
UNIVERSITÀ DEGLI STUDI DI TRENTO

DOTTORATO DI RICERCA IN MATEMATICA

XI C ICLO

Mauro Brunato

CHANNEL ASSIGNMENTALGORITHMS

IN CELLULAR NETWORKS

Relatore

Prof. Alan A. Bertossi

Contents

1 Introduction 1
1.1 Cellular Networks . 1

1.1.1 What does make them feasible? 2
1.1.2 Communication Channels 2
1.1.3 The Channel Assignment Problem 3

1.2 Mathematical Model . 4
1.3 Techniques for Assigning Channels 6
1.4 Scope of this work . 6

2 Review of CA Algorithms 9
2.1 Fixed Allocation . 9

2.1.1 Channel Borrowing . 10
2.2 Dynamic Allocation . 11

2.2.1 Centralized Schemes . 11
2.2.2 Distributed Schemes . 12

2.3 Common Criteria for Channel Choice 12
2.3.1 The Regular Pattern Scheme 12
2.3.2 The Compact Pattern Scheme 13

2.4 Comparison among strategies . 14

3 Heuristics for Local Search 15
3.1 An Overview . 15

3.1.1 Steepest Descent and Some Refinements 15
3.2 History-Sensitive Heuristics . 16
3.3 Tabu Search . 17

3.3.1 Reacting on Parameters . 18
3.4 Experimental settings . 18
3.5 Results . 20

4 A New Centralized CA Algorithm 25
4.1 A penalty function heuristic . 25
4.2 The polynomial algorithm BBB . 27
4.3 Experimental settings . 29
4.4 Results . 29

iii

iv CONTENTS

5 A Distributed Version 31
5.1 The distributed algorithm dBBB . 31

5.1.1 Experimental results . 32
5.2 A broadcasting scheme . 32

5.2.1 The algorithm . 33
5.2.2 Properties . 34

5.3 A Mutual Exclusion technique . 38
5.3.1 The algorithm . 38
5.3.2 Properties . 41

6 Conclusions 43
6.1 Achieved Goals . 43

6.1.1 Heuristics . 43
6.1.2 The BBB Algorithm . 43

6.2 Future Developments . 43

A An Integrated Library for Local Search 45
A.1 Introduction . 45

A.1.1 How to read the code . 45
A.2 TheGenericProblem class . 46

A.2.1 The header fileGenericProblem.H 46
A.2.2 The library fileGenericProblem.C 47

A.3 TheGenericSolver class . 49
A.3.1 The header fileGenericSolver.H 49
A.3.2 The library fileGenericSolver.C 50

A.4 TheAssignmentProblem class 51
A.4.1 The header fileAssignmentProblem.H 51
A.4.2 The library fileAssignmentProblem.C 52

A.5 TheReactiveSearch class . 60
A.5.1 The header fileReactiveSearch.H 60
A.5.2 The library fileReactiveSearch.C 62

B Web Radio Tutorial 69
B.1 Tutorial index . 69
B.2 Java Applets . 70

B.2.1 The Algorithm Comparison Applet 70
B.2.2 The Local Broadcast Test Applet 71
B.2.3 The Multiple Token Passing Test Applet 71

Acknowledgments

To my wife Anna and to our baby,
whose hidden features

no local search heuristic
could disclose yet.

I would like to thank my advisor prof. Alan Bertossi, for his precious advice and
his support to my work. Many thanks to Dr. Roberto Battiti for his continuous help:
without his expertise in testing my ideas, and his willingness to share his own, none of
the results shown in this work would have ever been achieved.

I would also like to thank my colleagues, friends and room mates Gianluca and
Davide, Marco (ilGentile Scienziato), my wife Anna and most of the people cited in
the acknowledgment section of Gianluca’s thesis [Occ99].

Last, out of all people who made personal telecommunications affordable let me
mention the great actress Hedy Lamarr (whose death, on january 18, 2000, is mourned
by every fan of old Hollywood movies), who patented the first frequency hopping de-
vice in 1942.

v

vi CONTENTS

Chapter 1

Introduction

1.1 Cellular Networks

Among the several hobbies people practice in our era, the most widely spread is the
game of foreseeing the future. Science fiction writers, scientists, press writers, fu-
turologists, wizards and “common people” have written so many different predictions
about the future that most of our technological reaches have been predicted by some of
them, sometimes with remarkable detail: portable computers, space vehicles, magnetic
levitation trains, anti-adherent cooking tools...

What about communications? Well, even in this field most technological advances
have been widely predicted, from color TV to fiber-optics and laser communications.
But if you asked anyone living in the times of Jules Verne or even in the fifties about
personal radio communications and the chance that in the last quarter of the cen-
tury people would have been able to communicate throughout the world by means
of portable radio devices smaller than a small packet of cigarettes... they all would
have stated the absolute impossibility of the fact.

Indeed, point to point communications, where a radio equipment communicates
with another radio equipment placed somewhere else in the world have strong limita-
tions:

• In order to communicate through far distances, they must develop a very strong
signal, which in turn leads to some uneasy consequences:

– a strong electromagnetic signal requires a powerful power supply: recharge-
able electric accumulators have shown remarkable progress from the times
of Volta to nowadays, but they are still many orders of magnitude too weak
to allow long-distance durable communications;

– they also require a conveniently sized antenna...

– ...not to mention the large amount of EM power crossing the brain and the
body of the user;

• if many people are to use the communication equipment at the same time, they
must use different communications channels. Of course, FM bands can be re-
duced, they can be multiplexed in time and using some orthogonal codes, but to
travel to long distances the signal must not have too high a frequency, otherwise
it would be stopped by any obstacle, and this limits the amount of usable bands.

1

2 CHAPTER 1. INTRODUCTION

Interference zones

Strong

Medium

Weak

of station

Figure 1.1: A simple geographic cellular network and the interference area of a server

1.1.1 What does make them feasible?

To circumvent these limitations, widespread communications systems are based on the
cellular concept. All portable equipment have a limited power; portable phones do not
communicate directly, but there is a distributed system of base radio stations to support
communications.

Consider a geographic area in which a number of multi-channel transceiver server
stations are placed at a suitable mutual distance. Stations are connected to each other by
means of a wired network, which we are not concerned about in the present work. Each
station acts as a network entry point for all the mobile radio hosts that can communicate
with it at the highest signal-to-noise ratio among all stations. As a result, the geographic
area is divided intocellswhose borders are not well defined, as they depend on the ever-
changing radio signal levels, but could be roughly sketched as in Fig. 1.1, which still
depicts agoodsituation where every cell is a simply connected domain: reflections,
interference and terrain configurations, as well as handoff policies, might substantially
alter it. However, a more regular setting such as the common hexagonal pattern will be
considered in experiments, since it is still the most common test ground.

Modeling real-world instances is in fact a very hard and delicate work, and the
situation is made worse by the policies of many cellular service providers who keep
their data reserved, or provide them in a strictly confidential way, so that the scientific
community cannot share them.

1.1.2 Communication Channels

We often see the Channel Assignment problem referred to asFrequency Assignment.
While the interference issues arise in particular from the use of similar frequencies,
this is not always the case. In fact, given a certain frequency bandwidth inside which
communications equipment are required to operate, the communications resource can
be shared in at least three ways.

• The communication bandwidth is divided in small frequency bands, and each
equipment operating in a certain area is required to employ a different band.
This is calledFrequency Division Multiplexing, and is widely used in common

1.1. CELLULAR NETWORKS 3

radio broadcasts, where every broadcast station uses a particular frequency, upon
which the radio receiver must be tuned in order to receive the transmission.

• Use of the communication bandwidth is granted to a piece of equipment only
at given times: every transmitter uses the whole band, but the use of it must be
restricted only at periodic time interval. Usually, equipment requiring to com-
municate are placed in a round-robin waiting queue. ThisTime Division Mul-
tiplexing is often employed by CB amateurs who establish a discussion group
on a single channel, where everybody in turn either speaks or passes to the next
person. A non-radio application of this technique is the IBM Token Ring wire
network.

• Every communications equipment uses all of the bandwidth for all the time.
Transmission is coded into different (orthogonal) spectrum shapes, so that dif-
ferent transmissions can be told from each other by a spectrum analysis. This
type of encoding is calledSpread Spectrum encoding, and it is mostly used by
military, due to its resilience to external interference (usually carried on a narrow
band) and to interception (the receiver must know the spectrum code).

Cellular communications systems mostly employ Frequency Division Multiplex-
ing; transmissions are usually FM-encoded, so they need a25÷ 30kHz channel band-
width. The GSM system employs a mixture of time and frequency division: the whole
frequency band is divided into 200kHz slices, and each mobile equipment can employ
one frequency band for one eighth of the time; since larger bandwidths imply faster
data transmission, the overall data speed of a connection over each time shared channel
is similar to the speed of a 25kHz exclusive channel.

Today, radio LANs in the2÷ 4GHz band employ spread-spectrum technology.

1.1.3 The Channel Assignment Problem

Usually a server station can be received by server stations in other cells. In this case,
mutually interfering stations must employ different communication channels (i. e. fre-
quency bands, time slices or codes from an orthogonal set), in order to avoidco-channel
interference(interference caused by transmissions on thesamechannel). In its sim-
plest (and most unrealistic) form, the channel assignment problem is equivalent to the
Euclidean graph coloring problem, hence it is NP-hard. This problem can be treated
with simple greedy heuristics [ES84] [BB95] [BBB99]. Because a server station must
communicate with several mobile hosts at once, however, we must assign more than
one channel to each server. When this problem is handled with graph-coloring heuris-
tics, we need to substitute every node with a clique of cardinality equal to the re-
quired number of channels, in order to give the appropriate number of channels to
each transceiver while respecting the interference constraints. This approach causes,
however, the quadratic explosion of the problem.

Moreover, radio interference isadditive, and simple adjacency restrictions (like
those in the graph or list coloring problems) are not sufficient to catch the complex-
ity of the real-world issues. If the interference phenomena are strong enough, even
stations that use different channels may interfere, provided that they operate on adja-
cent frequency bands or on subsequent time slices (propagation delays may cause a
time slice to partially invade another one). This problem becomes significant when the
overall frequency spectrum has to be minimized; indeed, the strong request of radio
bands for several purposes makes the reserved bandwidth for cellular communications

4 CHAPTER 1. INTRODUCTION

interference
Strength of

Figure 1.2: Interference graph corresponding to system in figure 1.1

rather small (∆f ≈ 60MHz in the 900MHz band for the GSM system [BF96]), and
hardware techniques can’t do all the job by themselves. Minimum Shift Keying and
Gaussian Minimum Shift Keying can be used to eliminate spectrum bumps around
the channel, while frequency hopping schemes can eliminate constant interferences by
continuously jumping from one channel to the other.

1.2 Mathematical Model

In the channel assignment problem the system can be modeled as a complete graph (a
clique) having verticesv1, . . . , vnCE , one for each base station, any edge(vi, vj) hav-
ing an associated real number (a weight)Wij proportional to the interference strength
between the corresponding base stationsi andj. Of course, in practical situations many
edges have a null weight, so that completeness becomes just a local feature. For exam-
ple, the “real-world” system represented in figure 1.1 can be modeled with the graph in
figure 1.2, where the various interference strengths are represented with different line
widths and grey levels.

To take into account the different communication needs of every base station (the
number of communication channels it requires to fulfill the requests by the mobile
transceivers), we associate a nonnegative integerTi to every nodevi.

Every communication request is fulfilled by assigning a channel to the mobile host
issuing it. The set of channels is discrete, and it can be modeled with a set of nonneg-
ative integers CH⊂ N. If properly calculated, the map between the set of channels
and the set of integers can associate near channels (that have the highest mutual inter-
ference) with consecutive integers, so that the difference of associated integers gives a
measure of mutual interference between channels.

We shall assume that, to avoid interference, two channelsa ∈ CH andb ∈ CH used
by two different cellsi andj must differ at least by the weight of the connecting edge:

|a− b| ≤Wij . (1.1)

A global numberW is provided to set the minimum difference between two channels
in the same base station to avoid interference. If channelsa ∈ CH andb ∈ CH are used
in the same cell, then we must have

|a− b| ≤W. (1.2)

The channel assignment problem has many non-equivalent formulations.

1.2. MATHEMATICAL MODEL 5

Problem formulation 1. Given the number of cellsnCE, the requested traffic at every
cell (Ti)i=1,...,nCE , the interference graph with weights(Wij)i,j=1,...,nCE and the local
interference constraintW , assign channels to cells so that

1. cell i hasTi channels, denoted byCi1, . . . , CiTi ∈ N,

2. frequency constraints are fulfilled, and

3. the quantity

nCH = max CH = max
{
Cij , i = 1, . . . nCE, j = 1, . . . , Ti

}
is as small as possible.

Problem formulation 2. Given the number of cellsnCE, the requested traffic at every
cell (Ti)i=1,...,nCE , the interference graph with weights(Wij)i,j=1,...,nCE , the local
interference constraintW , and the set CH of available channels, assign channels to
cells so that

1. cell i is assignedni channels, denoted byCi1, . . . , Cini
∈ N,

2. frequency constraints are fulfilled, and

3. the quantity
nCE∑
i=1

max
{
Ti − ni, 0

}
,

is as small as possible.

Problem formulation 3. Given the number of cellsnCE, the requested traffic at every
cell (Ti)i=1,...,nCE , the interference graph with weights(Wij)i,j=1,...,nCE , the local
interference constraintW , and the set CH of available channels, assign channels to
cells so that

1. cell i is assignedTi channels, denoted byCi1, . . . , CiTi
∈ N,

2. the cardinality of the set{
(i, j, i′, j′)

∣∣∣∣i, i′ = 1, . . . nCE, j = 1, . . . , Ti, j
′ = 1, . . . , Ti′ , |Cij−Ci′j′ | < Wii′

}
,

where for everyi we setWii = W , is as small as possible.

In formulation 1 we try to minimize the global bandwidth of the system while
respecting all constraints. The problem is well posed, because we can add channels
one by one by selecting integers large enough to satisfy all constraints at every step,
until we have fulfilled all traffic requirements. Note that we are not looking for a
minimum number of channel (although the problem would equally be well posed), but
we want to minimize the highest channel that we must use.

Formulation 2 allows us to model a real-world problem: the global bandwidth is
limited by the equipment design and by regulations. So we have to sacrifice another
constraint: the number of communications requests. If a request exceeds the number
of available channels at a cell, so that in no way an interference-free assignment could
be accomplished, the request is rejected.

6 CHAPTER 1. INTRODUCTION

Formulation 3 tries to fulfill all communications requests, while allowing some de-
gree of interference, i.e. allowing a lowerquality of service. In fact, we minimize the
count of couples of interfering channels at every couple of cells. In some situations, in
fact, the ability to communicate is more important than the quality of communication.
This is the case of some spread-spectrum techniques, where the number of orthogo-
nal codes is virtually infinite, but where every code is received as noise by all other
apparata.

Note that when

∀i, j ∈ 1, . . . , nCE Wij ∈ {0, 1} and Ti = 1

all of the above is reduced to different formulations of the graph coloring problem. For
binary interference and arbitrary traffic requirements we have the list coloring problem,
where more than one color must be assigned to a node.

The problem can be made more realistic by minimizing cumulated interference, for
example the sum of all interference constraint violations. Given the interference con-
straints (equations 1.1 and 1.2), a measure of their violation is the difference between
their distance and the minimum allowed distanceWij − |a− b|:

nCE∑
i=1

nCE∑
i′=i

Ti∑
j=1

Ti′∑
j′=1

max
{
0,Wii′ − |Cij − Ci′j′ |

}
.

1.3 Techniques for Assigning Channels

Let us briefly summarize the main channel assignment algorithms (for more details
see [KN96] [JS96]).

In section 4.3, page 29, we shall compare these algorithms with the technique we
shall propose in the next chapters, based on objective function minimization.

Fixed Allocation In the FCA (Fixed Channel Allocation) algorithm, each cell is as-
signed a fixed pool of frequencies, so that no near cells can use the same channel. No
communication is needed between cells; when all channels assigned to a cell are in use,
subsequent requests issued within that cell shall be rejected.

Channel Borrowing Each cell has an assigned pool of frequencies, but a channel
can be borrowed from a neighbor, provided that its use does not cause interference.

Dynamic Assignment By DCA (Dynamic Channel Assignment) techniques, every
cell can have access to every channel, as long as it does not cause interference.

1.4 Scope of this work

In this chapter we have described the Channel Assignment problem, giving a mathe-
matical model for it. Then we have given a fast overview of the channel assignment
problem and the algorithms that can be found in the problem literature. A more detailed
review can be found in chapter 2.

In chapter 3 we present some applications of local search techniques to the Chan-
nel Assignment problem; the application of these heuristics to the Channel Assignment

1.4. SCOPE OF THIS WORK 7

Problem is new, and results prove their superiority in the considered cases. The topic
and partial results have been discussed in the seminarHeuristic Algorithms for Wire-
less Networks at the conferenceComputer Science and Operations Research: Recent
Advances in the Interface, held in Monterey (USA) in 1998.

In chapter 4 we describe in greater detail the objective-function approach which is
central to our work. We show how the minimization problem can be solved in polyno-
mial time. The work discussed in this chapter has been presented at theWorkshop sui
Sistemi Distribuiti: Architetture, Algoritmi, Linguaggi (WSDAAL97), held in Berti-
noro (Italy) and at the First Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications (DIAL M for Mobility) held in Budapest (Hungary),
and it appeared on its proceedings book [BBB97].

In chapter 5 we introduce some modifications to the algorithm in order to distribute
it among the cell. To do so, we need a communication scheme to broadcast all sta-
tus changes to a small local cluster and a local synchronization method to make sure
that a cell allocates a channel only when it has enough knowledge of the status of its
neighbors. Partial covering of the arguments of this chapter can be found on our paper
[BBB00], accepted for publication onMobile Networks.

In chapter 6 we shall draw some conclusions suggested by the experimental analy-
sis and point out some possible future developments in the research in this field.

Finally, appendix A will report some of the code we used to implement the sim-
ulations, while appendix B we describe an interesting and useful side product of our
research: a tutorial web site with a few explanations about the Channel Assignment
problem and some Java demonstration applets emulating our algorithms.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Review of Channel Assignment
Algorithms

In this chapter we briefly describe the various algorithms considered in the literature
as partial solutions of the channel assignment problem. A more comprehensive survey
can be found in [KN96], [JS96].

We shall restrict ourselves to variants of formulation 2, in which the set of frequen-
cies is determined in advance, interferences must be avoided and the largest number of
requests must be fulfilled. In most papers the problem is again simplified by assuming
that to avoid interferences two channels just need to be different (Wij ∈ {0, 1}), but
many of the techniques we describe can be applied to a more general case. In particular,
the techniques we propose in the following chapters are not restricted to this simplified
interference model.

2.1 Fixed Allocation

In the Fixed Allocation strategy every cell is permanently assigned a set of nominal
channels according to interference and traffic constraints. The assignment policy is
required to decide which channels should be assigned to which cells before activating
the system.

This policy will try to solve some variant of the problem formulation 2 from page 5.
While we can safely suppose that interference constraints are available in advance (by
accurate simulation or by field measurements), the traffic requirements(Ti) cannot be
accurately foreseen, if not by statistical means.

In its simplest form, an FCA algorithm will allocate the same number of channels
to every cell. To do this, the channel set is partitioned into a number of subsets of
equal cardinality and these sets are assigned to cells according to some possibly regular
scheme. Consider, for example, the common hexagonal tiling. If the set of available
channels is partitioned into three subsets, numbered 1, 2 and 3, then the regular pattern
at left of figure 2.1 shows a possible assignment for a reuse distance equal to two.
Note that the grey cluster is repeated over and over to build up an assignment where
no adjacent cells are assigned the same set of channels. When a reuse distance of two
hops is needed, the whole channel set must be partitioned intoseven subsets, numbered
from 1 to 7, and their assignment (together with the basic cluster) is shown on the right
side of figure 2.1.

9

10 CHAPTER 2. REVIEW OF CA ALGORITHMS

1

2 3

1

2 3

1

3 1

1

2

2

2 3

2 3

1

2 3

4

5

1

3

4

56

1

56

7

6

7

2

7

1

2 3

4

56

7

Figure 2.1: Reuse schemes for interference distance equal to one and two hops

Cell using channel 2

������
������
������

������
������
������

������������������������������

������������������������������ ������

���
���
���

���
���
���

	�		�	
	�		�	
	�		�	

�

�

�

�

�

�

������
���
������
���

�
���

������

���
���
���

���
���
���

Donor cell

Cell using channel 1

Cell requesting for a channel

Figure 2.2: Taking channel locking into consideration

However, when coming to the real world, a fixed pool of channels is hardly enough,
even at low traffic rates, because of random fluctuations of the number of requests: this
is the so-calledhot spot problem.

2.1.1 Channel Borrowing

To overcome the hot spot and other problems, after assigning a set of safe nominal
channels to every cell we can allow a cell toborrow channels from neighbors, provided
that the borrowed channel does not cause interference with channels in use in other
cells.

Of course, while the channel is borrowed it cannot be used by the owner cell, until
it is released by the borrowing cell, so the probability of the donor rejecting a call
is increased. To avoid this, the strategy can be refined to borrow a channel from the
neighbor having the largest number of free nominal channels, thus realizing the SBR
(Simple Borrow from the Richest) algorithm.

Moreover, a borrowed channel is surely going to prevent the use of the same chan-
nel on a cell where it is nominal. Consider figure 2.2, where the black cell at the
center needs to borrow a channel from its cross-hatched left neighbor. Suppose that the
reuse distance is one hop (i.e., only prime neighbors need to use different channels).
The donor cell offers channels 1 and 2 to the central cell. Which channel should be
accepted? Whichever channel is employed by the central cell, it shall be blocked on

2.2. DYNAMIC ALLOCATION 11

its neighbors, in other words its six neighbors will be prevented from using the same
channel until the central cell releases it. If we take into consideration the second ring
of neighbors, however, we see that channel 1 is used by three cells and, due to their
position, it is already blocked on four out of six neighbors of the central cell. On the
other hand, channel 2 is in use on one cell, blocking only one neighbor of the central
cell. So selecting channel 1 should be a better choice, because only two more cells
would be affected by its use (in the other four cells it was already blocked), while se-
lecting channel two would extend prohibition to five more neighbors, since only one
was previously affected.

Taking into account this problem leads us to the BDCL (Borrowing with Direc-
tional Channel Locking) strategy, where a channel is more likely to be chosen if it
is already blocked in the potentially interfering cells, thus giving rise to the smallest
blocking probability. It is one of the best known FCA strategies.

2.2 Dynamic Allocation

On the other hand, a whole set of strategies does not require the initial assignment of
nominal channels: every cell is free to choose among the full set of channels, provided
that it does not cause interference. Usually the channel assignment algorithm on a base
station sounds like the following:

When asked to issue a connection to a mobile, select one channel out of
those that are not in use within the reuse distance.

If there is more than one eligible channel, which one should be selected? In fact, the
functionality of an algorithm often lies in its tie-breaking technique. There are some ev-
idently bad policies, such as always choosing the lowest frequency non-blocked chan-
nel: when a channel is chosen too often, it will also be blocked on a large number
of cells; a better strategy is to choose among eligible channels at random. Of course,
considerations about which channel is going to cause the smallest blocking probability
in the system are welcome; for instance, the algorithms we shall consider in the exper-
imental section will be inspired to the previously discussed BDCL algorithm: the cell
chooses the channel which is most ‘blocked’ (due to the interference constraints) in the
neighboring cells, so that it gives rise to the least blocking probability.

Another possible meaning of the word “dynamic” is the following. Some cellular
systems (for example GSM) do not force a communication to use the same channel
from the beginning to the end of the session. If required, an ongoing call can switch to a
different frequency. If an incoming call is blocked due to a bad channel assignment (no
algorithm is perfect, and for every assignment policy it is possible to devise a sequence
of requests that make it behave badly), a channel may be unblocked by reorganizing the
assignments in nearby cells. Chapter 3 deals with such a system: every incoming call
starts a new organization of the whole network. On the contrary, in chapters 4 and 5
we consider situations where reorganizations are possible (on a local basis) but are not
well accepted: they usually require a large amount of communication to take place.

2.2.1 Centralized Schemes

Sometimes, a good assignment policy requires a central authority to take care of all
requests, dispatching its decisions to cells but maintaining a central knowledge base.
In this case, the status of the system is globally known and every decision can take

12 CHAPTER 2. REVIEW OF CA ALGORITHMS

advantage of the whole configuration, of statistics about future requirements (for in-
stance, the central authority might know that a small subset of channels should be kept
unblocked in a certain area for future use), and so it is more likely to maintain a good
configuration of the system.

On the other hand, having a central authority is more error prone: what if it breaks
down? Moreover, such system must rely on a good communication network: the time
elapsed from the instant in which the mobile host requires a channel to a base station to
the instant in which the allotted channel is actually used must not be very long, while
many cellular networks are spread throughout entire countries.

Chapters 3 and 4 both consider situations in which decisions are made by a single
central authority. In chapter 4, in particular, we do not state a specific criterion for
the choice of the non-blocked channel to assign, but we use a dynamic programming
approach: we devise an objective function on the status of the cells, so that its minimum
correspond to a “good” solution, then we minimize it.

2.2.2 Distributed Schemes

A more realistic approach distributes knowledge and responsibility among all nodes,
or at least a well distributed subset. For example, adominating set could be identified,
and each dominating node could coordinate its own basin. Knowledge about the status
of the whole system is not strictly necessary, good strategies can be devised requiring
only information about surrounding cells.

Chapter 5 shows how cells can coordinate their computation in order to obtain
performance results comparable to those of centralized schemes.

2.3 Common Criteria for Channel Choice

As we pointed out before, many radio communications systems do not allow the chan-
nel assignment to be recomputed at will. So the need arises to maintain the system in a
“good” state, in some not well defined sense. We usually measure the “goodness” of a
state by seeing how it develops and what blocking frequency it induces on subsequent
channel requests. On criterion used to minimize the future blocking frequency is the
main point of the BDCL algorithm: choosing the channel that is already blocked in
most neighboring cells, in order to increase as little as possible the number of channel
locks. Other criteria are based on more global considerations. We shall consider the
regular pattern scheme and theCompact pattern scheme.

2.3.1 The Regular Pattern Scheme

Based on the relatively good performance of regular assignment schemes, for example
Fixed Channel Assignment, The regular pattern requirement states that dynamic as-
signment policies should promote channel distributions with some pattern regularity in
them, for example by partitioning the cells into a number of congruent regular patterns
(see figure 2.3) and suggesting that a cell should use channels that are already in use
in other cells of the pattern where it belongs. Of course, this requirement must not be
mandatory, otherwise we would just have an FCA algorithm with a little more freedom
on channel choice.

2.3. COMMON CRITERIA FOR CHANNEL CHOICE 13

Figure 2.3: A regular pattern

2.3.2 The Compact Pattern Scheme

Some papers discuss the usefulness of the regular pattern criterion. An extension to
it can be formulated, for example by requiring that each pattern be as crowded as
possible. For instance, [YY94] defines acompact pattern as the pattern with minimum
average distance between cochannel cells (the pattern shown in figure 2.3 is regular for
reuse distance equal to 2).

While the authors of that paper obtain good results by enclosing the compact-
pattern requirement in their algorithm, the use of the same requirement in our simu-
lations has proven totally ininfluential. For example, figure 5.1 at page 32 shows a
comparison of our BBB algorithm (which shall be discussed in chapter 4) and of a ver-
sion of it without the compact-pattern requirement (which will be referred to as “reuse
pattern” in that chapter).

The most important problem introduced by a regular-pattern criterion, be it compact
or not, is its globality: decisions on channel allocation must be taken by considering
the whole pattern, i.e. arbitrarily distant cells. This prevents the use of such criterion on
distributed systems, where every cell must decide which channel allocate for a certain
request by only considering a limited neighborhood, since channel usage information
travels through messages from cell to cell, so it is neither fast nor accurate (the situation
may vary while previous status messages have not been acknowledged yet). Thus, the
observation that the compact-pattern criterion is ininfluential on our algorithm will be
the key factor allowing us to introduce, in chapter 5, the distributed BBB algorithm
(dBBB).

Nonetheless, compact pattern criteria prove useful in many centralized algorithms.
In particular, some generalizations of the concept, such as making it non-uniform [ZY91],
gives good results when compared with combinatorial algorithms such as BDCL, in
particular when nonuniform call distributions aggravate the problem of distributing
channels prior to system operations (as in all FCA strategies).

14 CHAPTER 2. REVIEW OF CA ALGORITHMS

2.4 Comparison among strategies

No strategy is better than any other in all conditions; some assignment policies can-
not even be compared because they make different assumptions about the network (for
example its reconfigurability, or the nature of interference). The main evaluation pa-
rameter, when talking about channel assignment techniques, is thecall refusal rate, i.e.
the ratio between refused calls and the total number of communication requests. For
a given technique, the refusal rate depends upon the total number of ongoing calls per
unit of time. This is a well known quantity in telephone systems, and it can be mea-
sured inerlang (1 erlang = 1 ongoing call per second). We shall refer to it as thetraffic
rate of the system. Of course, the traffic rate needs not be uniform over the whole
network: there are some places with a higher number of calls than others.

When the traffic rate of the system is low, FCA performs fairly well, even though
traffic fluctuations may temporarily exhaust the channels assigned to a cell: even if the
number of expected calls at a certain time is low, from time to time the number of calls
issued in a cell will overcome the number of available channels. Borrowing algorithms
have been introduced to solve this problem, thus they are more efficient than FCA
with low traffic rates, but their performance deteriorates when the traffic rate increases,
achieving the same performance of FCA at higher computational and communication
costs.

Dynamic techniques often outperform FCA at low traffic rates, but they are much
worse at high traffic rates, because many cells might find no available channels at all for
a long time, due to non-optimal decisions at previous instants. On the contrary, FCA
ensures that, at any traffic rate, a minimum number of calls will always be accepted by
every cell.

Chapter 3

Heuristics for Local Search

For many general classes of functions arising from our setting the problem of assigning
channels to communication requests in a cellular network becomesNP-hard. For ex-
ample, consider the case in which we allow a global reconfiguration of the system. In
this case the only requirements to fulfill are traffic and interference: we don’t need to
keep the system in a suitable state for future evolution, because it can be reconfigured
at will. So the problem is a generalization of a graph coloring problem.

Many approaches are possible when looking for a satisfying solution of a mini-
mization problem:

• We can search the whole solution space of thenCE×nCH binary matrices(Aij)
for a solution minimizing a proper linear combination of the number of traffic
and interference violations.

• Otherwise we can limit the search in a space ofadmissiblesolutions; we always
fulfill a few of the given criteria, for example the traffic, and try to minimize the
violations of the other requirement, e.g. interference.

The second method has been used in conjunction with a powerful search technique,
the Reactive Search, to find a good assignment policy given the traffic in every cell. In
this case we tried to reduce two factors: the overall bandwidth of the system, i.e. the
total number of different channels used by the cells in the system, and reduction of
interference, considered as an additive constraint, and not (as in most of the literature)
a binary restriction.

3.1 An Overview

Local search is a method of exploring the solution space in search of a minimum by
walking through the local neighborhood of a given point. Clearly, the walk shall not
be blind, but driven by the evaluation of the objective function at some points. Many
criteria can be used to choose from time to time which direction further steps should
take.

3.1.1 Steepest Descent and Some Refinements

Suppose that our search space is the set of all binary strings of given lengthN : many
problems can be reduced to a binary representation, in particular the channel assign-

15

16 CHAPTER 3. HEURISTICS FOR LOCAL SEARCH

0

1 0 1 1 0 0 1 1 01

0

1 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0 0 1 10

Flip
Swap

Shift

1 0 1 1 0 0 0 1 1

Figure 3.1: Some neighborhood rules

ment problem. The objective function will be calculated over this string. Suppose we
want to find its minimum. Then we can start from a random string: every step of the
algorithm will be a slight change of the string. The allowed changes on a string de-
termine its neighborhood. Figure 3.1 shows some examples of allowed changes, that
usually depend on the nature of the problem:

• flipping (i.e. inverting) a single bit of the string;

• exchanging values of two adjacent bits;

• shifting the string left or right.

Once defined the neighborhood of a string, the algorithm must decide which neighbor
is the most promising. If we choose to employ a simpleSteepest Descentalgorithm,
we shall choose the neighbor in which the function value is as small as possible.

If all neighbors give higher function values than the current configuration, then
the system has reached a local minimum. How can the search be continued? For
example by storing the current string (if it proves better than other previously found
local minima) and generating a new random string from which the search can restart.

Sometimes, however, the structure of the problem suggests to insist, once a local
minimum is found, to search for other local minima near it. So a random restart may
not be the best technique, and a way to continue walking through neighborhood steps,
even towards higher function values, should be devised.

Many local search techniques try to mimic some aspect of physical behaviors in
solving their problems. For example, the idea ofsimulated annealing is to let moves
towards higher function values be executed with a probability which decreases with the
function increment and with time. The technique emulates, to a certain extent, thermal
random motion in a heated system which is slowly cooling down. So the probability to
go from a local minimum to another one is not zero, even though it may be very, very
small and require a lot of iterations to accomplish.

3.2 History-Sensitive Heuristics

As we said before, many problems have a complex structure, and this makes sometimes
desirable to explore the surroundings of a local minimum instead of restarting from
a new point. More generally, all information gathered during the execution of the
algorithm might be worth for some decisions. Techniques that base their decisions on
the past history of the execution are calledmemory-based or history-sensitive, while

3.3. TABU SEARCH 17

techniques such as steepest descent and simulated annealing, that choose the next step
by considering only the current status, are calledmemoryless, orMarkovian. Of course,
lots of theorems are known about Markovian processes, and so the theoretical analysis
of memoryless techniques is easier. Nonetheless, these results are usually asymptotic:
good results are ensured only after many iterations. On the other hand, techniques
based on the past history of the system, so that every step depends on an arbitrary
function of past configurations, are much more difficult to analyze, and theoretical
convergence results are seldom stated. However, experimental results often support the
claim of their superiority, at least in some applications.

A few examples of memory-based techniques may help to understand the general
framework.

• TheReduction Technique, proposed in [Lin65], is applied to the Traveling Sales-
man Problem. Its base principle is that edges that are common to many good
solutions should be used more often than the others; to do this, the algorithm
mustremember some data from the solutions it has explored.

• The Denial Strategy, shown in [SW68], is applied to the same problem as the
previous technique (TSP), but in contrast it proposes to forbid edges that are
chosen too often, in order to promote differentiation. Note that differentiation is
a key idea to escape the local minimum.

• TheVariable-Depth Search, proposed by Kernighan and Lin in 1970, is applied
to Graph partitioning and it forbids moves once they are done. It is one of the
first examples of move prohibition.

• The Tabu Search [Glo89][Glo90][Glo94][HJ90] considers temporary prohibi-
tion of some moves in order to avoid cycles. It shall be explained in section 3.3

• TheReactive Search technique [BT94a][BT94b][Bat96] proposes dynamic ad-
justment of prohibition time and will be discussed in section 3.3.1.

3.3 Tabu Search

Once we have decided to explore the surroundings of a local minimum, we have the
problem of escaping it for a time long enough to avoid falling back into it. The problem
is illustrated in figure 3.2. The algorithm must find a way to avoid falling back on its
previous steps: indeed, once the local minimum is left, switching back to a steepest
descent scheme would make the just abandoned minimum very appetizing.

The Tabu Search algorithm [Glo89][Glo90] implements the steepest descent algo-
rithm with a simple variation: once a move is made, it cannot be undone for a fixed
number of steps. In other words, not all neighbor configurations are eligible for the
next step.

If the system is described by a binary string and the legal moves are made by
flipping a single bit, then after flipping a bit the Tabu algorithm will prevent the same
bit to flip again to the previous state for a given number of stepsT . In other words, the
bit is “frozen” for T steps. Clearly, this prohibition prevents the system from returning
to a previously visited configuration for at least2T steps. In fact, once a given bit is
flipped it may be restored only after at leastT steps (the time after which the prohibition
decays); during this timeT − 1 other bits have been flipped, and they will be restored

18 CHAPTER 3. HEURISTICS FOR LOCAL SEARCH

Objective function

Step n

Step n+1

Figure 3.2: The need to avoid the minimum

during the nextT steps. This means that small values ofT could not prevent cycles
from occurring.

Note also that the prohibition time cannot be too large, and in particular we must
haveT < N , whereN is the length of the string, otherwise afterN steps all the
possibleN moves would be prohibited and the system could not proceed.

In other words, it is clear that the determination of the right prohibition time is
crucial for the algorithm and it should be carefully tuned by former analysis or by trial
and error.

3.3.1 Reacting on Parameters

We have seen that the purpose of prohibition is to force the system to search in the
proximity of local minima without having to jump to random solutions and without
coming back too soon.

The basic idea of Reactive Search [BT94b] is to modify the prohibition time in
accordance to the behavior of the search. For example, if a configuration is visited too
often, the prohibition time should be increased, in order to encourage further explo-
ration. If no configuration is repeated, the the prohibition time is large enough, but it
might prevent the approach to other minima, so it might be lowered. The right balance
between increasing and decreasing the prohibition time is the main problem of this
heuristic.

3.4 Experimental settings

We used the library presented in appendix A to work on the following Channel Assign-
ment problem.

We are given an adjacency graph withnCE = 150 nodes, with random edges (30%
density). The system hasnCH available channels and every cell issues an equal number
(traf) of communication request.

We shall refer to figure 3.3. The Tabu Search algorithm moves inside the set of so-
lutions that fulfill the traffic requirements, trying to minimize the number of interfering
assignments. To do this, it is given a squareadjacency matrix (interfij)i,j=1,...,nCE ,

3.4. EXPERIMENTAL SETTINGS 19

Channel
is frozen
at cellAdjacency

matrix

Channel assignment matrix Channel assignment matrix

1

are adjacent
i *i

1

1

0

0

i

i*

j j’

In
te

rf
er

en
ce

1 0

i

i*

j j’

1

j

i

Cells and

0

Figure 3.3: Tabu Search applied to channel assignment

with as many rows and columns as there are cells in the cellular system (in our case
150), whose entry interfij is 1 if and only if cellsi andj must use different channels.
The matrix is, of course, symmetric and in our experiment it is filled at random with a
30% probability of placing a “1” at a given position.

The binary string which describes the status of the system has lengthnCE × nCH

and is organized as annCE × nCH binary matrix where the element at rowi (i =
1, . . . , nCE) and columnj (j = 1, . . . , nCH) is 1 if and only if celli is assigned channel
j.

Of course, a solution is admissible if and only if it assigns exactly traf channels to
every cell, that is if and only if every row of the binary status matrix contains exactly
traf 1’s andnCH − traf 0’s. So our space of admissible solutions is the following:

S =
{

M ∈MnCE×nCH({0, 1})
∣∣∣∣ ∀i ∈ {1, . . . , nCE}

nCH∑
j=1

mij = traf

}
If we choose to move inside the space of feasible solutions, then we cannot employ
simple bit flipping as our basic move, as this would necessarily change the number of
1’s in the string. Our basic move is then moving a 1 to a 0 entry of the same row,
thus changing one assigned channel of one cell, maintaining the number of assigned
channels unchanged.

The function to minimize is clearly related to interference. It just counts the number
of interference constraint violations: for every couple of adjacent (i.e. interfering) cells
it counts the number of equal channels in use:

f : S → R

M 7→
nCE∑
i=1

nCE∑
i′=i+1

interfii′
nCH∑
j=1

mijmi′j


At every step, we choose the move with the highest decrease of interference (or the

lowest increase, because we accept to worsen the situation), breaking ties at random.
Not all moves between admissible configurations are allowed, because some of them
areprohibited : some bits are locked to their 0 state for some number of steps.

Suppose, for example, that cellsi andi∗ interfere (there is a1 in the interference
matrix) at the channelj, and that we decide to drop channelj replacing it with another

20 CHAPTER 3. HEURISTICS FOR LOCAL SEARCH

one. Then we shall move the 1 from positionj of row i to the non-prohibited position
that guarantees the lowest interference count. Once done, the channel that has been
dropped remains prohibited (frozen in its0 state) for celli for a certain number of
steps.

Of course the system needs to remember the moves made during the last steps, in
order to avoid undoing them. Moreover, while the simple Tabu scheme just requires
an array of forbidden moves, our Reactive Search needs a criterion to decide when
prohibition time should be increased and when it should be lowered. The criterion we
chose is the following: we count the number of times a configuration is visited, and we
mark it as “frequently visited” if it has been visited more than a given number of times
(say 3, as in the experiment). When too many configurations are “frequently visited”
(three configurations, for example), then it is time to increase by a given factor (for
example 10%) the prohibition time, unless it is already too high. If no local minima
are found for too long, then the prohibition time is lowered by a given factor.

These criteria require the storage of all visited configurations. Since their number
and length are prohibitive for a complete storage, we just store a 64-bit fingerprint of
the visited configuration in a dictionary, associated with an integer counter which stores
the number of visits already made to that configuration. The 64-bit fingerprint is a hash
value obtained by large integer arithmetic operations on the binary string, so that the
probability of two visited configurations having the same key is low.

Other mechanisms that we employ to differentiate the search are:

• an escape mechanism: when the surroundings of our solution space are prob-
ably exhausted (too many configurations have been visited too often), then the
algorithm restarts at random;

• theaspiration criterion: if a move is prohibited, but applying it would lead to the
lowest objective function value ever found, then it is applied notwithstanding the
prohibition.

3.5 Results

In figures 3.4 and 3.5 we show a comparison among different heuristics, namely:

• the Steepest Descent (SD) algorithm, restarting every time a local minimum is
found;

• a modified version of the Tabu Search (TS) algorithm where at any time the
prohibition time is proportional to the number of candidates for the next move;

• the Reactive Search (RS) technique with the mechanisms discussed in section 3.4.

Figure 3.4 shows a comparison among the three mentioned heuristics when the
requested traffic per cell is traf= 1 andnCH = 12 channels are available. So the
problem is just a graph coloring problem on a random graph withnCE = 150 nodes,
30% edge probability andnCH = 12 colors. Figure 3.5 refers to a more complex
setting: traf= 3 andnCH = 35.

In the upper graph of each figure the minimum number of interferences found by
each of the algorithms is plotted against the number of steps. Each graph is the average
of ten runs. The lower graph of each figure compares the same algorithms by giving
their best result versus execution time. Number of steps is in fact a deceptive measure

3.5. RESULTS 21

1

10

100

1000

1 10 100 1000 10000 100000

N
um

be
r

of
 in

te
rf

er
in

g
ch

an
ne

ls

Steps

SD
TS
RS

1

10

100

1 10 100 1000

N
um

be
r

of
 in

te
rf

er
in

g
ch

an
ne

ls

Time (seconds)

SD
TS
RS

Figure 3.4: Comparison among heuristics, traf= 1, nCH = 12

22 CHAPTER 3. HEURISTICS FOR LOCAL SEARCH

1

10

100

1000

1 10 100 1000 10000 100000

N
um

be
r

of
 in

te
rf

er
in

g
ch

an
ne

ls

Steps

SD
TS
RS

0.1

1

10

100

1 10 100 1000

N
um

be
r

of
 in

te
rf

er
in

g
ch

an
ne

ls

Time (seconds)

SD
TS
RS

Figure 3.5: Comparison among heuristics, traf= 3, nCH = 35

3.5. RESULTS 23

of time, since complex techniques such as Reactive Search require more processor time
per step with respect to simple techniques such as Steepest Descent.

The results, however, show that Reactive Search performs quite better than the other
heuristics we have considered. Not only does it find better configurations than other
heuristics, but it finds them much faster. We had to represent the results in a logarithmic
scale to appreciate the results of all heuristics.

24 CHAPTER 3. HEURISTICS FOR LOCAL SEARCH

Chapter 4

A New Centralized Channel
Assignment Algorithm

Many penalty-function heuristics have been applied to the channel assignment prob-
lem. Some of them require the rearrangement of the whole cellular system when a
new channel is requested [SB96] [DAKR93]; unless the traffic is very low and service
communications among cells are cheap and fast, this approach is of little practical use.
Other penalty-function heuristics, such as the one we shall consider next, just rear-
range the channel assignment inside the cell where the new communication request is
issued, by choosing those channels that minimize the probability of a future channel
refusal, trying to keep the system in a suitable status for future requests (this effort of
maintaining a good configuration is clearly unnecessary in the former case).

In both cases, two heuristic steps must be taken. First, we must heuristically de-
termine a good penalty function, where “good” means that its minimum should cor-
respond to a suitable configuration. Then, when this function is determined, we must
actually locate its global minimum, or at least find some good local minimum; to do
so, we need to apply a minimum-search heuristic technique to the penalty function.

The topic discussed in this chapter is the main argument of a work we presented at
various conferences and workshops [BBB97][BBB00].

4.1 A penalty function heuristic

Following [DFR96], letnCE be the number of cells andnCH the total number of chan-
nels. Every celli, i = 1, . . . , nCE, has a traffic demand trafi which changes with time.
Let us denote withdii′ the Euclidean distance between the centers of cellsi andi′, and
let interfii′ be a{0, 1}-valued function which states if the two cells interfere or not; the
notation can nonetheless be extended to the case of various degrees of interference.

When a connection or termination request is issued in celli∗, the frequency alloca-
tion in this cell must be optimized. The status of channel allocation is given by a{0, 1}-
valued matrixAij whose entry(i, j) is 1 if and only if channelj is currently in use in
cell i. The new channel allocation for celli∗ is stored in vectorVj , j = 1, . . . , nCH.

An objective function is built whose minimum is likely to be a good solution of the
new allocation for celli∗. First, a term to privilege those solutions without interference

25

26 CHAPTER 4. A NEW CENTRALIZED CA ALGORITHM

(all terms depend onV , our unknown solution) is introduced:

a(V) =
nCH∑
j=1

nCE∑
i=1
i 6=i∗

VjAij interfii∗ . (4.1)

This term adds1 for each cell interfering withi∗ which uses a channel in use ini∗.
Second, the requests of the celli∗ should be respected as much as possible:

b(V) =

trafi∗ −
nCH∑
j=1

Vj

2

. (4.2)

The only reason to make this term quadratic is that it must be nonnegative: (an abso-
lute value would also work). Third, apacking conditionis added: a channel should
be reused as near as possible (outside the interference zone), to restrict the blocking
probability in other cells.

c(V) = −
nCH∑
j=1

nCE∑
i=1
i 6=i∗

VjAij
1− interfii∗

dii∗
. (4.3)

This subtracts a positive term for each cell outside the interference zone which reuses
a channel employed in celli∗; the larger the distance, the smaller the subtracted term.
Next, changes in the present allocation of the celli∗ should be minimized:

d(V) = −
nCH∑
j=1

VjAi∗j . (4.4)

This subtracts1 every time a channel currently used by celli∗ is chosen for the next
configuration (this means that a mobile host needs to change its channel as rarely as
possible). If some frequency hopping technique is used, however, this requirement
does not make much sense, as the mobile host is equipped for frequent configuration
changes. Last, experimental evidence shows that to achieve a good performance the
channel reuse should follow a regular scheme (for example, a compact pattern [YY94]).
This is achieved by introducing the{0, 1}-valued matrix resii′ whose entry(i, i′) is 1
if and only if cellsi andi′ belong to the same reuse scheme (i.e. should use the same
channels if possible). Common reuse schemes follow some sort of “knight” move (for
instance, the one shown in Fig. 4.1).

e(V) =
nCH∑
j=1

nCE∑
i=1
i 6=i∗

VjAij(1− resii∗). (4.5)

Note that all terms are arranged to go towards a lower value when the constraints
are satisfied. Let us combine them in a single objective function to minimize:

J(V) = A · a(V) + B · b(V) + C · c(V) + D · d(V) + E · e(V), (4.6)

whereA, B, C, D andE give different importance to the various constraints.

4.2. THE POLYNOMIAL ALGORITHM BBB 27

Figure 4.1: Building a reuse scheme: the basic move

4.2 The polynomial algorithm BBB

So far a possible penalty functionJ(V) has been heuristically determined. To minimize
J(V), [DFR96] employs Hopfield neural networks, but actually the minimization of
this function is straightforward and does not require any heuristic search technique. In
fact, we can rewriteJ(V) as a quadratic function in which the quadratic termdepends
only on the number of channels, and not on the single channels used. Let us rewrite
equation 4.1:

a(V) =
nCH∑
j=1

Vjaj , where aj =
nCE∑
i=1
i 6=i∗

Aij interfii∗ ;

the termaj simply counts the number of cells in the interference zone ofi∗ which use
the channelj. The traffic termb(V) found in equation 4.2 can be rewritten as

b(V) =

nCH∑
j=1

Vj

2

− 2 trafi∗
nCH∑
j=1

Vj .

The traf2i∗ term is constant and can be omitted, while the quadratic term is the square
of the number of channels reserved for the celli∗ (the number of1’s in vectorV). Let
us rewrite it in a way similar to the other ones:

b(V) =

nCH∑
j=1

Vj

2

+
nCH∑
j=1

Vjb, where b = −2 trafi∗ .

Clearly,b does not depend onj. The other terms can be rewritten as follows:

c(V) =
nCH∑
j=1

Vjcj , d(V) =
nCH∑
j=1

Vjdj , e(V) =
nCH∑
j=1

Vjej

where

cj = −
nCE∑
i=1
i 6=i∗

Aij
1− interfii∗

dii∗
,

dj = −Ai∗j , ej =
nCE∑
i=1
i 6=i∗

Aij(1− resii∗).

28 CHAPTER 4. A NEW CENTRALIZED CA ALGORITHM

The termcj evaluates the packing condition for channelj; the termdj rewards the
choice of channelj if it was already in use; the termej penalizes the use of a channel
outside the reuse scheme.

We can collect the single coefficients into global ones:

wj = A · aj + B · b + C · cj + D · dj + E · ej ; (4.7)

the global objective function (4.6) is then

J(V) =

nCH∑
j=1

Vj

2

+
nCH∑
j=1

wjVj , (4.8)

where, as we have already pointed out, the square term is just the square of the number
of assigned channels.

To minimizeJ(V) we calculate the weightswj for each channel; each calculation
requires at mostnCE steps to test interferences, reuses and packing. Globally, the cal-
culation of the weightswj requires timeO(nCEnCH). If we had fixed the numbern
of channels that we want to assign, the minimization would be achieved by taking the
channelsj whosewj are the least (the quadratic term is constant among the solutions
with the same number of channels). To take advantage of this, we calculate a permu-
tationσj , j = 1, . . . , nCH, such that the vector(wσj)j=1,...,nCH is sorted in increasing
order. The sort requires timeO(nCH log nCH). At last, let us callJn the minimum of
the objective function restricted ton-channel solutions. Its value is

Jn = n2 +
n∑

j=1

wσj
, n = 0, . . . , nCH,

and the difference between the minima for successive values ofn is

Jn − Jn−1 = 2n− 1 + wσn
, n = 1, . . . , nCH.

So, a simple scan of the vectorwσj is enough to find the minimum for alln, that is the
global minimum, in timeO(nCH).

Hence, the global minimum of the objective function,

min
V ∈{0,1}nCH

J(V) = min
n=0,...,nCH

Jn,

can be found in total timeO
(
nCH(nCE + log nCH)

)
. The procedure returns also the

number of channels in the optimal solution, sayn∗, therefore the channels to be as-
signed to celli∗ are

nσ1 , nσ2 , . . . , nσn∗ .

Let us call this penalty-function minimization heuristic the BBB algorithm. The
first advantage of using BBB is that, of course, we find the true global minimum of
J(V). In addition, consider that Hopfield networks, like many other techniques, require
our function coefficients to vary only in a certain range in order to ensure stability and
convergence of the search; in other words, coefficients are critical not only in weighting
the various constraints (which is precisely what they are introduced for), but also in
making the minimum-search procedure succeed. Algorithm BBB does not use any
heuristic search algorithm, so it is not restricted to those coefficient values that ensure
convergence, and we may let them vary over all the nonnegative real range, thus having
more freedom in tuning them.

4.3. EXPERIMENTAL SETTINGS 29

Table 4.1: Coefficients for functionJ(V)

Coefficient Value
A 7000
B 45
C 1.2625
D 0.01
E 4.17625

4.3 Experimental settings

We consider a7 × 7 hexagonal grid, as the one shown in Fig. 5.8, like in most of the
literature. A fixed server station is placed at the center of each cell, while a number of
mobile hosts is free to move across the whole land. The total number of available chan-
nels is70 and the co-channel interference is extended to the second ring of neighbors.
The grid does not wrap like a torus.

A C++ program has been written to run a comparative simulation of five algorithms
(FCA, SBR, DCA with local optimization, BDCL and BBB).

For FCA, the reuse scheme (a reuse distance of two cells has been considered)
consists in seven partitions of ten channels each. The Euclidean distance between the
centers of two neighbors is1, and the reuse scheme given by the function resii′ of
Section 4.1 is built by iterating the basic “knight” move of Fig. 4.1, which gives the
same pattern as the token placement in Fig. 5.8. The same scheme has been used to
distribute the seven channel groups among the cells for the FCA algorithm.

Coefficients for the functionJ(V) are shown in table 4.1. Their values are the same
that have been used in [DFR96].

4.4 Results

Each algorithm (FCA SBR, DCA, BDCL, BBB) has been simulated for connection
rates of160, 170, 180, 190 and200 calls per hour with Poissonian distribution (and
hence exponential inter-arrival time), corresponding to a traffic of8, 8.5, 9, 9.5 and10
erlang. The mean duration of a connection is exponential with an average of180sec.
Each simulation consisted of50 runs of100000 seconds of simulated time each.

Fig. 4.2 shows the results of this simulation. Every error bar represents the95%
confidence interval calculated over 50 independent runs. It is clear that algorithm BBB
outperforms all these algorithms.

30 CHAPTER 4. A NEW CENTRALIZED CA ALGORITHM

0

0.05

0.1

0.15

0.2

0.25

150 160 170 180 190 200 210

B
lo

ck
in

g
fr

eq
ue

nc
y

Cell load (calls per hour)

FCA
SBR
DCA

BDCL
BBB

Figure 4.2: Comparison among algorithms

Chapter 5

A Distributed Version

When devising a distributed algorithm we usually have to cope with a number of prob-
lems that never arise in sequential settings. In particular, the strict sequential execution
of instructions when we work with a single Von Neumann processor is no more en-
sured.

Nonetheless, some operations need either to be ordered in time or to be sure that
the conditions of the system are not varied until completion. So the problems ofsyn-
chronization, mutual exclusion andmessage passing arise.

Earlier parts of this work, including the broadcast and token passing algorithms,
but not the theoretical analysis, have been included in [BBB00].

5.1 The distributed algorithm dBBB

We first note that algorithm BBB can be improved by storing at each cell a permanently
sorted array of weights to be updated at each change of state in the nearby cells. The
sorting time can thus be cut down to a simple update of the sorted array at each call.
Moreover, by considering only local interference the calculation of the weights does
not depend on the total numbernCE of cells, but it can be performed inO(1) time.

We need, however, to simplify our objective function by eliminating non-locality.
There are only two global terms in the function:

• The “reuse scheme” given by the array resii′ ; some tests (see figure 5.1 at page 32)
show that it is not influential on the overall system performance.

• The “packing condition”, whose weight decreases at increasing distances; the
same preliminary tests cited above prove that we can restrict the “packing con-
dition” to the2r-th ring of neighboring cells (wherer is the interference radius).

So we can rewrite the packing term

c′(V) =
nCH∑
j=1

Vjcj

where

c′j = −
nCE∑
i=1

0<dii∗≤2r

Aij
1− interfii∗

dii∗
.

31

32 CHAPTER 5. A DISTRIBUTED VERSION

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

150 160 170 180 190 200 210

B
lo

ck
in

g
fr

eq
ue

nc
y

Cell load (calls per hour)

BBB
dBBB

Figure 5.1: Global vs. local optimization

and we can exclude the reuse terme(V), thus obtaining the new weighting system

w′
j = A · aj + B · b + C · c′j + D · dj

which gives the new local objective function

J ′(V) =

nCH∑
j=1

Vj

2

+
nCH∑
j=1

w′
jVj .

To minimize this function a cell only needs information about its neighborhood. We
shall see in the following sections (5.2 and 5.3) how this information can be spread in
an optimal way.

5.1.1 Experimental results

The elimination of the reuse scheme and the localization of the channel packing con-
dition as in Section 5.1 finally lead us to the data in Fig. 5.1, where we compare the
original BBB algorithm with its distributed version dBBB. As it is apparent, all differ-
ences lie within the confidence intervals. This enables us to transform the algorithm
into a local one with no performance loss.

5.2 A broadcasting scheme

Once the objective function is localized, we need a good communication strategy to
replace the central authority which took all the decisions in the sequential algorithm.

When a cell initiates or terminates a call, it must broadcast its new status to its
neighbors, up to a certain distance; to do so, we need a simple broadcasting scheme,
like the one presented in this section.

To exemplify a real world setting we make some assumptions:

5.2. A BROADCASTING SCHEME 33

"Straight" message

"Corner" message

Figure 5.2: A local broadcasting scheme

0

4 5

12

3

Figure 5.3: How directions are numbered

• the system is purely asynchronous: all kind of synchronization must be obtained
through message passing;

• the system is modeled as a hexagonal tiling, where every cell only communicates
with its six neighbors;

• a message can be spread through the system only by relaying it from neighbor to
neighbor.

5.2.1 The algorithm

Let the message be structured as a tuple(c, r, h, m), wherec is a flag indicating if the
message must be duplicated: ifc is set, the message shall be called a “corner” message;
r is the maximum distance from the source the message must reach,h is the number of
steps the message has taken up to now andm is the message itself. Suppose that in each
cell the directions of incoming and outgoing messages are numbered clockwise modulo
6 (see figure 5.3). Then if a message arrives on directiond, the opposite direction will
bed + 3 (mod 6).

The algorithm can be implemented as in Fig. 5.4. The source sends six “corner
messages” to its neighbors (lines 2–3); when a cell receives a message, if it is not far
enough (line 6), it must relay it to the cell on the opposite side (line 7); if it is a corner
message, the cell must also propagate a non-corner (c = 0) copy of the message to

34 CHAPTER 5. A DISTRIBUTED VERSION

1. source:
2. for d in 0 . . . 5 do
3. send(1, 4, 1,m) along direction d;
4. relay:
5. upon receipt of (c, r, h, m) from direction d do
6. if h < r then
7. send(c, r, h + 1,m) along direction d + 3 (mod 6);
8. if c then
9. send(0, r, h + 1,m) along direction d + 4 (mod 6);
10. Act according to the received message(c, r, h, m);

Figure 5.4: The local broadcasting algorithm

3

1 1

1

11

1

2 2 2

2

2

2

222

2

2

2

3 3 3 3

3

3

3

3

3

3333

3

3

3

3

0

Figure 5.5: The tagging scheme

the clockwise-next direction (lines 8–9). This copy shall be subsequently propagated
only in straight line. After the propagation of the message, of course, the relay cell
must modify its record about the broadcasting cell according to the message contentm
(line 10).

5.2.2 Properties

Correctness

Let us consider a setting such as in figure 5.2, and let us label the cells according to
their proximity to the central one, as in figure 5.5, with the usual greedy sequential
tagging algorithm shown in figure 5.6. From the greedy nature of the algorithm it is
clear that every cell is tagged with the minimum number of hops necessary to get to it
from the 0-tagged cell.

Definition 5.1. Let d = 0, . . . , 5. Thedomain of a messageM sent from cell 0 along
direction d, denoted byD(d), is the set of cells that will be reached by some message
triggered byM according to the local broadcasting algorithm 5.4.

In other words, the domain of the message sent along directiond by cell 0 is the set

5.2. A BROADCASTING SCHEME 35

1. All cells are initially untagged.
2. Tag0 the central cell
3. for i = 0 to r do
4. for eachcell c taggedi do
5. tagi + 1 every untagged neighbor ofc

Figure 5.6: The tagging algorithm

0

3

4

5

1 2 3 4

1

2

d

B. Straight messages

Sex
tan

t

"Corner" message sequence

"Straight" message sequence

d

d+1

A. Corner messages

Figure 5.7: Thed-th hex coordinate system and its positive sextant

of all cells that would receive a message by the local broadcasting algorithm 5.4 ifM
were the only message were sent from cell 0. Actually, cell 0 sends six messages, and
each of them has its own domain.

Definition 5.2. Let d = 0, . . . , 5, and letc be a cell. Thed-th hex coordinate system
of cell c, denoted byH(c, d), is the reference system whose origin lies in the center of
the cell and whose axes have directionsd andd + 1 (mod 6).

Definition 5.3. Let d = 0, . . . , 5, and letc be a cell. Thepositive sextant of the d-
th hex coordinate system of cellc, denoted byP (c, d), is the set of all cells having a
positived coordinate and a nonnegatived + 1 (mod 6) coordinate:

Lemma 1. Letd = 0, . . . , 5. The domain of the message sent along directiond by cell
0 is a subset of the positive sextant of thed-th hex coordinate system of cell 0.

Proof. The target of the message sent along directiond by cell 0 is the cell having
coordinates(1, 0) in H(0, d), thus it belongs toP (0, d). Messages originated by a
“corner” message in directiond will only take directionsd (“corner”) ord+1 (mod 6)
(“straight”). Since “straight” messages only generate other “straight” messages along
the same direction, no other directions will ever be involved. It follows that theH(0, d)
coordinates of cells in the domainD(d) can only increase, thus remaining within the
positive sextant.

36 CHAPTER 5. A DISTRIBUTED VERSION

Lemma 2. In one run of the local broadcasting algorithm 5.2 every cell receives at
most one message.

Proof. Cell 0 doesn’t belong to any positive sextant, so it doesn’t belong to any domain
of its own generated messages. As a consequence, it will never receive a message
during the current run of the algorithm.

Consider cellc 6= 0. If it does not belong to any domain, then it never receives a
message in the current run.

If the cell belongs to the domainD(d) for some directiond = 0, . . . , 5, then by
lemma 1 it belongs to the positive sextantP (0, d). Let (i, j), i > 0, j ≥ 0, be the
coordinates ofc in H(0, d). The chain of messages leading to cellc from cell 0 will
start with the message sent by cell 0 to cell(1, 0). Every chain is composed by a
sequence of “corner” messages (causing the increment of the first coordinate) followed
by a sequence of “straight” messages (causing the increment of the second coordinate),
thus there is only one path going from(0, 0) to (i, j), i.e. a sequence ofi “corner”
messages andj “straight” messages. Since the first message is sent only once, the
chain will be followed only once, so cellc will receive only one message.

Lemma 3. In one run of the algorithm, no cell at distancer + 1 or more from cell 0
receives any message.

Proof. Let us compare the local broadcasting algorithm 5.4 with the greedy tagging
algorithm 5.6. Let us callh-tag of cellc the value of fieldh in the message received by
that cell, and assume that cell 0 has a nullh-tag.

Every cellc having anh-tag equal toh has received a message from a cell having
a h-tag equal toh − 1, and this is true for all positive values ofh, so thatc has been
reached from cell 0 in exactlyh hops. Since the tagging algorithm 5.6 tags every cell
with the smallest numbert of hops needed to go from cell 0 to it, we havet ≤ h for
every cell with anh-tag.

Since the algorithm stops whenh = r, only cells up to a certain tagt ≤ r have
been concerned by the message passing.

Lemma 4. Consider the greedy tagging algorithm 5.6. Given directiond = 0, . . . , 5,
in the hex coordinate systemH(0, d) a cell in the positive sextant having coordinates
(i, j), i > 0, j ≥ 0 is taggedi + j.

Proof. Let us proceed by induction on the tag valuet. In every hex reference system
cell 0 has coordinates(0, 0) and its tag ist = 0, so the thesis is true.

Let us consider the thesis true up to a certain value oft in the positive sextant of
every hex reference system. Then cells whose coordinates are(i, j), wherei > 0,
j > 0 and i + j ≤ t, have been tagged by the algorithm and no other cell will be
taggedt. In the next step, the algorithm will choose the cells to tagt + 1. They must
be all neighbors of cells taggedt that haven’t been tagged yet. This implies that their
coordinates(i, j) must verify i + j > t, since all the other cells have already been
tagged by induction hypothesis.

Given directiond, in the positive sextant of the hex reference systemH(0, d) every
cell having coordinates(i, j), wherei > 0, j ≥ 0andi + j = t + 1, has at least one
neighbor taggedt, namely the cell(i− 1, j) (if i > 1) or the cell(i, j − 1) (if j > 0).
The only exception is cell(1, 0), which has a neighbor tagged0 outside the positive
sextant. No cell having coordinates(i, j) such thati + j > t + 1 is in contact with any
cell taggedt or less.

5.2. A BROADCASTING SCHEME 37

Theorem 5.1. The total number of cells being taggedt or less by the greedy tagging
algorithm 5.6 is

Ntag = 3t(t + 1) + 1.

Proof. According to lemma 4, in every positive sextant the number of cells having tag
s > 0 is preciselys, since they correspond to the coordinate set

{(i, j)|i > 0 ∧ j ≥ 0 ∧ i + j = s} = {(i, k − i)|0 < i ≤ s} .

So, in every positive sextant the total number of cells taggedt or less is

t∑
s=1

s =
t(t + 1)

2
.

By multiplying by the number of different sextants and adding the0-tagged central
cell, we obtain the result.

Theorem 5.2. Only all the cells up to distancer from the central cell (i.e. cell 0)
receive a message in the local broadcasting algorithm 5.4.

Proof. Let us count the number of messages sent during one run of the algorithm.
Consider the algorithm performing in a synchronized way, so that all messages with a
certain value ofh will be transmitted and received before any message withh + 1 is
sent. Let us call any of such checkpoints astep.

For simplicity consider only one positive sextant; multiplying by six will give the
desired result.

At the first step (h = 1), the central node will send one message to its adjacent
node in directiond. Let us callT (h) the number of messages transmitted during steps
from 1 toh. Clearly,

T (1) = 1. (5.1)

At every subsequent step, the number of messages increases; in particular, at steph
only one cell receives (and then relies) a “corner” message, while every past “corner”
message triggered a new chain of “straight” messages, each of which generates one
new message at every step. At steph there are exactlyh− 1 previous chains, each one
generating a new message, plus a newly generated chain, initiated by the cell that has
just received the “corner” message:

T (h + 1) = T (h) + h. (5.2)

By solving the recurrence (equations 5.1 and 5.2 define the sequence of triangular
numbers) we have

T (h) =
h(h + 1)

2
.

Considering all the six sextants, and remembering that the algorithm proceeds untilh =
r, we obtain the total number of messagesNmsg sent during one run of the algorithm:

Nmsg = 6T (r) = 3r(r + 1). (5.3)

Notice that the central cell (cell 0) has not been considered, and since by lemma 2
no cell receives more than one message, the total number of involved cells is exactly
Nmsg+ 1, which is precisely the number of cells that are taggedr or less by the greedy
tagging algorithm 5.6, as shown in theorem 5.1.

Since, according to lemma 3, no cell with a tag higher thanr can receive any
message, the proof follows.

38 CHAPTER 5. A DISTRIBUTED VERSION

Efficiency

According to lemma 2 no cell receives more than one message, so the total number of
messages is minimal.

Let us consider a synchronized setting where every message takes a unit of time
to travel and no other action takes time. So every step, being composed of messages
traveling at the same time, takes exactly a unit of time to complete, while we do not
consider the time required to execute the algorithm code inside a cell. Then every cell
having distanceh from the center will receive the message at timeh. Since messages
are restricted to travel between adjacent cells, no shorter time is possible.

The length of the message is as small as possible, since we impose a overhead of
only two integers (the maximum distancer and the actual distanceh) and a bit (the
“corner” tagc). Moreover, while these parameters are useful to discuss the algorithm,
none of them is really necessary to make the algorithm work: the value ofr is presum-
ably fixed for all the system, the values ofh and ofc can be computed locally once the
central cell is known (presumably its ID is stored inside the messagem) by considering
its relative position.

Load balance

With the exception of the initial cell, which sends six messages, every other cell must
transmit no more than two messages, so the message load for every cell is at most
constant (0, 1, 2 or 6), and it is independent from the maximum distancer.

5.3 A Mutual Exclusion technique

5.3.1 The algorithm

To avoid conflicts in channel choice we must ensure that, when a cell is changing
its configuration, none of its neighbors up to the reuse distance does the same thing
simultaneously. For this we can implement a multiple token-passing protocol such that
no two tokens are nearer than the reuse distance.

In the following, we shall call “critical state” the execution of the channel assign-
ment code by the cell. To let cells enter the critical state safely, we let some tokens
circulate through the system in such a way to ensure a few properties:

1. every cell receives a token from time to time;

2. two tokens are never nearer than the reuse distance;

3. a cell can enter the critical section only when it possesses the token;

4. a cell must pass the token as soon as possible.

If the reuse distance is two and the network is a regular hexagonal grid, let us
refer to Fig. 5.8. The grey cells possess the token; when a cell is done with it, it sends a
“token” message “upwards” (following the thick arrow) and two “free” messages along
the thin arrows (this requires two other cells to act as relays or custom wiring). Before
entering the critical state, a cell must wait for one “token” and two “free” messages.
The “token” message ensures that all preceding cells in the token-passing chain are
safe, while the two “free” messages declare the safety of the two potentially blocking
cells which are possibly using the token at the same time in its neighborhood. To take

5.3. A MUTUAL EXCLUSION TECHNIQUE 39

"Token" message

"Free" messages

Figure 5.8: A multiple token-passing scheme

account of border effects, however, the two leftmost columns and the two uppermost
rows should wait for just one “free” message, the cells in the upper left corner don’t
have to wait for any “free” message, while the lower row cells should generate a token
(without waiting for one) whenever they get enough “free” messages.

The underlying idea is to have a token composed by three parts, traveling in three
different directions. A cell has the token only when it has collected the three messages,
and only then it is allowed to enter the critical section and to pass the token. Another
way to understand the algorithm is to consider the actual token as if it were carried
by the “token” message in an inactive form, and the cell possessing it is allowed to
“activate” it and to pass it only after receiving two auxiliary “free” messages. The
“free” messages act as a rearguard communication system: cells are allowed to receive
and pass the token only after other more advanced tokens have been forwarded.

The actual algorithm for a7 × 7 grid with a reuse distance of 2 is presented in
Fig. 5.9 (the directions are numbered clockwise from0 to 5 starting from west). Three
variables are used to store the status of the cell. The booleanTokenflag is true if and
only if the cell is holding the token; the counterFree countcontains the number of
“free” messages that still have to be received before the cell is able to use the token;
the flagCritical sectionflag is true if and only if a channel request or release has been
issued in the cell. The entry to the critical section is only allowed whenTokenflag is
true andFree countis 0.

All cells must initially call theInit procedure to initialize their status, except those
initially possessing the token (the grey ones in Fig. 5.8). The cells that initially possess
the token must start calling the procedureHave tokenat the beginning. Cells that need
to process a channel request (or release) must call the procedureEnter critical section
that sets theCritical sectionflag, so that the algorithm runs the channel-assignment
procedure when possible, and waits until that same bit is reset.

Of course the main loop is executed concurrently, and theCheckprocedure must
end before any other message is received. For routing purposes, since they have to
travel two cells, the “Free” messages have an integer part. When a cell receives a
“free(0)” message, it just has to retransmit it as “free(1)” to a direction that depends
on the incoming path (lines 30–33), while a “free(1)” message must be operated on
place (lines 34–36) by procedureCheck, that verifies if the cell has to enter the critical

40 CHAPTER 5. A DISTRIBUTED VERSION

1. ProcedureHave tokenat the beginning:
2. Tokenflag← true;
3. Free count← 0;
4. do Check

5. ProcedureInit:
6. if node is in the first rowthen
7. Tokenflag← true
8. else
9. Tokenflag← false;
10. Free count← 2;
11. if node is in the two upper rowsthen
12. decreaseFree count;
13. if node is in the two leftmost columnsthen
14. decreaseFree count;
15. Critical sectionflag← false;

16. ProcedureEnter critical section:
17. Critical sectionflag← true;
18. wait until Critical sectionflag= false;

19. ProcedureCheck:
20. if Tokenflagand Free count= 0 then
21. if Critical sectionflag then
22. Run the channel assignment procedure;
23. SendTokenalong direction 1;
24. SendFree(0) along directions3 and 4;
25. do Init

26. Main polling loop :
27. Upon receipt ofTokendo
28. Tokenflag← true;
29. do Check
30. Upon receipt ofFree(0) from direction 1 do
31. SendFree(1) along direction 5;
32. Upon receipt ofFree(0) from direction 0 do
33. SendFree(1) along direction 3;
34. Upon receipt ofFree(1) do
35. decreaseFree count;
36. do Check

Figure 5.9: The token-passing algorithm

5.3. A MUTUAL EXCLUSION TECHNIQUE 41

section, skip it or wait because it isn’t ready.

5.3.2 Properties

While the algorithm is relatively simple to describe and to understand, some of its
properties can be fairly elusive, mainly because we are not allowed to synchronize the
cells. So most interesting results have been obtained by experiments. The algorithm we
have described is available as a Java applet embedded in the “local mutual exclusion”
page which can be found in the Cellular Channel Assignment Tutorial (see appendix B)
at the following address:

http://www.science.unitn.it/˜brunato/radio/

Let us define the terminology we are going to use next.

Definition 5.4. A configuration of the system is defined by the disposition of tokens.

Of course, we can define a partial order in the set of all configurations.

Definition 5.5. Given two configurations,A andB, we say thatA is a subset of B
(andB is asuperset of A) if every cell possessing a token in configurationA possesses
it in configurationB.

Definition 5.6. A sequence of system configurations is the sequence of configurations
arising from repeated application of the token-passing algorithm 5.9.

Definition 5.7. A system configuration isempty if no tokens are in the system.

Of course, an empty configuration leads to a sequence of empty configurations,
because no messages are ever sent by any cell.

Definition 5.8. A system configuration iscorrect if tokens are never mutually nearer
than the reuse distance.

Note that an empty configuration (no tokens at all) is correct by definition. Anyway,
the system does not need to be correct since the beginning to be useful:

Definition 5.9. A sequence of configurations isultimately correct if it contains only
a finite number of incorrect configurations, i.e. if there exists a timeT such that all
configurations after timeT are correct.

The first fact arising from extensive simulation of the algorithm is the following.

Fact 1. Every initial configuration evolves to an ultimately correct sequence.

That is, if we start by assigning tokens at random, without respecting any rule, then
we run the algorithm, we shall find only a finite number of incorrect configurations, af-
ter which the system will only show correct, and eventually empty, token dispositions.

By starting from a random token assignment, then, the probability of coming to
a sequence of correct configurations is 1. What is the chance that, starting from a
random assignment, the system evolves to a nonempty (i.e. working) sequence? The
histogram in figure 5.10 illustrates the results of some experiments where the probabil-
ity of obtaining a working configuration is plotted against the initial filling factor, i.e.
the probability that a cell receives a token in the initial configuration. If, for instance, a

42 CHAPTER 5. A DISTRIBUTED VERSION

Filling factor

0

5

10

15

20

30% 40% 50% 60% 70% 100%

0
1

7

17

20 20

N
um

be
r

of
 c

on
tii

nu
in

g
pa

tte
rn

s
(b

as
e

20
)

Figure 5.10: Fraction of self-stabilizing random configurations

cell is initially given the token with a .5 probability, the system has only a7/20 prob-
ability of developing a working configuration. However, if all cells initially receive a
token then the system will very probably develop a working configuration.

Indeed, in our experiments it never happened that a completely filled system re-
sulted in an empty configuration. This can be explained by the following argument.
Let configurationB be a superset of configurationA. Every message sent in config-
urationA is also sent inB, possibly in different order, which ensures that if a cell
develops a token at a certain time starting from configurationA it will develop it also
starting fromB, possibly earlier, due to the larger number of messages. Thus we have
the following:

Proposition 5.1. Given an initial configurationA leading to a nonempty ultimately
correct sequence of configurations, every superset ofA leads to a nonempty ultimately
correct sequence of configurations.

The fact stated by proposition 5.1, together with the fact that the partial order re-
lation among configurations is a lattice (i.e. closed with respect to the maximum), ex-
plains why a completely filled configuration evolves into a ultimately correct nonempty
sequence: it is a superset of any other initial configuration. Moreover, it explains why
the histogram of figure 5.10 is growing.

Proposition 5.1 also gives a hint about the fault tolerance of the system: if a cell
develops an unwanted token, the system will eventually return to a working configura-
tion. On the contrary, if a token is lost in a correct configuration, there won’t be enough
messages to maintain a nonempty sequence.

Chapter 6

Conclusions

6.1 Achieved Goals

6.1.1 Heuristics

In chapter 3 we have applied the Reactive Search heuristic to the Channel Assignment
problem, seen as a generalization of the Graph Coloring problem. The heuristic has
shown its strength against other simpler techniques. Its strength lies in the heavy use
of the past search history to trim the parameters and to fit the search to the particular
configuration space.

6.1.2 The BBB Algorithm

The function we chose to minimize in chapter 4 achieves a double goal: finding its
global minimum is straightforward, yet it captures enough of the complexity of the
problem to challenge the best combinatorial algorithms we know. Moreover, the func-
tion could be computed locally, with a small amount of communication among base
stations.

To show this we have introduced the penalty-function algorithm BBB, simulating
it over a large number of runs. As we have seen, our heuristic behaves better than the
others we tried, at least when compared on regular hexagonal patterns.

In chapter 5 we have shown how the distributed version dBBB could be built, by
providing the necessary synchronization mechanisms.

6.2 Future Developments

The interference model adopted by almost every paper about the channel assignment
subject is abinary one, in the sense that constraints always concerncouples of trans-
mitters. However, real-world interference isadditive, in the sense that also the number
of interfering stations should be taken into account. Consider the situation depicted in
figure 6.1, where cell A is far enough from cells 1, 2, 3 and 4 to be allowed to use the
same channels. What happens if cells 1, 2, 3 and 4 all use the same channel? It hap-
pens that, even though every single cell would not be able to generate a signal strong
enough to interfere with cell A, the combined power of the four cells would sum up and
cause a significant decrease of the signal to noise ratio for that channel in cell A. So,

43

44 CHAPTER 6. CONCLUSIONS

1
2

3
4

A

Figure 6.1: The additive interference constraint

binary constraints are not powerful enough to describe many real world phenomena,
and other structures should be employed. For example, an interference graph could be
validly replaced by a hypergraph.

Due to their nature, most algorithms have only been studied with such restrictive
assumptions as boolean (non-additive) interference, and so our tests had to restrict to
that case. However, our method can easily be applied to a large variety of channel
assignment problems with additive interference constraints, adjacent-channel interfer-
ence and so on. In fact, all that is required for the minimization to be polynomial is
that every channel provides alinear contribution to the total penalty function.

A great amount of work must also be carried out to complete the theoretical analysis
of the distributed algorithms in sections 5.2, page 32 and 5.3, page 38. Of course,
theory of distributed systems is still at its early stages, and it does not provide, at
present, a large theoretical background, if not in special cases.

Appendix A

An Integrated Library for Local
Search

A.1 Introduction

We present a powerful, understandable and upgradable library for local search problem
solving. We introduce an actual problem and we illustrate its solution by means of the
library.

A.1.1 How to read the code

We have written the library code inC++, using the literate programmingnoweb sys-
tem, which permits to write a single source file both for programming and for human-
readable documentation; the latest has been included as follows.

The concept ofliterate programming has been introduced by Donald E. Knuth[Knu92]
in many publications. The program is divided into code chunks that can be nested;
every code chunk has a name, and it is identified by a unique string (possibly its de-
scription) and a code formed by the number of the page where it appears eventually
followed by a letter to distinguish it from other code chunks on the same page. A code
chunk that contains another code chunk refers to it by its identifier (string and code).
Of course, a program is given to create a machine-understandable code from this sys-
tem. This way, every logical building block, be it a separate function or not, can be
described separately, and its position within the whole program can be easily traced.

As an example, consider the followinghello world program.
At first we give the overall skeleton of the program.

45a 〈helloWorld.c45a〉≡
〈inclusions45b〉
int main (void)
{
〈function call to write the hello world message46a〉

}

Then we define the code blocks that have been cited in the above chunk.

45b 〈inclusions45b〉≡
#include <stdio.h>

45

46 APPENDIX A. AN INTEGRATED LIBRARY FOR LOCAL SEARCH

46a 〈function call to write the hello world message46a〉≡
printf ("Hello, World!\n");

A.2 The problem descriptor skeleton:
the GenericProblem class

The first class we describe is a virtual class containing the definition which are common
to most binary-string local-search problems, for instance a binary (boolean) array to
contain the current string, another array to store the best found solution, the number of
bits, a fitness function, a random string generation function. We also need a method to
identify legal moves (i.e., to describe theneighborhood of the current string.

A.2.1 The header fileGenericProblem.H

The header file includes a few standard libraries and declares theGenericSolver
class, in order to allow a pointer to aGenericSolver object to be stored. The
GenericProblem class does not contain private members, since it is a virtual class
and must be extended before use.

46b 〈GenericProblem.H46b〉≡
#ifndef _GENERICPROBLEM_H
#define _GENERICPROBLEM_H

#include <iostream.h>
#include "Rand48.h"

class GenericSolver;

class GenericProblem {
protected:
〈GenericProblem - protected definitions46c〉

public:
〈GenericProblem - public definitions47a〉

};
#endif

The protected definitions contain all member variables, which will be accessed by
foreign code only by interface functions.

46c 〈GenericProblem - protected definitions46c〉≡
GenericSolver *solver;
bool * const x, * const bestX;
int nbits, fitness;
int seed;
Rand48 rand;

A.2. THE GENERICPROBLEMCLASS 47

The publicstatus enumeration type is used as a response to declare if a move
is feasible. All other public members of the class are functions: the constructor and
destructor, the interface functions to operate on the protected members and the more
comples functions to manage the local search of a problem solution.

47a 〈GenericProblem - public definitions47a〉≡
enum status {

PROHIBITED, INVALID, OK
};
〈GenericProblem - constructor and destructor47b〉
〈GenericProblem - inline interface functions47c〉
〈GenericProblem - problem management functions47d〉
The construction of the problem requires only the length of the binary string and,

optionally, a seed for the random number generator.

47b 〈GenericProblem - constructor and destructor47b〉≡
GenericProblem (int, int = 777);
virtual ˜GenericProblem ();

Most problem parameters can be accessed through the following functions.

47c 〈GenericProblem - inline interface functions47c〉≡
int getNbits () const { return nbits; }
int getSeed () const { return seed; }
bool operator[] (int i) const { return x[i]; }
void setSolver (GenericSolver *s) { solver = s; }
virtual void storeAsBest ()

{ memcpy (bestX, x, nbits * sizeof(bool)); }

The functions that manage the navigation through problem states are now intro-
duced. Notice that all the functions are pure virtual, since they all depend on the spe-
cific nature of the problem.

47d 〈GenericProblem - problem management functions47d〉≡
virtual int getMoves () const = 0;
virtual status randomConfiguration (long &) = 0;
virtual status newFitness (int, long &) const = 0;
virtual void execMove (int, long &) = 0;
virtual void writeCurrent (ostream& = cout) const;
virtual void writeBest (ostream& = cout) const;

A.2.2 The library file GenericProblem.C

The implementation of theGenericProblem class is very small, in fact most func-
tions are pure virtual.

47e 〈GenericProblem.C47e〉≡
#include "GenericProblem.H"
#include "GenericSolver.H"

〈GenericProblem - constructor and destructor implementation48a〉
〈GenericProblem - Debugging tools48b〉

48 APPENDIX A. AN INTEGRATED LIBRARY FOR LOCAL SEARCH

The constructor of the class will just set some parameters and reserve the memory
for the configuration strings. The destructor will free it. Both functions will usually be
overridden by extensions of the class.

48a 〈GenericProblem - constructor and destructor implementation48a〉≡
GenericProblem::GenericProblem (int n, int s):

x (new bool[n]),
bestX (new bool[n]),
nbits (n),
seed (s),
rand (s)

{}

GenericProblem::˜GenericProblem ()
{

delete [] x;
delete [] bestX;

}

The only generic functions we provide implement a very raw output of the stored
binary strings on an output stream provided by the user.

48b 〈GenericProblem - Debugging tools48b〉≡
void GenericProblem::writeCurrent (ostream &o) const
{

for (int i = 0; i < nbits; i++)
o << (x[i]?’T’:’F’);

}

void GenericProblem::writeBest (ostream &o) const
{

for (int i = 0; i < nbits; i++)
o << (bestX[i]?’T’:’F’);

}

A.3. THE GENERICSOLVERCLASS 49

A.3 The problem solver skeleton:
the GenericSolver class

Next we define a class which stores the common features of prohibition-based local
search techniques, such as a move-generation mechanism and a past history storage.
Anyway, the prohibition mechanism can be ignored by making it allow any move to-
wards legal configurations, so that prohibition-independent search schemes can also be
implemented as extensions of this class.

A.3.1 The header fileGenericSolver.H

This header declares the classGenericProblem , in order to include a reference to
an instance in aGenericSolver object. The classGenericSolver itself con-
tains protected variables and public functions.

49a 〈GenericSolver.H49a〉≡
#ifndef _GENERICSOLVER_H
#define _GENERICSOLVER_H

#include "Rand48.h"

class GenericProblem;

class GenericSolver {
protected:
〈GenericSolver - protected definitions49b〉

public:
〈GenericSolver - public definitions49c〉

};

#endif

The protected members are a reference to the problem being solved, a random
number generator, the size of the binary string, the current iteration, the iteration at
which the best was found, the current fitness and the best fitness found up to now.

49b 〈GenericSolver - protected definitions49b〉≡
GenericProblem &problem;
Rand48 rand;
const int nbits;
int currentIteration, bestT;
long fitness, bestFitness;

The public members of the class are functions.

49c 〈GenericSolver - public definitions49c〉≡
〈GenericSolver - constructor and destructor50a〉
〈GenericSolver - inline interface functions50b〉
〈GenericSolver - problem solving functions50c〉

50 APPENDIX A. AN INTEGRATED LIBRARY FOR LOCAL SEARCH

The constructor of the class requires to receive a reference to the problem it shall
operate upon and an optional random seed. The destructor is not necessary in this class,
since heap is not used explicitly, but is declared as a virtual function in order to define
it in the derived classes. At present, it is declared as an inline empty function.

50a 〈GenericSolver - constructor and destructor50a〉≡
GenericSolver (GenericProblem &, int = 777);
virtual ˜GenericSolver () {}

Interface functions are used to extract information from the class, because all vari-
ables are protected.

50b 〈GenericSolver - inline interface functions50b〉≡
int getT () const { return currentIteration; }
int getBestT () const { return bestT; }
int getIteration () const { return currentIteration; }
long getFitness () const { return fitness; }
long getBestFitness () const { return bestFitness; }

All functions that actually solve the problem are algorithm-specific, so we just
declare them as pure virtual.

50c 〈GenericSolver - problem solving functions50c〉≡
virtual bool tabu (int) const = 0;
virtual void flip (int) = 0;
virtual void start () = 0;
virtual void restart () = 0;
virtual int bestMove (long int &) = 0;
virtual void move (int) = 0;
virtual void step () = 0;
virtual void run () = 0;

A.3.2 The library file GenericSolver.C

The only function to be implemented out of line is the constructor, which uses the
parameters (a reference to theGenericProblem object describing the problem to
be solved, and an optional random seed) to initialize the protected members to the right
value.

50d 〈GenericSolver.C50d〉≡
#include "GenericSolver.H"
#include "GenericProblem.H"

GenericSolver::GenericSolver (GenericProblem &prob, int seed = 777) :
problem (prob),
rand (seed),
nbits (prob.getNbits()),
currentIteration (0),
bestT (0)

{
problem.setSolver(this);

}

A.4. THE ASSIGNMENTPROBLEMCLASS 51

A.4 The implementation of a problem:
the AssignmentProblem class

Now we are ready to implement a problem definition by extending theGenericProb-
lem class.

A.4.1 The header fileAssignmentProblem.H

51a 〈AssignmentProblem.H51a〉≡
#ifndef _ASSIGNMENTPROBLEM_H
#define _ASSIGNMENTPROBLEM_H

#include "GenericProblem.H"

class AssignmentProblem: public GenericProblem {
private:
〈AssignmentProblem - private definitions51b〉

public:
〈AssignmentProblem - public definitions51c〉

};

#endif

We declare all parameters used to define the problem, as we defined it in the course
of our work. A couple of private functions are also defined.

51b 〈AssignmentProblem - private definitions51b〉≡
const int rows, cols, nce, nch, traffic, free, kappa, swaps, nmoves;
int * const usedChannels, * const bestUsedChannels,

* const freeChannels, * const penalties, * const adjacency;
void writeVector (ostream&, const int*) const;
long int fitnessFromScratch ();

51c 〈AssignmentProblem - public definitions51c〉≡
〈AssignmentProblem - constructor and destructor51d〉
〈AssignmentProblem - implementation of previously virtual functions52a〉
We define a more complex constructor; also the destructor will be modified, as

many dynamic allocations are required to store all problem data.

51d 〈AssignmentProblem - constructor and destructor51d〉≡
AssignmentProblem (int, int, int, int, int, int = 777);
˜AssignmentProblem ();

52 APPENDIX A. AN INTEGRATED LIBRARY FOR LOCAL SEARCH

Functions that were declared as pure virtual in the base class are now redeclared in
order to implement it in the.C file.

52a 〈AssignmentProblem - implementation of previously virtual functions52a〉≡
int getMoves () const { return nmoves; }
status randomConfiguration (long&);
status newFitness (int, long&) const;
void execMove (int, long&);
void storeAsBest ();
void writeCurrent (ostream& = cout) const;
void writeBest (ostream& = cout) const;

A.4.2 The library file AssignmentProblem.C

52b 〈AssignmentProblem.C52b〉≡
#include "AssignmentProblem.H"
#include "GenericSolver.H"

〈AssignmentProblem - utility functions52c〉
〈AssignmentProblem - constructor implementation53a〉
〈AssignmentProblem - destructor implementation54b〉
〈AssignmentProblem - Initialize the problem with a random configuration55a〉
〈AssignmentProblem - Incremental fitness evaluation56b〉
〈AssignmentProblem - Execution of a move57a〉
〈AssignmentProblem - best value storage57b〉
〈AssignmentProblem - various debugging tools58〉
〈AssignmentProblem - Calculate fitness of a new configuration59〉
Some generic functions are declared to help calculations.

52c 〈AssignmentProblem - utility functions52c〉≡
template <class T> T MAX (T a, T b)
{

return (a > b) ? a : b;
}

template <class T> T MIN (T a, T b)
{

return (a < b) ? a : b;
}

int abs (int a)
{

return (a > 0) ? a : -a;
}

A.4. THE ASSIGNMENTPROBLEMCLASS 53

The constructor requires the number of rows and columns in the hexagonal tile,
the total number of channels, the traffic parameter, the radius of interference and an
optional seed for the random number generator.

53a 〈AssignmentProblem - constructor implementation53a〉≡
AssignmentProblem::AssignmentProblem (int r, int c, int ch, int t,

int k, int s = 777) :
〈AssignmentProblem constructor - Initialization list53b〉

{
〈AssignmentProblem contructor - compute the adjacency matrix54a〉

}

Private members of the class are initialized by an initialization list. The base class
constructor is called first.

53b 〈AssignmentProblem constructor - Initialization list53b〉≡
GenericProblem (r*c*ch, s),
rows (r),
cols (c),
nce (r*c),
nch (ch),
traffic (t),
free (nch-traffic),
kappa (k+1),
swaps (traffic*free),
nmoves (nce*traffic*free),
usedChannels (new int [nce*traffic]),
bestUsedChannels (new int [nce*traffic]),
freeChannels (new int [nce*free]),
penalties (new int [nce*nch]),
adjacency (new int [nce*nce])

54 APPENDIX A. AN INTEGRATED LIBRARY FOR LOCAL SEARCH

The second task of the constructor is the initialization of the adjacency matrix ac-
cording to the parameters.

54a 〈AssignmentProblem contructor - compute the adjacency matrix54a〉≡
for (int i = 0; i < r; i++)

for (int j = 0; j < c; j++) {
int

ipos = i * c + j,
jpos = ipos,
pos = ipos * nce + jpos,
p = kappa;

for (int k = 0; k < c-j; k++) {
adjacency[pos++] = (p>=0)?p:0;
p--;

}
p = kappa;
int

pcol = j,
ncol = 1;

for (int i1 = i+1; i1 < r; i1++) {
if (p > 0)

p--;
if (!(i1 % 2))

pcol--;
ncol++;
int j1;
for (j1 = 0; j1 < pcol; j1++)

adjacency[pos++] = (p > pcol-j1) ? (p-pcol+j1) : 0;
for (; j1 < c && j1 < pcol+ncol; j1++)

adjacency[pos++] = p;
for (; j1 < c; j1++)

adjacency[pos++] = (p > j1-ncol-pcol+1) ? (p-j1+ncol+pcol-1) : 0;
}

}
for (int i = 1; i < nce; i++)

for (int j = 0; j < i; j++)
adjacency [i*nce+j] = adjacency[j*nce+i];

The destructor frees all the reserved heap memory.

54b 〈AssignmentProblem - destructor implementation54b〉≡
AssignmentProblem::˜AssignmentProblem ()
{

delete [] usedChannels;
delete [] freeChannels;
delete [] penalties;
delete [] adjacency;

}

A.4. THE ASSIGNMENTPROBLEMCLASS 55

Usual solving sessions require the generation of a random string. Since not all
strings are legal, the work is devolved to the problem descriptor (it is the only object
that “knows” something about the nature of the problem). The function returns the
configuration status (alwaysOK) and its fitness, through the reference parameter.

55a 〈AssignmentProblem - Initialize the problem with a random configuration55a〉≡
GenericProblem::status AssignmentProblem::randomConfiguration (long &f)
{
〈GenericProblem random configuration - initialize an empty vector55b〉
〈GenericProblem random configuration - fill the vector with a legal binary string55c〉
〈GenericProblem random configuration - Calculate the initial fitness56a〉
return OK;

}

55b 〈GenericProblem random configuration - initialize an empty vector55b〉≡
for (int i = 0; i < nbits; i++) {

x[i] = false;
penalties[i] = 0;

}

55c 〈GenericProblem random configuration - fill the vector with a legal binary string55c〉≡
bool *xI = x;
int

*usedI = usedChannels,
*adjI = adjacency,
*freeI = freeChannels;

for (int i = 0; i < nce; i++) {
for (int j = 0; j < traffic; j++) {

int ch;
do

ch = rand.asUnsignedInt() % nch;
while (xI[ch]);
xI[ch] = true;
*(usedI++) = ch;
int *penI = penalties;
for (int i1 = 0; i1 < nce; i1++) {

if (adjI[i1]) {
const int

chmin = MAX (0, ch-adjI[i1]+1),
chmax = MIN (nch, ch+adjI[i1]);

for (int j1 = chmin; j1 < chmax;
penI[j1++]++);

}
penI += nch;

}
}
for (int j = 0; j < nch; j++)

if (!*(xI++))
*(freeI++) = j;

adjI += nce;
}

56 APPENDIX A. AN INTEGRATED LIBRARY FOR LOCAL SEARCH

56a 〈GenericProblem random configuration - Calculate the initial fitness56a〉≡
fitness = 0;
for (int i = 0; i < nbits; i++)

if (x[i])
fitness += --penalties[i];

fitness /= 2;
f = fitness;

56b 〈AssignmentProblem - Incremental fitness evaluation56b〉≡
GenericProblem::status AssignmentProblem::newFitness (int m, long &f) const
{

int
cell = m / swaps,
whichSwap = m % swaps,
fromPlace = whichSwap / free,
toPlace = whichSwap % free,
fromChannel = usedChannels[cell*traffic+fromPlace],
toChannel = freeChannels[cell*free+toPlace],
fromBit = cell*nch + fromChannel,
toBit = cell*nch + toChannel,
change = penalties[toBit] - penalties[fromBit]
- ((abs(fromChannel-toChannel)<adjacency[cell*(nce+1)]) ? 1 : 0);

f = fitness + change;
return (solver->tabu(fromBit) || solver->tabu(toBit)) ?

GenericProblem::PROHIBITED : GenericProblem::OK;
}

A.4. THE ASSIGNMENTPROBLEMCLASS 57

57a 〈AssignmentProblem - Execution of a move57a〉≡
void AssignmentProblem::execMove (const int m, long &f)
{

const int
cell = m / swaps,
whichSwap = m % swaps,
fromPlace = whichSwap / free,
toPlace = whichSwap % free,
fromChannel = usedChannels[cell*traffic+fromPlace],
toChannel = freeChannels[cell*free+toPlace],
fromBit = cell*nch + fromChannel,
toBit = cell*nch + toChannel,
change = penalties[toBit] - penalties[fromBit] -
((abs(fromChannel-toChannel)<adjacency[cell*(nce+1)])? 1 : 0);

f = fitness = fitness + change;
int *adjI = adjacency + cell*nce;
for (int i = 0; i < nce; i++) {

int * const penI = penalties + i*nch;
if (*adjI) {

int
chmin = MAX (0, fromChannel-*adjI+1),
chmax = MIN (nch, fromChannel+*adjI);

for (int j = chmin; j < chmax; penI[j++]--);

chmin = MAX (0, toChannel-*adjI+1),
chmax = MIN (nch, toChannel+*adjI);

for (int j = chmin; j < chmax; penI[j++]++);
}
adjI++;

}
penalties[cell*nch+fromChannel]++;
penalties[cell*nch+toChannel]--;
freeChannels[cell*free+toPlace] = fromChannel;
usedChannels[cell*traffic+fromPlace] = toChannel;
const int

fc = cell*nch+fromChannel,
tc = cell*nch+toChannel;

x[fc] = false;
solver->flip (fc);
x[tc] = true;
solver->flip (tc);
f = fitness;

}

57b 〈AssignmentProblem - best value storage57b〉≡
void AssignmentProblem::storeAsBest()
{

memcpy (bestX, x, nbits*sizeof(bool));
memcpy (bestUsedChannels, usedChannels, nce*traffic*sizeof(int));

}

58 APPENDIX A. AN INTEGRATED LIBRARY FOR LOCAL SEARCH

58 〈AssignmentProblem - various debugging tools58〉≡
void AssignmentProblem::writeVector (ostream &o, const int *v) const
{

for (int i = 0; i < rows; i++) {
if (!(i%2))

cout << " ";
for (int j = 0; j < cols; j++) {

const int cell = i*cols+j;
o.form ("(%2d", v[cell*traffic]);
for (int k = 1; k < traffic; k++)

o.form (",%2d", usedChannels[cell*traffic+k]);
o << ") ";

}
o << endl;

}
}

void AssignmentProblem::writeCurrent (ostream &o) const
{

writeVector (o, usedChannels);
}

void AssignmentProblem::writeBest (ostream &o) const
{

writeVector (o, bestUsedChannels);
}

A.4. THE ASSIGNMENTPROBLEMCLASS 59

59 〈AssignmentProblem - Calculate fitness of a new configuration59〉≡
long int AssignmentProblem::fitnessFromScratch ()
{

long f = 0;
int *adjI = adjacency, *usedI = usedChannels, *freeI = freeChannels, *usedI1;
bool * xI = x;
for (int i = 0; i < nce; i++) {

for (int j = 0; j < traffic; j++)
if (!xI[usedI[j]])

return -1;
for (int j = 0; j < free; j++)

if (xI[freeI[j]])
return -2;

int c = 0;
for (int j = 0; j < nch; j++)

if (xI[j])
c++;

if (c != traffic)
return -3;

usedI1 = usedI;
for (int i1 = i; i1 < nce; i1++) {

if (adjI[i1])
for (int j = 0; j < traffic; j++)

for (int j1 = ((i==i1)?(j+1):0);
j1 < traffic; j1++)

if (abs(usedI[j]-usedI1[j1])
< adjI[i1])

f++;
usedI1 += traffic;

}
adjI += nce;
usedI += traffic;
freeI += free;
xI += nch;

}
return f;

}

60 APPENDIX A. AN INTEGRATED LIBRARY FOR LOCAL SEARCH

A.5 Implementation of a solver:
the ReactiveSearch class

A.5.1 The header fileReactiveSearch.H

60a 〈ReactiveSearch.H60a〉≡
#ifndef _REACTIVESEARCH_H
#define _REACTIVESEARCH_H

#include <math.h>
#include "Rand48.h"
#include "GenericSolver.H"
#include "History.H"

〈ReactiveSearch - exceptions60b〉

class ReactiveSearch: public GenericSolver {
private:
〈ReactiveSearch - private variables61a〉
〈ReactiveSearch - private functions61b〉

public:
〈ReactiveSearch - public definitions61c〉

};

#endif

60b 〈ReactiveSearch - exceptions60b〉≡
class IntegerException {
private:

const long int n;
public:

IntegerException (long int num) : n (num) {}
long int getN () const { return n; }

};

class NoAllowedMoves: public IntegerException {
public:

NoAllowedMoves (long int num) : IntegerException (num) {}
};

class ProhibitionTooLarge: public IntegerException {
public:

ProhibitionTooLarge (long int num) : IntegerException (num) {}
};

A.5. THE REACTIVESEARCHCLASS 61

61a 〈ReactiveSearch - private variables61a〉≡
History history;
const bool aspiration;
const int initialProhibition, maxVisits,

maxFrequentlyVisited, maxMoves, maxChecks;
const double increase, decrease;
int * const timeChangedVar;
int * const varList, prohibition,

nFrequentlyVisited, tProhibitionChanged, tEscape;
double movingAverage;
long long int * const frequentlyVisited;

61b 〈ReactiveSearch - private functions61b〉≡
void timeChangedVarClear ();
bool reaction ();
void increaseProhibition ();
void decreaseProhibition ();
bool problemConsistency ();
void updateBestFitness ();

61c 〈ReactiveSearch - public definitions61c〉≡
ReactiveSearch (GenericProblem &, int, int, int = 777);
virtual ˜ReactiveSearch();
bool tabu (int) const;
void flip (int);
int getProhibition () const { return prohibition; }
void start ();
void restart ();
int bestMove (long&);
void move (int);
void step ();
void run ();

62 APPENDIX A. AN INTEGRATED LIBRARY FOR LOCAL SEARCH

A.5.2 The library file ReactiveSearch.C

62a 〈ReactiveSearch.C62a〉≡
#include <iostream.h>
#include <stdio.h>
#include "ReactiveSearch.H"
#include "GenericProblem.H"

〈ReactiveSearch - Constructor62b〉
〈ReactiveSearch - destructor63a〉
〈ReactiveSearch - reset modification times63b〉
〈ReactiveSearch - check if a variable is tabu63c〉
〈ReactiveSearch - change the value of a bit63d〉
〈ReactiveSearch - initialize the search63e〉
〈ReactiveSearch - restart the search from a new configuration64a〉
〈ReactiveSearch - find the move with the best increase of the objective function64b〉
〈ReactiveSearch - perform a move64c〉
〈ReactiveSearch - update the best fitness65a〉
〈ReactiveSearch - perform a search step65b〉
〈ReactiveSearch - execute a number of steps65c〉
〈ReactiveSearch - check whether it’s time to change parameters66〉
〈ReactiveSearch - modify the prohibition times67a〉
〈ReactiveSearch - check if the problem description is consistent67b〉

62b 〈ReactiveSearch - Constructor62b〉≡
ReactiveSearch::ReactiveSearch (GenericProblem &prob, int mv,

int chk, int seed) :
GenericSolver (prob, seed),
history (nbits),
aspiration (true),
initialProhibition (1),
maxVisits (3),
maxFrequentlyVisited (3),
maxMoves (mv),
maxChecks (chk),
increase (1.1),
decrease (0.9),
timeChangedVar (new int[problem.getNbits()]),
varList (new int [nbits]),
prohibition (initialProhibition),
tProhibitionChanged (0),
tEscape (0),
movingAverage (-1.0),
frequentlyVisited (new long long int [maxFrequentlyVisited +1])

{}

A.5. THE REACTIVESEARCHCLASS 63

63a 〈ReactiveSearch - destructor63a〉≡
ReactiveSearch::˜ReactiveSearch ()
{

delete [] varList;
delete [] timeChangedVar;
delete [] frequentlyVisited;

}

63b 〈ReactiveSearch - reset modification times63b〉≡
void ReactiveSearch::timeChangedVarClear ()
{

for (int n = 0; n < nbits; n++)
timeChangedVar[n] = -MAXINT;

}

63c 〈ReactiveSearch - check if a variable is tabu63c〉≡
bool ReactiveSearch::tabu (int var) const
{

return !problem[var]
&& timeChangedVar[var] >= currentIteration - prohibition;

}

63d 〈ReactiveSearch - change the value of a bit63d〉≡
void ReactiveSearch::flip (int var)
{

history.updateCurrentX (var, currentIteration);
timeChangedVar[var] = currentIteration;

}

63e 〈ReactiveSearch - initialize the search63e〉≡
void ReactiveSearch::start ()
{

problem.randomConfiguration (fitness);
bestFitness = fitness;
problem.storeAsBest ();
bestT = 0;
currentIteration = 0;
nFrequentlyVisited = 0;
prohibition = initialProhibition;
history.clear();
for (int nn = 0; nn < nbits; nn++)

if (problem[nn])
history.updateCurrentX (nn, currentIteration);

timeChangedVarClear();
}

64 APPENDIX A. AN INTEGRATED LIBRARY FOR LOCAL SEARCH

64a 〈ReactiveSearch - restart the search from a new configuration64a〉≡
void ReactiveSearch::restart ()
{

problem.randomConfiguration (fitness);
history.clear();
for (int nn = 0; nn < nbits; nn++)

if (problem[nn])
history.updateCurrentX (nn, currentIteration);

timeChangedVarClear();
nFrequentlyVisited = 0;
prohibition = initialProhibition;
updateBestFitness ();
currentIteration++;

}

64b 〈ReactiveSearch - find the move with the best increase of the objective function64b〉≡
int ReactiveSearch::bestMove (long &minF)
{

int bestCandidate = -1;
long f;
minF = MAXINT;
int m;
GenericProblem::status s;
for (int nm = 0;
nm < maxChecks

|| (bestCandidate < 0 && nm < problem.getMoves());
nm++) {

m = rand.asUnsignedInt() % problem.getMoves();
s = problem.newFitness (m, f);
if ((s == GenericProblem::OK
|| (aspiration

&& s == GenericProblem::PROHIBITED
&& f < bestFitness))

&& f < minF)
{

bestCandidate = m;
minF = f;

}
}
return bestCandidate;

}

64c 〈ReactiveSearch - perform a move64c〉≡
void ReactiveSearch::move (int m)
{

problem.execMove (m, fitness);
updateBestFitness ();
currentIteration++;

}

A.5. THE REACTIVESEARCHCLASS 65

65a 〈ReactiveSearch - update the best fitness65a〉≡
void ReactiveSearch::updateBestFitness ()
{

if (fitness < bestFitness) {
bestFitness = fitness;
problem.storeAsBest ();
bestT = currentIteration;

}
}

65b 〈ReactiveSearch - perform a search step65b〉≡
void ReactiveSearch::step ()
{

long f;
if (reaction()) {

tEscape = currentIteration;
restart ();

}
int m = bestMove (f);
if (m < 0) {

restart ();
m = bestMove (f);

}
move (m);

}

65c 〈ReactiveSearch - execute a number of steps65c〉≡
void ReactiveSearch::run ()
{

start ();
while (currentIteration < maxMoves && fitness > 0)

step ();
}

66 APPENDIX A. AN INTEGRATED LIBRARY FOR LOCAL SEARCH

66 〈ReactiveSearch - check whether it’s time to change parameters66〉≡
bool ReactiveSearch::reaction ()
{

int lastTime, nVisits;
if (history.lookupCurrent(&lastTime, &nVisits)) {

if (nVisits >= maxVisits) {
int i;
long long int fp = history.getCurrentFingerprint();
for (i = 0; i < nFrequentlyVisited && frequentlyVisited[i] != fp; i++);
if (i == nFrequentlyVisited) {

if (nFrequentlyVisited >= maxFrequentlyVisited) {
nFrequentlyVisited = 0;
movingAverage = -1.0;
return true;

}
frequentlyVisited[nFrequentlyVisited++] = fp;

}
}
const int repetitionInterval = currentIteration - lastTime;
if (repetitionInterval < 2*(nbits - 1)) {

if(movingAverage > 0)
movingAverage = 0.1 * repetitionInterval + 0.9 * movingAverage;

else
movingAverage = repetitionInterval;

increaseProhibition ();
}

}
else

history.installCurrent();
const int interval = currentIteration - tProhibitionChanged;
if (interval > 2*movingAverage && interval > nbits)

decreaseProhibition ();
return false;

}

A.5. THE REACTIVESEARCHCLASS 67

67a 〈ReactiveSearch - modify the prohibition times67a〉≡
void ReactiveSearch::increaseProhibition ()
{

const int newProhibition = int(prohibition * increase);
if (prohibition == newProhibition)

prohibition++;
else

prohibition = newProhibition;
if (prohibition > MAXINT || prohibition < 0)

prohibition = MAXINT;
tProhibitionChanged = currentIteration ;

}

void ReactiveSearch::decreaseProhibition ()
{

const int newProhibition = int(prohibition * decrease);
if (prohibition == newProhibition)

prohibition--;
else

prohibition = newProhibition;
if (prohibition < 1)

prohibition = 1;
tProhibitionChanged = currentIteration ;

}

67b 〈ReactiveSearch - check if the problem description is consistent67b〉≡
bool ReactiveSearch::problemConsistency ()
{

int i;
for (i = 0; i < nbits && problem[i] == history[i]; i++);
return i == nbits;

}

68 APPENDIX A. AN INTEGRATED LIBRARY FOR LOCAL SEARCH

Appendix B

Web Radio Tutorial

As a side product of our research, some algorithms have been developed to effectively
test the techniques proposed in this work.

These programs have been subsequently ported to Java and they have been given
a graphical interface in order to be used and appreciated by other people. These algo-
rithms have been included in an WWW-accessible HTML framework.

These web pages can be found at the URL

http://www.science.unitn.it/˜brunato/radio/

They are organized as a fast tutorial on the problem of channel assignment in cellular
networks. As a result of this, our work has been more visible, and interaction with
some researchers around the world has been possible.

B.1 Tutorial index

Most of the information contained in the tutorial is slightly outdated, due to the lack of
spare time dedicated to it.

1. Introduction — a fast introduction to the central concepts of cellular networks
and to Channel Assignment in particular.

2. Mathematical models of the problem— hexagonal tilings, graph coloring.

3. Common algorithms — The various combinatorial algorithms: Fixed Alloca-
tion, browsing techniques, dynamic assignment.

4. Comparison among algorithms— a Java applet lets the user compare the re-
fusal probability of three major techniques at various traffic rates and at different
numbers of available channels. Its use is discussed in section B.2.1.

5. Research algorithms— a resume of the objective-function approach shown in
chapter 4 and a fast (very fast!) overview of some local search heuristics.

6. Related problems— the local broadcasting and local token passing schemes
shown in chapter 5.

69

70 APPENDIX B. WEB RADIO TUTORIAL

Figure B.1: The algorithm comparison applet

(a) Local broadcast — we report the algorithm in section 5.2 with explana-
tions about it. We also provide a simple Java applet that allows the user to
experiment with various start configurations and with step by step simula-
tion. See section B.2.2 for details about the applet.

(b) Local mutual exclusion— The multiple token passing algorithm of sec-
tion 5.3 is illustrated, then a Java applet allows the visitor to check the
performance of the algorithm. The applet is explained in section B.2.3 and
on the page itself.

7. Ongoing work — a yet-to-come chapter about the current state of the work.

8. Bibliography .

B.2 Java Applets

B.2.1 The Algorithm Comparison Applet

The applet, which can be seen in figure B.1, shows a graph panel where the blocking
probability is reported against execution time for three different algorithms: FCA, SBR
and a simple DCA technique with random channel choice (see chapter 2). Other more
complex techniques, such as BDCL or BBB (see chapter 4) could be implemented, but
their execution time would be too slow on an average machine, due to the unoptimized
execution time of most Java virtual machines.

The three algorithms can be selected for execution and some parameters can be set:
the number of call requests per hour, the overall number of channels, the simulation
time and the average call duration.

The simulation can be started and stopped at will, and the vertical scale can be
adjusted by typing the maximumY value in the bottom right text window and then

B.2. JAVA APPLETS 71

Figure B.2: The local broadcast test applet

pressing the “Y” key.

B.2.2 The Local Broadcast Test Applet

In figure B.2 we can see a snapshot of the simulation of the local broadcast algorithm
of section 5.2 (see figure 5.4 at page 34) on a hexagonal grid.

All cells are initially green (empty). Clicking on a cell makes it the initiator of
a broadcast. Hitting the button ”Step” forces an algorithm step at every cell. A cell
becomes yellow when it has received a message and needs to process it; it is cyan when
it has received and eventually forwarded the message according to the algorithm. The
button ”Run” makes the system run continuously with sequential or random activations
of the cells, depending on the status of the “Random Activation” checkbox.

More than one cell can be made a broadcast initiator at the same time: broadcasts
can also intersect without interfering. The cells can be emptied and a start configuration
with only a single initiating cell at the center of the board can be executed.

B.2.3 The Multiple Token Passing Test Applet

Finally, a multiple token passing test applet has been written to test the algorithm found
in section 5.3; figure B.3 reports it with a regular configuration (the same that can be
seen at page 39 repeated four times).

The board can be initialized with arbitrary token distribution by clicking on the
cells, with a random configuration (in this case we can set a random seed to ensure

72 APPENDIX B. WEB RADIO TUTORIAL

Figure B.3: The multiple token passing test applet

B.2. JAVA APPLETS 73

reproducibility and with a percent filling factor) or it can be filled with the regular
distribution that can be seen in figure.

The execution can apply algorithm 5.9 in sequential order to all cells, or at a ran-
dom order, to verify independence from execution order. The cell order can be set by
switching the “Random Activation” checkbox.

By pressing the “Run” button, we see the results of continuous application of the
algorithm (it can be stopped with the “Stop” button), while the “Step” button executes
a single sweep over all cells of the system.

The system configuration can also be changed on the fly to show how the system
responds to a failure. For example, one can start with a regular token distribution by
pressing the “Standard” button. Then the system can be started with the “Run” button
and left alone for a while. Then, if we push the “Stop” button we freeze the system.
Choose a red cell (meaning that it possesses the token) and click on it to erase its token,
thus emulating a failure on that cell. Re-run the system: it will soon lose every token
by a cascade effect of missing messages. Now we can push again the “Stop” button in
order to stop the algorithm (which at present is not doing anything). If we restore the
token on the cell from which we had stolen it before by clicking again on it, then we
press the “Run” button, we shall see the whole system coming back to life.

74 APPENDIX B. WEB RADIO TUTORIAL

Bibliography

[Bat96] Roberto Battiti,Reactive search: Toward self-tuning heuristics, Mod-
ern Heuristic Search Methods (V. J. Rayward-Smith, I. H. Osman, C. R.
Reeves, and G. D. Smith, eds.), John Wiley and Sons Ltd, 1996, pp. 61–83.

[BB95] Alan A. Bertossi and Maurizio A. Bonuccelli,Code assignment for hid-
den terminal interference avoidance in multihop packet radio networks,
IEEE/ACM Transactions on Networking3 (1995), 441–449.

[BBB97] Roberto Battiti, Alan A. Bertossi, and Mauro Brunato,Cellular channel
assignment: Comparing and simplifying heuristics, Proceedings of the
IEEE/ACM Workshop DIAL M for Mobility (Budapest), 1997, pp. 19–
28.

[BBB99] Roberto Battiti, Alan A. Bertossi, and Maurizio A. Bonuccelli,Assign-
ing codes in wireless networks: Bounds and scaling properties, Wireless
Networks5 (1999), 195–209.

[BBB00] Roberto Battiti, Alan A. Bertossi, and Mauro Brunato,Cellular channel
assignment: a new localized and distributed strategy, to appear on Mobile
Networks (2000).

[BF96] Onelio Bertazioli and Lorenzo Favalli,Gsm — il sistema europeo di co-
municazione mobile: Tecniche, architettura e procedure, ATES, Hoepli,
Milan, 1996.

[BT94a] Roberto Battiti and Giampietro Tecchiolli,The reactive tabu search,
ORSA Journal on Computing6 (1994), no. 2, 126–140.

[BT94b] , Simulated annealing and tabu search in the long run: a com-
parison on qap task, Computers and Mathematics with Applications28
(1994), no. 6, 1–8.

[DAKR93] Manuel Duque-Ant́on, Dietmar Kunz, and Bernhard Rüber,Channel as-
signment for cellular radio networks using simulated annealing, IEEE
Transactions on Vehicular Technology42 (1993), no. 1, 14–21.

[DFR96] Enrico Del Re, Romano Fantacci, and Luca Ronga,A dynamic channel al-
location technique based on hopfield neural networks, IEEE Transactions
on Vehicular Technology45 (1996), no. 1, 26–32.

[ES84] Eli Upfal Eli Shamir,Sequential and distributed graph coloring algo-
rithms with performance analysis in random graph spaces, Journal of Al-
gorithms5 (1984), 488–501.

75

76 BIBLIOGRAPHY

[Glo89] F. Glover,Tabu search — part i, ORSA Journal on Computing1 (1989),
no. 3, 190–260.

[Glo90] , Tabu search — part ii, ORSA Journal on Computing2 (1990),
no. 1, 4–32.

[Glo94] , Tabu search: Improved solution alternatives, Mathematical Pro-
gramming, State of the Art 1994 (J. R. Birge and K. G. Murty, eds.), The
University of Michigan, 1994, pp. 64–92.

[HJ90] Hansen and B. Jaumard,Algorithms for the maximum satisfiability prob-
lem, Computing44 (1990), 279–303.

[JS96] Scott Jordan and Eric J. Schwabe,Worst-case performance of cellular
channel assignment policies, Wireless Networks2 (1996), 265–275.

[KN96] Irene Katzela and Mahmoud Nagshineh,Channel assignment schemes
for cellular mobile telecommunication systems: A comprehensive survey,
IEEE Personal Communications (1996), 10–31.

[Knu92] Donald Ervin Knuth,Literate programming, CSLI Lecture Notes, no. 27,
Center for the Study of Language and Information, Leland Stanford Junior
University, 1992.

[Lin65] S. Lin, Computer solutions of the travelling salesman problem, BSTJ44
(1965), no. 10, 2245–2269.

[Occ99] Gianluca Occhetta,Extremal rays of smooth projective varieties, PhD The-
sis Series, Dipartimento di Matematica, Università degli Studi di Trento
(1999), no. 27.

[SB96] Satinder Singh and Dimitri Bertsekas,Reinforcement learning for dynamic
channel allocation in cellular telephone systems, Submitted to NIPS96
(1996).

[SW68] K. Steiglitz and P. Weiner,Some improved algorithms for computer solu-
tion of the travelling salesman problem, Proceedings of the Sixth Allerton
Conference on Circuit and System Theory (Urbana, IL), 1968, pp. 814–
821.

[YY94] Kwan Lawrence Yeung and Tak-Shing Peter Yum,Compact pattern based
dynamic channel assignment for cellular mobile systems, IEEE Transac-
tions on Vehicular Technology43 (1994), no. 4, 892–896.

[ZY91] Ming Zhang and Tak-Shing Peter Yum,The nonuniform compact pattern
allocation algorithm for cellular mobile systems, IEEE Transactions on
Vehicular Technology40 (1991), no. 2, 387–391.

