowledge of the global best position g has to be implemented. Therefore
we are studying distribution strategies that depend on two criteria:

– Every node manages a number of trajectories according to the classic
version, which is the limit case of a single participant node.

– The requirement of an up-to-date global optimum is relaxed: every
node maintains its own value for g and, when convenient, updates
its value and communicates it to other nodes by gossiping.

The number of particles per node and the gossiping frequency are the
main parameters considered in our analysis, to study the tradeoff between
message complexity and quality of solutions.

• Anti-entropy Memory-based RASH — In order to distribute the M-
RASH algorithm, every node should maintain its own past history and use
it to model the function landscape and locate the best suitable starting

6

1e−04 1e−03 1e−02 1e−01 1e+00

1e
−

40
1e

−
31

1e
−

22
1e

−
13

1e
−

04

Gossip probability

G
lo

ba
l m

in
im

um

5
10
20
30

Figure 1: PSO with various message exchange probabilities; horizontal lines
refer to the single-node scenario

point. Occasionally, pairs of nodes shall communicate and share relevant
information about their past history in order to build a better common
model. The frequency and randomness of information exchanges are the
crucial parameters in this case.

5 Experimental results

Our preliminary experiments on the distribution of the particle swarm heuristic
consider the case in which particle i maintains the best point p

i
along its trajec-

tory and, in place of the global best g, a “personal” version g
′

i
which is updated

by exchanging information with other particles. In particular, after every eval-
uation, particle i decides with a fixed probability to exchange its version g

′

i
of

the global best with another random particle.
The results of these preliminary experiments on gossiping optimization heuris-

tics are shown in Figure 1. Every point represents the average outcome of 30
runs where every particle performs 1000 ten-dimensional Zakharov function eval-
uations. The different lines represent experiments with a different number of
particles (5 to 30). The plots represents the global minimum after 1000 evalua-
tions per particle versus the probability of gossiping, from 10−4 to 1.

7

As a measure of comparison, it is interesting to see what a single node
would do if charged with the same 1000-evaluation computational load that it
sustains in the distributed version, but managing all particles and thus with less
evaluations per particle. The horizontal lines in Figure 1 represent the average
outcome of 30 runs of the classical, sequential Particle Swarm algorithm with
1000 function evaluations and with a number of particles ranging from 5 to
30. Note that, due to the small number of available evaluations, solutions that
explore less trajectories (but for a larger number of steps) yield better results.

The simulations show that a higher gossiping probability generates better
results, as expected. However, a small message exchange (one in 100 evaluations)
allows the distributed version to be competitive with respect to the sequential
one.

6 Conclusions

This paper has presented ongoing work on the implementation of memory-based
search algorithms in distributed peer-to-peer environments. Global information
sharing among processes is managed by epidemic protocols that ensure spread-
ing of relevant data generated during the search.

Preliminary results on the Particle Swarm heuristic show that the message
complexity needed to outperform a single-node sequential algorithm can be low,
and that the proposed approach is therefore viable.

References

[1] R. Battiti and G.Tecchiolli. Parallel biased search for combinatorial opti-
mization: Genetic algorithms and tabu. Microprocessor and Microsystems,
16:351–367, 1992.

[2] R. Battiti and G. Tecchiolli. Learning with first, second, and no derivatives:
a case study in high energy physics. Neurocomputing, 6:181–206, 1994.

[3] Roberto Battiti and Mauro Brunato. Reactive search: machine learning for
memory-based heuristics. In Teofilo F. Gonzalez, editor, Approximation
Algorithms and Metaheuristics. Taylor and Francis Books (CRC Press),
2006. in press.

[4] Roberto Battiti, Mauro Brunato, and Srinivas Pasupuleti. Do
not be afraid of local minima: Affine shaker and particle swarm.
Technical Report DIT-05-049, University of Trento, Via Som-
marive, 14, 38050 Povo(TN) - Italy, May 2005. Available at:
http://rtm.science.unitn.it/˜battiti/archive/pso.pdf.

[5] Mauro Brunato, Roberto Battiti, and Srinivas Pasupuleti. A memory-
based rash optimizer. In Ariel Felner, Robert Holte, and Hector Geffner,
editors, Proceedings of AAAI-06 workshop on Heuristic Search, Memory

8

Based Heuristics and Their applications, pages 45–51, Boston, Mass., 2006.
ISBN 978-1-57735-290-7.

[6] Vincent A. Cicirello and Stephen F. Smith. Principles and Practice of
Constraint Programming CP 2004, volume 3258 of Lecture Notes in Com-
puter Science, chapter Heuristic Selection for Stochastic Search Optimiza-
tion: Modeling Solution Quality by Extreme Value Theory, pages 197–211.
Springer Berlin / Heidelberg, 2004.

[7] Pedro S. de Souza and Sarosh N. Talukdar. Asynchronous organiza-
tions for multi-algorithm problems. In SAC ’93: Proceedings of the 1993
ACM/SIGAPP symposium on Applied computing, pages 286–293, New
York, NY, USA, 1993. ACM Press.

[8] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott
Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algo-
rithms for replicated database maintenance. In Proceedings of the 6th An-
nual ACM Symposium on Principles of Distributed Computing (PODC’87),
pages 1–12, Vancouver, British Columbia, Canada, August 1987. ACM
Press.

[9] Carla P. Gomes and Bart Selman. Algorithm portfolios. Artif. Intell.,
126(1-2):43–62, 2001.

[10] H. H. Hoos and T. Stützle. Stochastic Local Search: Foundations and
Applications. Morgan Kaufmann, 2005.

[11] Bernardo A. Huberman, Rajan M. Lukose, and Tad Hogg. An economics
approach to hard computational problems. Science, 275:51–54, January 3
1997.

[12] Márk Jelasity and Ozalp Babaoglu. T-Man: Gossip-based overlay topol-
ogy management. In Sven A. Brueckner, Giovanna Di Marzo Serugendo,
David Hales, and Franco Zambonelli, editors, Engineering Self-Organising
Systems: Third International Workshop (ESOA 2005), Revised Selected
Papers, volume 3910 of Lecture Notes in Computer Science, pages 1–15.
Springer-Verlag, 2006.

[13] Márk Jelasity, Rachid Guerraoui, Anne-Marie Kermarrec, and Maarten van
Steen. The peer sampling service: Experimental evaluation of unstructured
gossip-based implementations. In Hans-Arno Jacobsen, editor, Middleware
2004, volume 3231 of Lecture Notes in Computer Science, pages 79–98.
Springer-Verlag, 2004.

[14] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-based
aggregation in large dynamic networks. ACM Trans. Comput. Syst.,
23(1):219–252, 2005.

[15] H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, and B. Selman. Dynamic restart
policies, 2002.

9

[16] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based compu-
tation of aggregate information. In Proceedings of the 44th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’03), pages 482–
491. IEEE Computer Society, 2003.

[17] J. Kennedy and R. C. Eberhart. Particle swarm optimization. IEEE Int.
Conf. Neural Networks, pages 1942–1948, 1995.

[18] The BOINC Project. http://boinc.berkeley.edu/.

[19] M. J. Streeter and S.F. Smith. A simple distribution-free approach to the
max k-armed bandit problem. In Proceedings of the Twelfth International
Conference on Principles and Practice of Constraint Programming (CP
2006), 2006.

[20] E.-G. Talbi. Parallel Combinatorial Optimization. John Wiley and Sons,
USA, 2006.

10

