
WilmaGate: a New Open Access Gateway for Hotspot
Management∗

Mauro Brunato and Danilo Severina
Department of Computer Science and Telecommunications

University of Trento
Via Sommarive, 14 — I-38050 Trento, Italy

brunato|severina@dit.unitn.it

ABSTRACT
Wireless access has already become a ubiquitous way to con-
nect to the Internet, but the mushrooming of wireless access
infrastructures throughout the world has given rise to a wide
range of user authentication, authorization and accounting
(AAA) mechanisms, with lots of incompatible “standards”,
each having its unique features and responding to specific
problems.

The WilmaGate system has been developed in order to
provide a viable alternative to such a scenario. The assump-
tions that led to this system are very simple. First, wireless
users are often already registered to some traditional access
provider, or to an institution: rather than requiring a dif-
ferent subscription to each wireless access system, we just
require the subscriber’s service provider or institution to col-
laborate with the access system for user authentication. Sec-
ond, users should not be forced to install specialized clients
into their computers for two reasons: their systems would
grow unstable and some types of computers (e.g., PDAs)
would not be able to access the network. Third, security
for e-mail and passwords is mainly provided by end-to-end
protocols such as SSL and TLS, so introducing low-level au-
thentication and encryption can be regarded as unnecessary,
and causes often unnecessary overhead.

In this work we oversee the system architecture, which has
already been deployed, and describe its main component,
the WilmaGate. A short discussion on the current system
implementation and its performance is also provided.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
security and protection; C.2.1 [Computer-Communication

∗This work was supported by the WILMA Project [12] spon-
sored by the Autonomous Province of Trento (PAT), and by
the TWELVE PRIN Project [11], sponsored by the Italian
Ministry of Education and Research (MIUR).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WMASH’05, September 2, 2005, Cologne, Germany.
Copyright 2005 ACM 1-59593-143-0/05/0009 ...$5.00.

Networks]: Network Architecture and Design—wireless com-
munication; C.2.3 [Computer-Communication Networks]:
Network Operations—public networks; D.4.6 [Operating
Systems]: Security and Protection—access controls, au-
thentication

General Terms
Design, Security

Keywords
Open Access Networks, Wireless Networks, Access Gate-
ways, Authentication, Authorization

1. INTRODUCTION
WilmaGate is a wireless LAN hotspot management sys-

tem based on the Open Access Network paradigm [3, 6, 4,
7, 5, 8, 1] where a multiplicity of access providers interact
with many authentication operators in order to grant access
to users registered to different service providers through the
widest possible choice of hotspot services. To attain this
goal, the WilmaGate system provides functionalities for dis-
tributed authentication and authorization; moreover, secu-
rity, firewalling and other capabilities are provided as stan-
dard components of an access gateway system.

The WilmaGate’s modular design is intended for easy im-
plementation of novel features such as QoS control, context-
dependent services and traffic shaping and modelling.

The general framework of WilmaGate is provided by the
WILMA (Wireless Internet and Location Management Ar-
chitecture) Project [2, 12], whose goal is, among others, to
build an open wireless testbed where innovative algorithms
and procedures can be implemented and tested safely within
an open source architecture.

Within the WILMA project, the WilmaGate is serving
as a common framework for the management of different
WLANs deployed at the University and in the city and
province of Trento. Because of the WilmaGate, these wire-
less networks form an integrated testbed where university
students and employees, customers of a local telecommuni-
cations provider and members of other local institutions are
free to login and navigate.

The rest of this paper is organized as follows. Section 2 de-
scribes previous work in the field and motivates our choice of
writing a new access platform. Section 3 presents an overall
description of the system, with details about its main com-
ponents. Section 4 describes the “captive portal” approach

that has been implemented in the system (although other
approaches are possible) as an authentication mechanism.
Section 5 shows some examples on how the WilmaGate sys-
tem can be deployed in different types of network. In Sec-
tion 6 we finally describe the WILMA testbed where our
gateway is already deployed.

2. MOTIVATION AND RELATED WORK
Open Access Networks (OANs) [3, 6, 7, 5] are a possible

remedy to the current vertical model of wireless access provi-
sioning. In the traditional model, many hotspots, managed
by different service providers, coexist in the same geograph-
ical area, leading to a waste of resources, mainly frequency
channels, suboptimal communication capabilities because of
interference, and possibly EM exposure beyond the legal
limits. Overcrowded hotspots are a necessary consequence
of the lack of coordination among telecommunications oper-
ators, who only grant access to their customers and seldom
have roaming agreements.

On the other hand, this model prevents small operators
and institutions from installing publicly accessible hotspots.
In fact, people would need to subscribe to a lot of operators
in order to get reasonably wide-area access grants.

A possible solution is decoupling the access and the au-
thentication layer, having different providers for them. In
particular, authentication and authorization could be man-
aged by the traditional operators, who already have a large
customer database and are interested in providing the widest
possible access to them, and also by small institutions who
have employee or student databases. Access operators can
manage any size of hotspot, from a small one-access-point
cafe to a large shopping mall to a city infrastructure. The
underlying business model envisions some form of commer-
cial agreement between each access operator and each au-
thentication server; of course, for this model to be scalable
it is necessary to have some intermediate brokers and a com-
mon agreement form. Authentication servers would manage
user billing, while access operators would more naturally re-
ceive a share which is proportional to their supported traffic.

Some systems already support some versions of this model.
A largely cited example is SwedenOpen.net, pioneered by
the StockholmOpen Project [10, 6], a city-wide OAN infras-
tructure in Stockholm. The StockholmOpen model, how-
ever, requires every access provider to host a server from
every authentication provider in order to support its poli-
cies.

A rather successful system is the NoCat authentication
system [9]. While not really an OAN, its open-source nature
and its authentication facilities are notable, and many small
systems have been set up with its open-source code.

The WilmaGate system shares aspects with both afore-
mentioned projects. In particular, it tries to maintain the
Open Access nature of StockholmOpen while allowing less
stringent policy coordination requirements; moreover, the
initial authentication system, based on the “captive portal”
approach, mimics and extends the NoCat architecture.

Development of our system has always followed some basic
assumptions.

• The OAN approach: wireless users are often already
registered to some traditional access provider, or to an
institution: rather than requiring a new registration to
each wireless access system, we just require the service

Provider
Authentication

Provider
Authentication

Provider
Authentication

AP

AP

AP

AP

WLAN

Internet

AP

WilmaGate

WilmaGate
WLAN

Figure 1: An overall view of the WilmaGate system.

provider or institution to collaborate with the access
system for user authentication.

• Users should not be forced to install specialized clients
into their computers for two reasons: their systems
would grow unstable and some types of computers
(e.g., PDAs) would not be able to access the network.

• Security for e-mail and passwords is already provided
by end-to-end protocols such as SSL and TLS, so intro-
ducing low-level authentication and encryption can be
regarded as unnecessary, and causes often unnecessary
overhead.

• Different users may request different forms of authen-
tication. The WilmaGate system should be built in
a modular fashion, in order to install new authentica-
tion procedures as plugin modules without disrupting
previous functionalities.

3. SYSTEM OVERVIEW
The WilmaGate system is fully implemented in C++ as

a collection of user-space applications. Linux was chosen
as operating system, but portability to other operating sys-
tems, in particular Windows, is one of the main criteria in
development, and the code can be executed on a Win32/
Cygwin machine. On the other hand, Linux-specific opti-
mizations, such as the implementation as kernel-space mod-
ules, are being considered for high performance systems.

The goal of the WilmaGate is the feasibility demonstra-
tion of flexible and secure management within WLANs and
public hotspots, without the need to resort to proprietary
implementation, exceedingly complex procedures or manda-
tory installation on mobile clients of ad-hoc software.

The WilmaGate system implements a wireless open access
network gateway. Its main features are:

• Support for multiple external authentication providers;

• Extensible support for several authentication and au-
thorization techniques;

• Firewalling;

• Accounting.

Figure 1 shows an overall view of the proposed network
components: WilmaGate operates as interface between wire-
less hotspots (light grey areas with access points in them)
and the Internet or a wired LAN. A number of authentica-
tion providers is available in the Internet, and can be con-
tacted by wireless clients to get full access to the Internet.

T
o

L
A

N
 /

In
te

rn
et

L
A

N
s

T
o

W
ir

el
es

s

Gatekeeper

Pr
ox

y

T
el

ne
t

SS
H

Gateway

Router

Table

Status

Layer 2 network interfaces

A
ut

ho
ri

za
tio

n
in

te
rf

ac
e

list
Client

Rules

...

D
H

C
P

H
T

T
P Providers

List

Protocol dispatcher

Authorization
/ Reporting

Tunnel Command

Figure 2: Block diagram of the WilmaGate system

The internal structure of a WilmaGate node is shown in
Figure 2. The application is divided into two components
in order to separate functionalities. Performance consider-
ations can help deciding whether the two components must
be embedded in the same machine or must be executed to
two different computers.

The Gateway component is responsible for all network-
intensive functionalities: it is basically a layer-3 switch with
some additional ad-hoc functionalities (however, a config-
urable router or a firewall with enough flexibility could be
applicable): it checks packets that are directed from and to
authorized clients and puts them into the right interface.
The Gateway component bridges the wireless LAN and the
other side, which may be a corporate LAN, a WAN, a point-
to-point line with several network components in it. Non-
interference with other network components is an important
requirement.

The Gatekeeper component is responsible of all CPU-
intensive functionalities (table look-ups, authentication pro-
tocols etc.). It receives unauthorized packets from the Gate-
way: packets are subjected to processing and are used to
trigger events such as an authentication procedure. The au-
thentication procedure will involve the client, the Gateway
(for packet forwarding), the Gatekeeper and an authenti-
cation provider, possibly chosen among many. The role of
every component and the type of interaction depend on the
authentication mechanism, and shall be discussed later.

3.1 The Gateway component
The Gateway machine contains various network interfaces

(at least two), some of which are directed to the wireless
LAN, and some to the wired LAN. Its main purpose is to
serve as a configurable Layer 3 switch.

As shown in Figure 2, the router module (a C++ object)
manages interchange of Ethernet frames among network in-
terfaces and the Gatekeeper. The router module identifies
packet sources and destinations according to their Ether-
net MAC address and their IP address. Correspondence be-

Variable Meaning
authWLAN List if authorized (MAC,IP) pairs
srvLAN List of freely accessible IPs
e Ethernet frame
c Authorization command
sense Direction of an ethernet frame

1. function initialize
2. authWLAN ← ∅
3. srvLAN ← predefined list of IP addresses

4. upon receipt of e along WLAN
5. if (e.senderMAC,e.senderIP) ∈ authWLAN
6. or e.receiverIP ∈ srvLAN
7. send e along LAN
8. else switch (action (e.protocol))
9. case forward:
10. send e along LAN
11. case submit:
12. send e to Gatekeeper
13. case drop:
14. nop

15. upon receipt of e along LAN
16. send e along WLAN

17. upon receipt of (e, sense) from Gatekeeper
18. send e along sense

19. upon receipt of c along Command
20. if c.command=authorize

21. authWLAN ← authWLAN ∪ (c.MAC, c.IP)
22. else
23. authWLAN ← authWLAN \ (*, c.IP)

Figure 3: The Gateway algorithm

tween MAC and IP addresses for authorized clients is stored
in the client list, accessed by the router via a read-only in-
terface.

The router takes decisions on packets based on the client
authorization status, stored in the Client list, and on the
packet protocol at network and transport level; rules gov-
erning the router’s behavior are stored in the Rule table,
created on startup and accessed by the Router via a read-
only interface.

In principle, all packets coming from wireless clients whose
status is unauthorized are sent to the Gatekeeper for further
processing, while all packets received from the Gatekeeper
are forwarded to the appropriate interface, with no interfer-
ence from the Gateway rules.

Rules and authorization tables are kept as simple as pos-
sible in order to avoid any bottleneck and to simplify im-
plementation on diskless dedicated hardware with a limited
amount of computational power, if required. The client list
is updated via a Command interface, which receives simple
text commands from the Gatekeeper.

3.2 The Gatekeeper component
The Gatekeeper component performs all tasks that require

more processing than just looking at frame and packet head-
ers. It receives all unauthorized packets from the Gateway
through the “tunnel” shown in Figure 2. This tunnel is im-

plemented as a pair of UDP sockets. Packets are processed
with the goal of authenticating the user, and eventually sent
back to the Gateway to be forwarded.

The main functions of the Gatekeeper are:

• Client status maintenance; the Gatekeeper’s status ta-
ble is essentially a superset of the Gateway’s client list;

• DHCP management;

• Client authentication and authorization.

The Gatekeeper acts according to the packets received
from the Gateway component, updates its status table and
issues commands back to the Gateway component. Com-
mands are of the following form:

• Send a packet through a specified interface;

• Authorize client identified by MAC/IP pair;

• Revoke authorization to a given client.

In addition to the Gateway tunnel, Gatekeeper interacts
with remote entities via two TCP sockets:

• the Authorization interface is used to receive infor-
mation by a trusted authentication server about au-
thorization of users;

• the Report interface is used to provide data about
the current status of the clients and is used to inform
the Gateway about the changes of the status of users.

3.2.1 The Status Table
The Status table represents the current status of the net-

work and it is the core of the Gatekeeper system. Its struc-
ture is a table, where every table row is associated to one
IP address of the wireless subnet, and contains status infor-
mation such as the Ethernet MAC address of the currently
associated wireless client, traffic information, if required also
the identity of the person who got the authorization.

Moreover, each entry contains a status variable represent-
ing the DHCP association status and the authorization sta-
tus of the corresponding IP address, which can assume the
values:

FORBIDDEN The IP address is reserved for system use;

FREE The IP address is free and can be associated to a new
client upon a DHCP request;

FIRST SEEN The IP address has been offered to a new client
during the discovery process;

TEMPORARY LEASE The IP address is leased to the client with
a short expiration time (non-authenticated client);

AUTHORIZED The client has been identified and gateway ser-
vices are granted. Subsequent DHCP leases will con-
firm the current IP address with a longer expiration
time.

3.2.2 The Providers List
The Providers List contains a list of trusted authentica-

tion providers. Each provider is associated to a name, an
IP address, and some data about the identification process.
This list is used to recognize the IP address that can be
reached by an unauthorized user, who must be allowed to
contact the authentication provider to initiate an authenti-
cation procedure.

Variable Meaning
plugins List of packet handlers
e Ethernet frame
sense Direction of an ethernet frame

1. upon receipt of e from Gateway
2. for each p ∈ plugins
3. l ← p.manage (e)
4. if l 6= dontcare

5. for each (e’, sense) ∈ l
6. send (e’, sense) to Gateway
7. exit

Figure 4: The Dispatcher algorithm

3.2.3 The Dispatcher
The main component in the Gatekeeper architecture is the

Dispatcher. It represents the Gatekeeper’s tunnel endpoint.
As shown in Figure 4, when a packet is received through
the tunnel (meaning that the Gateway requires some pro-
cessing), the Dispatcher polls protocol-specialized modules,
called “plugins” (see Section 3.2.4), until it finds one that
can handle the packet. Every plugin p is a C++ object
which exposes to the Dispatcher the method p.manage (e)
which returns either a list of forged packets that must be sent
back to the Gateway for routing, together with direction in-
formation to express the interface the packet should be sent
through, or a special dontcare value, meaning that the next
plugin object in the Dispatcher’s list must be queried.

3.2.4 The Plugins
The plugin modules are used by the Dispatcher module

in order to take decisions about specific protocols. As said
in Sec. 3.2.3, all plugins expose a public method which is
invoked by the Dispatcher in order to submit a packet; this
function returns a list of response packets, if needed, to-
gether with some indication about the subsequent action
(e.g., send back the original packet to the Gateway for for-
warding, send a new packet). If necessary, the plugin mod-
ules can access and modify the status table.

The DHCP plugin — The DHCP plugin module man-
ages the DHCP service in the wireless LAN. When the Dis-
patcher receives a DHCP packet, it submits it to the DHCP
module. To decide the appropriate action, the DHCP mod-
ule can access the authorization list, where the status of
every IP address is stored.

The HTTP and Proxy plugins — The HTTP and
Proxy modules handle direct and proxy-based HTTP con-
nection requests. To implement the “captive portal” mech-
anism (see Section 4.2), the HTTP module forges an entire
connection session (setup handshake, HTTP GET/response
and shutdown handshake) by spoofing the requested web
server. Its fixed response to any client request is a redirec-
tion toward a predetermined page, which can either contain
instructions to correctly set the proxy server in the client
system, or a login form. On the other hand, the proxy mod-
ule does not substitute itself to the actual proxy server, but
reads all packets and parses HTTP requests. Only when it
intercepts a request that is not directed to an authentica-
tion server, it generates an HTTP 302 response that redi-
rects the client to an authentication page. Moreover, the

Variable Meaning
authTable Associative array IP⇒status
m Message from authentication server
c Command to Gateway

1. function initialize
2. for each IP ∈ WLAN subnet
3. authTable[IP].status ← FREE

4. upon receipt of m from authenticator
5. if m.command = authenticate

6. authTable[m.IP].status ← AUTHORIZED

7. authTable[m.IP].who ← m.ID
8. c.command ← authorize

9. c.IP ← m.IP
10. c.MAC ← authTable[m.IP].MAC
11. else if m.command = revoke

12. authTable[m.IP].status ← FIRST SEEN

13. c.command ← unauthorize

14. c.IP ← m.IP
15. send c to Gateway’s Command interface

Figure 5: The authorization module algorithm

necessary FIN packets are forged in order to shut down the
proxy communication and force the client to set it up again
(otherwise sequence numbers would not match anymore).

3.2.5 The Authorization module
The authorization module is built upon the regular TCP/

IP stack. It listens to a TCP port (default is 54273) on the
wired interface. It can be contacted by a trusted authenti-
cation server, and accepts commands for user authorization.
Figure 5 shows how a command issued by a remote authenti-
cation server causes the Authorization module to modify the
corresponding entry of the status table and to issue the nec-
essary commands to the Gateway in order to let the client’s
packets pass through without further processing.

The module has the ultimate responsibility of moving a
client to the AUTHORIZED status, granting to it full access to
the network, and to revoke it upon explicit logout or when
the authorization period expires with no renewal.

It obeys two textual commands:
authorize IP name email token
revoke IP

The first command is issued by an authentication provider
willing to authorize a user, the second to revoke such autho-
rization. Note that the authorization command provides
additional information for logging, i.e., the name and email
of the authorized user and a token that has been issued dur-
ing the DHCP process and sent to the client in the early
authentication phase.

3.2.6 The Reporting module
It sits on a TCP port on the wired interface (default is

54272) and is used to provide data about the current status
(connected clients, trusted providers).

The same module is also invoked by the status table when
a client’s status changes. In this case, if needed, the Report
module is responsible of sending the appropriate client au-
thorization or revocation command to the Gateway.

4. CLIENT AUTHENTICATION
In a general architecture with a WilmaGate system, a

client must have a valid IP address and an authorization
to use Internet services. To obtain the authorization, the
client must contact his own authentication server and send
the requested information about his own identity. If the
authentication server recognizes the user’s rights, it contacts
the WilmaGate to inform it that the client can access the
Internet services.

When the client sends information to the authentication
server it is not yet authorized for general web browsing by
the WilmaGate, so the WilmaGate needs proper policy to
allow the forwarding of authentication-related packets.

Figure 6 describes a slightly simplified timing diagram for
the “captive portal” authentication procedure, described in
the following sections.

4.1 DHCP discovery and request
When the user turns on the networking interface, the first

packets that the client sends are related to dynamic config-
uration (DHCP) to request an IP address.

All DHCP-related packets are tunneled to the Gatekeeper,
even if the requesting client is already authorized (e.g., an
IP renewal is taking place). The Gatekeeper, operating as a
DHCP server, decides the IP address to assign, whether to
renew it or not, the duration of the IP lease.

To increase the system flexibility, a new DHCP relay plu-
gin module is under test. The advantages of referring to an
external DHCP server are manifold: a unified policy with
other network segments, better usage of option fields, more
detailed status maintenance. However, some problems had
to be solved. In particular, the WilmaGate system uses dif-
ferent DHCP lease time for unauthorized and authorized
clients, while the IP address pool is not necessarily differ-
ent. Common DHCP servers do not offer such functionality,
which has to be simulated by the DHCP plugin module while
keeping the IP assignment tables synchronized.

4.2 The “captive portal” capture method
When the client obtains an IP address, it still cannot

browse the web. When the browser is pointed to some URL,
it will first perform a DNS query, to which the Gateway is
transparent (second shadowed strip of Figure 6). The DNS
query will concern either the domain name of the requested
website or, if the Proxy server has been correctly set, the
proxy IP.

After getting the correct DNS response, the browser opens
a connection to the proxy server; after the connection is
open (not all the handshake is drawn in the diagram), an
HTTP GET request is issued towards the proxy server (time
label A). The packet containing the GET request is inter-
cepted by the Gatekeeper at time label B, which forges a
response packet by pretending to be the proxy server. The
response contains an HTTP 302 code which redirects the
client to an authentication page. Moreover, the packet has
the FIN flag set, so that the client browser closes its connec-
tion to the proxy server. A FIN packet is also forged and
is sent to the proxy server on behalf of the client. As a re-
sult, at time label C the connection is closed and the client
is redirected to the authentication provider’s page. Clos-
ing the connection is necessary, because after forging the
redirect response sequence numbers at the client and at the
proxy endpoints would not correspond.

Client Gateway Gatekeeper DNS server Proxy server Authenticator Remote website

discover
offer
request

ACK

response

query

MOVED, FIN FIN

SYN

SYN ACKGET

SYN

SYN ACK

POST auth info

GET auth module

authenticate

HTTP response: success page

GET

Response

enable

OK, authenticated

Free navigation

A

HTTP capture

User protocols

Auth protocol

Tunneled frames

B

DHCP discovery
and request

DNS transaction

Authentication

F

C

E

G

D

Figure 6: Simplified timing diagram from client appearance to full authorization

Thus, the authentication process starts with the client is-
suing a new web proxy connection. The next GET request
(actually a CONNECT request to a secure server, time la-
bel D) is directed to the authentication server’s login page,
so it is admitted by the Gatekeeper. After getting the page,
the user fills it in and (time label E) posts the login data
to a PHP authentication script in the authentication server,
which (at time label F) checks the user’s login credentials
(password or certificate) and, upon approval, contacts the
Gatekeeper’s authorization module and sends an authoriza-
tion command. The Gatekeeper updates its own status ta-
ble, sends an authorization command to the Gateway, un-
blocking the user’s packets, and a response to the authen-
tication server. The authentication server, in turn, sends a
success page to the client, and the client is free to navigate
the web (its connection to the net is no longer tunneled to
the Gatekeeper).

It must be noted that all sensitive information are directly
tunneled between the user and the authentication provider
via HTTPS, so the authentication procedure cannot actually
be decrypted by the access operator, who will never be able
to steal passwords by eavesdropping. Only the final result of
the authentication procedure, the authorization command,
is sent by the authentication provider to the WilmaGate;
however, this command does not contain user sensitive data.
The Gatekeeper only needs to know that a client has been
positively authenticated by a trusted provider.

In order to uniquely identify a client during the authenti-
cation process, a 16-byte random word called token is gener-
ated by the Gatekeeper during the redirection process (time
label B of Figure 6) and is inserted in all subsequent au-
thentication web pages. The same token shall be reported
in the authentication message (time label F).

4.3 Authorization refresh
The client’s authorization must be periodically renewed

in order to avoid IP/MAC spoofing by unauthorized users.
If the authorization is not refreshed within a given period of
time, the client shall be considered gone, and authorization
shall be revoked.

The authentication server’s “success” page contains Java-
script commands that open a pop-up browser window dis-
playing a secure page that is periodically reloaded, each time
passing a new shared random alphanumeric string, called
“token”.

The first token is created by the Gatekeeper upon DHCP
request, and passed to the client when redirected to the
authentication server. When the authentication server con-
firms the user’s authorization, it sends in the user’s token,
which is checked against the stored value. A new value is
generated and sent to the client’s pop-up page, and will be
requested at the first renewal. A new token is generated at
every renewal.

External

Tunnel1

network

WLAN Inner

Tunnel2

Gateway
Outer

Command

Authorization

Report

Gatekeeper

Figure 7: Reference for configuration

4.4 Issues with small devices
Small clients, such as PDAs, are not fully compatible with

the authentication system described above; in particular,
they may lack the ability of opening pop-up windows. Most
operating systems for PDAs only support one window per
program, so no automated renewal is possible and the client
is accepted into the system for few minutes.

The problem can be solved in different ways:

• bypass the authentication procedure by statically in-
serting MAC/IP address pair in the WilmaGate con-
figuration parameters;

• detect the client’s operating system and in case allow
a longer authorization time;

• create an ad-hoc authentication procedure based on
some resident software that takes care of renewals.

The first solution clearly reduces the system’s security,
because it is open to a simple MAC spoofing attack. The two
latter alternatives are being tested in order to identify the
simplest and less invasive solution: while the use of a longer
authorization time for PDAs can affect security, installing
a client program in order to keep the authorization alive is
contrary to the project philosophy as stated in Section 2, so
pros and cons must be carefully weighed.

5. CONFIGURATION
System parameters are written in two configuration files,

one for the Gateway, the other for the Gatekeeper compo-
nent.

Figure 7 contains reference names of all interfaces that
must be defined and configured in order to have the system
up and running.

The configuration file for the Gateway component con-
tains information about:

• the description of physical interface and its IP address
toward the the network that is managed by the Wilma-
Gate (Inner interface): this interface has its own phys-
ical address and a “fake” address that emulates the
gateway because it must answer to ARP request from
managed wireless network;

• the description of physical interfaces and their IP ad-
dresses toward the the external network (Outer in-
terface): this interface has its own physical address

and a “fake” address because it must respond to ARP
queries on behalf of wireless clients in order to work as
gateway;

• the description of the external network gateway;

• the description of physical interface and its IP address
and port toward the Gatekeeper (Tunnel1 interface);

• the description of Gatekeeper network interface pa-
rameters (Tunnel2 interface, endpoint of Tunnel1);

• the external network parameters: for instance, IP ad-
dresses of proxy, DNS servers and HTTP servers for
authentication purposes;

• the runtime mode: the system can run as daemon and
you can specify the name and position of log file;

The configuration file for the Gatekeeper component
contains information about:

• the description of physical interfaces and their IP ad-
dresses toward external network (Authorization and
Report) and Gateway (Tunnel2);

• the description of Gateway network interface parame-
ters (Tunnel1 interface, endpoint of Tunnel2);

• the DHCP server: the pool of IP addresses you want
to use and the lease times (short lease time for unau-
thorized user and long lease time for authorized users);

• the DNS server of the network;

• the captive portal method: redirection URL, redirec-
tion URL when no proxy is set, proxy configuration
file URL, and authorization renewal time;

• the URL of authentication providers;

• the runtime mode: the system can run as daemon and
you can specify the name and position of log file;

• static IP assignments: static IP addresses can be set
for some devices (recognized by their MAC addresses).

5.1 Some configuration examples
The WilmaGate system can be configured in different

topologies, according to pre-existing LAN topologies and de-
sired security.

The easiest way to explain possible configuration is to
refer to the following figures.

Figure 8 refers to a All in one configuration: both of the
software (Gateway and Gatekeeper) are in the same ma-
chine. It can be used in small hotspots, SOHO or smart
APs.

Figure 9 refers to a Tandem configuration: the Gateway
and Gatekeeper softwares are in different machines and both
of them have access to external network. It can be used
when the target are large traffic volume, more CPU power
or higher throughput.

Figure 10 refers to a Front-end configuration: the Gate-
way and Gatekeeper are in different machines but only the
server with Gatekeeper software has access to external net-
work. It can be used when existing LANs has only one
available public IP address.

External
LAN

Server1

eth0
WLAN

Gateway

Web Server

Gatekeeper

Tunnel

Report

Tunnel

Inner Outer

Authorization

Command

eth1

Figure 8: Reference for “All in one” configuration

WLAN

eth2

Tunnel Report

Web Server

eth1

Server1

Server2

Authorization

Gatekeeper

Server3

eth1eth0eth1

eth0

eth0

ProxyOuter

Tunnel

Inner

Gateway

Command

External

LAN

Figure 9: Reference for “Tandem” configuration

6. IMPLEMENTATION
As part of the WILMA Project [12], a number of hotspots

have been deployed in the town of Trento by project par-
ticipants. In particular, the University of Trento has fully
covered its Science Faculty building with 20 access points,
while Alpikom (a regional telecommunications operator) has
connected an equal number of access points to a network of
streetlight poles in one of the most populated areas of the
town. While the two hotspots are managed by two different
entities, both are managed by a WilmaGate. The University
WilmaGate is configured in the “All in one” fashion, while
the Alpikom gateway is in the “Front-end” configuration.

Access to both hotspots is granted to all university em-
ployees and students by means of a simple PHP website
using the University’s LDAP database for user authentica-
tion, complemented by a local MySQL database for visiting
guests. Alpikom subscribers are authenticated via a sim-
ilar PHP website acting as a front end to the company’s
RADIUS authentication server.

External
LAN

Server1

Web Server

eth1
WLAN

Gateway

Inner

Tunnel

Command

Outer
eth0

Server2

Proxy

Report

Gatekeeper

AuthorizationTunnel
eth1 eth0

Figure 10: Reference for “Front-end” configuration

The university system is managing 60 to 100 different
users per day with more than 300 logins per day (see Fig-
ure 11), with traffic peaks above 800 kilobytes per second.

Currently, the system has not been tested in stress condi-
tions. However, considering that all packet routing is done
by packet capture (via the libpcap mechanism) in the user
space, we believe that once the current system reaches its
limit there can be a great deal of optimization, such as
kernel-level packet management and/or netfilter integration.

7. CONCLUSIONS
In this paper we have presented a gateway for a wireless

open access system where every access operator can take
advantage of multiple authentication servers to grant access
to its users.

The system is motivated by the growing complexity and

��

���

��

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

6050403020101

N
um

be
r

Day

Sessions
Users

Figure 11: Daily usage

Figure 12: Monthly (top) and weekly (bottom)
throughput

differentiation of standards concerning user authentication,
and aims at making access as straightforward as possible,
while maintaining the necessary reliability for network op-
erators. A description of the main building blocks of the
system has been presented, together with an analysis of an
authentication mechanism.

The actual deployment of the system on a city-wide test-
bed in the city of Trento enables us to check the system’s
functionalities against real-world usage, to fine-tune its per-
formances and to improve its functionalities guided by con-
tinuous user feedback.

Acknowledgments
WilmaGate has been developed at the Computer Science
and Telecommunications Department of the University of
Trento by the Computer Networks and Mobility Research
Group.

We thank all people who work in the NetMob group; in
particular prof. Roberto Battiti and prof. Renato Lo Cigno
for their continuing advice and support, and Alessandro Vil-
lani for putting his expertise at our disposal.

The WilmaGate system is available for research and other
non-profit purposes [13].

8. REFERENCES
[1] M. Altmann, H. Daanen, H. Oliver, and A.-B. Suarez.

How to market-manage a QoS network. Proceedings of
Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies, Vol. 1, 2002.

[2] R. Battiti, M. Brunato, R. Lo Cigno, A. Villani,
G. Lazzari, and R. Flor. WILMA: an open lab for
802.11 hotspots. In M. Conti, S. Giordano, E. Gregori,
and S. Olariu, editors, Proceedings of PWC2003, 2003.

[3] R. Battiti, R. Lo Cigno, M. Sabel, F. Orava, and
B. Pehrson. Wireless LANs: from warchalking to open
access networks. Mobile Networks and Applications,
Vol. 10:275–287, 2005.

[4] A. Escudero, B. Pehrson, E. Pelletta, J. O. Vatn, and
P. Wiatr. Wireless access in the flyinglinux.NET
infrastructure: Mobile IPv4 integration in a IEEE
802.11b. 11-th IEEE Workshop on Local and
Metropolitan Area Networks, 2001.

[5] M. Hedenfalk. Access control in an operator neutral
public access network. MSc thesis, KTH/IMIT, 2002.

[6] B. Pehrson, K. Lundgren, and L. Ramfelt. Open.Net -
open operator neutral access network. In 12-th IEEE
workshop on Local and Metropolitan Area Networks,
Stockholm, SE, 2002.

[7] E. Pelletta, F. Lilieblad, M. Hedenfalk, and
B. Pehrson. The design and implementation of an
operator neutral open wireless access network at the
kista it-university. 12-th IEEE Workshop on Local and
Metropolitan Area Networks, 2002.

[8] S. Vaughan-Nichols. The challenge of Wi-Fi roaming.
ACM Computer, 2003.

[9] NoCat Network.
http://nocat.net/

[10] StockholmOpen Project.
http://www.stockholmopen.net/

[11] TWELVE Project.
http://twelve.unitn.it/

[12] WILMA Project.
http://www.wilmaproject.org/

[13] WilmaGate download page.
http://netmob.unitn.it/wilmagate.html

