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Distributed Code Assignment in Multihop Radio Networks:
Object-Oriented Software Simulations

Roberto Battiti∗† Alan A. Bertossi∗† Mauro Brunato∗†‡

Abstract

Code Assignment is one of the central problems in the management of mobile wireless networks, where a
very precious resource (radio bandwidth) needs to be carefully shared among network nodes. As this problem
has been shown to be NP-hard in every real world instance, no practical exact solution can be provided,
and heuristic algorithms are being developed whose actual performance can hardly be calculated by theorical
means; hence the development of heuristic schemes must always be accompanied by appropriate simulation
software.

In this paper we present a new distributed algorithm for code assignment in a multihop radio network.
The algorithm is based on the Saturation-Degree coloring scheme proposed in [1], which has proved better
than earlier attempts at solving the problem. A crucial parameter of the proposed algorithm is the depth of
the neighborhood that must be considered when a local decision must be taken. By tuning this parameter one
can obtain a tradeoff between the quality of the solution and the number of parallel passes and exchanged
messages.

We analyze the results of our C++ simulation programs where the proposed algorithm is compared with
its sequential version and with competitive schemes proposed in the literature. Furthermore, to help analyzing
the behavior of our distributed technique, we provide a graphical simulation environment written in Java.
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1 Introduction

The Saturation Degree coloring method has proved to be effective to approximate the solutions of many graph
coloring problems. In this paper we design and analyze a distributed version of the Saturation Degree heuristic.
The problem considered is that of minimizing the codes needed to eliminate primary and/or hidden collisions in
a Wireless Network with transmitter-oriented code assignment (TOCA) protocols [11, 8], where the transmitters
are code-agile (i.e. they can modify their transmission code within a suitable range).

Previous work concerning the use of the Saturation Degree heuristic in Code Assignment problems can be
found in [1], where it is applied in its original, sequential form; in Section sec:satdeg we give a short resume of
this technique and show its good behavior when compared with other algorithms.

The paper is organized as follows. In Section 2 a brief summary of the problem and of previous works
is reported, basic definitions are given. and the code assignment problem is formulated. In Section 3 a fast
overview of the sequential Saturation Degree algorithm for graph coloring is given. Section 4 is the central topic
of our paper, describing how the Saturation Degree algorithm can be implemented in a distributed environment,
where every node is able to compute its own code. Finally, Section 5 reports some experimental results, showing
that the performance does not deteriorate when the system is distributed.
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2 Multihop radio networks

In a wireless network, computers (“hosts”, “nodes”) are equipped with radio transceivers to broadcast outgoing
packets and to listen to incoming ones. Radio transmitters have a limited range; we shall considermultihop
networks, where the communication between two nodes happens by having packets received and later retrans-
mitted by intermediate stations, if necessary, before reaching their final destination, with a “store and forward”
scheme.

Unconstrained transmission in broadcast media may lead to collisions of two or more packet receptions,
caused by frequency and time overlap, resulting in damaged useless packets at the destination and therefore
in increased delays and bandwidth usage caused by retransmissions. Interferences and collisions can bedirect
(or primary), when they are due to the transmission of stations which can hear each other, andhidden (or
secondary), when stations outside the hearing range of each other transmit to the same receiving stations.

Multiple access protocols can be used to totally avoid collisions [12, 13] by dividing the available radio
spectrum into channels, i.e. frequency bands, time slices or orthogonal codes. These protocols require both
transmitters and receivers to becode-agile, i.e. able to communicate over a multitude of channels. These chan-
nels share the fixed spectrum slice allocated to the network in the design stage. Thus, their number must not
exceed a given bound, and their use has to be minimized.

2.1 The code assignment problem

A wireless network withn stations can be modeled as an undirected graphG = (V,E), where the set of
vertices (or nodes)V = {1, ..., n} represents the set of stations, and the set of edgesE ⊆ V × V the mutual
hearing between pairs of stations. Thus, the graphG represents the physical network topology. Apath between
the verticesi andj is a sequencei = v1, v2, ..., vh = j of h vertices inV such that(vk, vk + 1) ∈ E for
k = 1, 2, ..., h − 1; its length ish − 1, namely the number of edges appearing in it. Thedistance dij between
two verticesi andj of G is the length of the shortest path betweeni andj; it equals the minimum number of
hops that a packet must undergo in a communication between stationsi andj.

Two vertices (stations)i andj can generate aprimary collision if and only if dij = 1, ahidden collision if
and only if they are two hops away, namely, whendij = 2.

Now, the collisions can be eliminated ifi andj transmit on different channels, so interference problems can
be mapped to coloring problems on the associated graphs obtained as follows:

• in problemP-CA (Primary Collision Avoidance) the associated graph isGP = G;

• in problemH-CA (Hidden Collision Avoidance) the associated graph ifGH = (V,EH) whereEH =
{(i, j) ∈ V × V : dij = 2};

• in problemHP-CA (Hidden and Primary Collision Avoidance) the associated graph isGHP = (V,E ∪
EH).

Complete definitions and discussions of these problems can be found in [1]; a general discussion of graph
models of wireless networks can be found in [14], where a general description of constraints is shown and
analyzed.

3 Saturation degree code assignment

The basic design principles of the Saturation Degree coloring heuristic proposed in [4] is that the first nodes to
be colored are those that have more colors already assigned to nodes in the neighborhood. The motivation is
that these nodes have a more constrained choice and therefore a higher risk that at a certain moment, having all
colors been assigned to neighbors, a new color needs to be introduced, and a higher overall number of different
colors will be necessary in future steps. The heuristic is used in [4] to choose the next branching node in the
branch & bound algorithm DSATUR. Korman [10], and later Ramanathan [14], recommended choosing a node
with highest degree in the uncolored subgraph (Progressive Minimum Neighborhood First, PMNF) and Kubale
and Jackowski [9] validate the choice in their experiments.



1. procedureSaturation Degree
2. Order nodes according to decreasing degree in associated graph
3. ToBeAssigned← {1, 2, ..., n}
4. for i← 1 to n
5. NUnassignedNeighbors[i]← Order(i)
6. NeighCodes[i]← ∅
7. while ToBeAssigned 6= ∅
8. MaxNeighCodes← −1
9. MaxUnassignedNeigbors← −1
10. for each i ∈ ToBeAssigned
11. if |NeighCodes[i]| > MaxNeighCodes
12. MaxNeighCodes← |NeighCodes[i]|
13. MaxUnassignedNeigbors← NUnAssignedNeighbors[i]
14. v∗ ← i
15. else if|NeighCodes[i]| = MaxNeighCodes
16. if NUnassignedNeighbors[i] > MaxUnassignedNeighbors
17. v∗ ← i
18. MaxUnassignedNeighbors← NUnassignedNeighbors[i]
19. code[v∗]← lowest code not inNeighCodes[i]
20. ToBeAssigned← ToBeAssigned \ {v∗}
21. for each j ∈ N(v∗) ∩ ToBeAssigned
22. NUnassignedNeighbors[j]← NUnassignedNeighbors[j]− 1
23. NeighCodes[j]← NeighCodes[j] ∪ code[v∗]

Figure 1: The Saturation Degree algorithm

The Saturation Degree algorithm is illustrated in Fig 1. Letcode[i] be the code assigned to nodei; the set
ToBeAssigned contains the yet-unassigned nodes. In addition, to each nodei one associates a setNeighCodes[i]
containing the codes already assigned to nodes in the neighborhood, and an integerNUnassignedNeighbors[i]
given by the number of neighbors that haven’t yet been colored. At each iteration, the nodev∗ that is assigned a
code is one with the largest saturation degree (number of codes already assigned in the neighborhood, i.e. num-
ber of blocked channels, see lines 8–14). Ties between nodes are broken by preferring the nodes with the highest
number of uncolored neighbors (lines 15–17); further ties are broken by node IDs.

As soon as a code is assigned to nodev∗, all uncolored neighborsj must decrease by one the num-
ber of uncolored neighborsNUnassignedNeighbors[j] (line 22) and update the set of neighboring codes
NeighCodes[j] (line 23).

4 The distributed algorithm

So far, the Saturation Degree heuristic has been implemented as a sequential algorithm [1]. In fact, at each step
only the node having the globally maximum number of channels blocked is allowed to proceed; if we want to
introduce a distributed technique based on Saturation Degree we need to cope with the fact that the knowledge
of a node does not extend to the whole network, but is limited to the status of its neighbors, eventually up to a
certain depth.

In order to be enabled to choose its own color, a node must ensure that it satisfies the saturation degree
condition up to a certain depth of neighbors. We refer to the maximum neighbor depth as the “depth” of the
distributed algorithm, and we identify it by the positive integer parameterρ.

When a node considers itself a candidate for coloring, it sends out a message to ask its neighbors for permis-
sion. Every neighbor, up to depthρ, answers by communicating its own saturation degree and other tie-breaking
data. If the candidate node has the highest saturation degree (or, in case of tie, a higher order with respect to its
direct contendants), it colors itself, based on the fresh information received by its neighbors. Then it communi-
cates its new status to its neighbors up to depthρ, which consequently update their saturation degree. If a node
increases its saturation degree over the highest known value, it considers itself a new candidate for coloring and
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Figure 2: Bandwidth vs Graph Density: comparison among sequential algorithms

starts gathering information from its neighbors.
At the beginning of the coloring procedure, every node considers itself a candidate for coloring.
The performance of the distributed saturation-degree heuristic is expected to improve asρ grows. In fact,

if the graph is fully connected the distributed algorithm is almost equivalent to its sequential version whenρ is
large enough.

5 Experimental results

Simulations were executed by uniformly scattering random points on a unit square. Each point, representing a
mobile host, is able to broadcast a radio signal within a circle of radius 0.05 units. As all hosts have the same
power, the Euclidean communication graph (a vertex for every host, a link between points if they are nearer than
0.05 units) is undirected.

The problem taken into account in the experimental tests is the hidden interference problem, where two
nodes are connected by an arc if and only if they are second-order neighbors in the primary Euclidean graph
(i.e. iff they are not primary neighbors and have a common primary neighbor). Evidence is given in [1] that, of
the three possible problems (primary interference, hidden interference or both), the hidden interference is the
most difficult to treat.

In figure 2 we show a comparison among some sequential greedy techniques: unordered and descending
order [3], PMNF (see Section 3) [14], the sequential Saturation Degree heuristic described in Section 3 [1] and
the same heuristic followed by two iterations of Reactive Tabu Search [2]. Every algorithm has been tested for
10 different node densities (from 100 to 1000 nodes); every plotted point is the average of100 simulations;
error bars represent the95% confidence interval for the true average value; due to the high number of runs,
the bar size is barely visible. The saturation degree heuristic (either in its pure and postprocessed form) clearly
outperforms all other considered algorithms, in particular it improves the PMNF technique by more than16%.
This obvious advantage motivated our choice of the algorithm to distribute. In fact, a small degradation of result
quality could be introduced by relaxing the complete-knowledge requirements of any centralized algorithm;
while this degradation is acceptable when other advantages are considered, it is our purpose to minimize it.

Figure 3 plots the resulting average bandwidth (number of different channels required to avoid hidden inter-
ference) versus the number of nodes placed in the square. The different lines show the behavior of the sequential
Saturation Degree algorithm and of the distributed version when every node compares its saturation and its order
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Figure 3: Bandwidth vs Graph Density: comparison among different depths of the distributed algorithm

with neighbors of depth 1 and 3. Here, too, points represent the average and the confidence interval after 100
simulations.

Figure 3 shows that taking into account the status of third-order neighbors (ρ = 3) improves the algorithm’s
behavior at such point to make it almost indistinguishable from the sequential (ρ → ∞) version. Figure 4
further stresses this point by showing how the depth of the distributed algorithm affects its performance. We
can see that no improvements can be achieved with more than three or four orders of neighbors. The graph has
been obtained with 10 simulations per point.

The simulation algorithm operates insteps: at every step, all nodes satisfying the saturation degree condition
up to the given depthρ of neighbors are selected and colored. The total number of passes required to color the
whole graph (which in a truly distributed setting, together withρ, would determine the overall coloring time) is
plotted in figure 5. Each point is the average number of passes in 10 runs of the coloring algorithm.

Figure 6 shows the behavior of the distributed saturation degree algorithm1 during various passes. At the
beginning (a), uncolored nodes are placed randomly on the1 × 1 square. After pass 1 (b), some sparse nodes
are colored (those who prevail within their neighborhood up to depth 3). These nodes act as clustering kernels.
After some more passes, clusters of colored nodes have grown (c) and begin to merge (d).

A case where many nodes get colored in a single pass is, of course, when nodes are too sparse to be connected
(Figure 7): this is the reason why the total number of passes shown in Figure 5 remains so low on a 100-nodes
network.

6 Conclusions

The results shown in Section 5 justify the choice of the Saturation Degree heuristic for approximating the
optimal solution to the Channel Assignment problem.

Our results also show that, although the distributed version of the Saturation Degree algorithm that considers
only first neighbors deteriorates the algorithm performance, a variation where neighbors up to a given distance
are considered before taking a decision achieves results that are comparable to those of other preprocessed
greedy techniques. Moreover, a tradeoff between parallelism and performance can be obtained by tuning the

1Figures 6 and 7 have been grabbed from a visual simulation written as a java applet and available on
http://rtm.science.unitn.it/˜brunato/dsd/ . All other simulations have been written inC++.
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(a) (b)

(c) (d)

Figure 6: The coloring process (1000 nodes, radius.05, ρ = 3) after 0 (a), 1 (b), 37 (c), 170 (d) passes; white
nodes are colored.



Figure 7: Extreme paralellism (100 nodes): after 1 pass most nodes are colored.

parameterρ, which indicates how “deep” a message must travel in the neighborhood. A good performance is
obtained by just settingρ to 3.

The qualitative behavior of the distributed algorithm has also been exploited by means of a graphical simu-
lation program, which has been made publicly available.

Because of space limits, all details and the analysis of the distributed algorithm will be presented in an
extended version of this paper.
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