Decentralized Optimization of Dynamic Bluetooth Scatternets

Sewook Jung
Mario Gerla
Department of Computer Science
University of California, Los Angeles
{sewookj,gerla} @cs.ucla.edu

Abstract

Previous work analytically showed that communication
path length reduction is an efficient way for improving the
performance of Bluetooth scatternets. Maintaining short
communication paths is mainly important in dynamic scat-
ternets with changing traffic flows, mobile nodes and in
the presence of interference, when the network topology
changes continuously. In this work we aim at demonstrating
through simulations that in such dynamic scatternets by pe-
riodically reducing the path length (i.e. hop count) between
the communicating nodes, the overall throughput supported
by the network can be significantly increased and the avail-
able energy of nodes can be consumed more efficiently. For
this purpose, we present a distributed technique for repeat-
edly re-configuring the scatternet topology such that to sup-
port the current traffic flows between all of the communicat-
ing peers with a small number of hops.

1 Introduction

Bluetooth is a short-range wireless network technology
that supports ad hoc networking. In Bluetooth, a maximum
of 8 active nodes form a star-shaped cluster, called piconet.
The cluster head is called master while the other nodes are
its slaves. Piconets interconnected through so-called bridge
nodes form a scatternet. Bridges are nodes participating
in more than one piconet on a time sharing basis. We call
slave &bridges those nodes that have slave role in all of the
piconets they participate in, while nodes having both, slave
and master roles in different piconets are master&bridges.

Bluetooth data communication happens through Asyn-
chronous Connectionless Links (ACL) using time slots of
625us. Data packets may use 1, 3 or 5 slots and they may be
Forward Error Coded (FEC). FEC packets are DM1, DM3
and DMS5, enabling the correction of single-bit errors in
each codeword of 15 bits, while the non-error coded ones
are DH1, DH3 and DHS5 (with the digits indicating the num-

Csaba Kiss Kallo
Mauro Brunato

Dipartimento di Informatica e Telecomunicazioni

Universita di Trento, Trento, Italy
{kkcsaba,brunato} @dit.unitn.it

ber of slots used). The maximum useful payload of these
packets is 136, 968 and 1816 bits for DM and 216, 1464
and 2712 bits for DH packets, respectively. Packets with
bigger payloads can achieve higher throughput in error-free
environments (i.e. with high link quality). However, if a
single bit gets corrupted, the whole packet will have to be
retransmitted. Therefore, when retransmissions occur of-
ten, smaller packets are more efficient. DM packets have
smaller payloads than their DH counterparts, but their con-
tent is error checked, in contrast with DH packets.

The latest Bluetooth Specification 2.0 [4] introduces the
concept of scatternet formation, but it does not define it in
detail. In consequence, numerous scatternet formation al-
gorithms were proposed in the literature. Some earlier pro-
tocols [8, 7] require the nodes to be all in range, which
simplifies node discovery and piconet formation. Other
approaches [11] form tree-shaped scatternets that simplify
routing, but also transform the root node into a bottleneck
and are not robust in the presence of mobility. Several later
protocols [3, 10] form mesh-shaped scatternets without the
above shortcomings and operate well in general scenarios.
However, even if we had an optimal scatternet formation al-
gorithm that produces optimal topologies, in a mobile sce-
nario, some time after the network formation the scatternet
topology would become suboptimal. Mobility, the dynamic
traffic flows and similar factors transform the topology such
that it can not support the current traffic flows with optimal
paths.

In [6] we analytically show that the number of hops
along all of the traffic flows in the scatternet is in close re-
lation with the overall performance in terms of throughput
and power consumption. As the path lengths become longer
the scatternet throughput decreases and a higher amount of
power is consumed. To counterweight this tendency, in [5]
we developed a suite of heuristic algorithms based on local
search techniques that is capable of dynamically adapting
the scatternet topology to the current traffic flows. In that
optimization work we aim at correcting the suboptimal traf-
fic paths that are formed when nodes change their communi-

Proceedings of the Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’'05)

0-7695-2375-7/05 $20.00 © 2005 IEEE

YF]',F.

COMPUTER
SOCIETY

cation peers or migrate across the scatternet. Our algorithms
update the topology of the scatternet making it possible for
the routing algorithms to identify shorter paths between the
communicating peers. This, in turn, results in higher aggre-
gate throughput and reduced power consumption. In that
work we devised an algorithm suite for reducing the hop
count between all communication peers in the scatternet.
In this paper we demonstrate through simulations based on
those algorithms that in such dynamic scatternets by period-
ically reducing the path length (i.e. hop count) between the
communicating nodes, the overall throughput supported by
the network can be significantly increased and the available
energy of nodes can be consumed more efficiently. On this
purpose, we present a distributed technique for repeatedly
re-configuring the scatternet topology such that to support
with a low number of hops the current traffic flows between
all of the communicating peers.

Bluetooth scatternets with dynamic traffic connections
can be found in several application scenarios. Beside the
well-known conference-room scenario, we can foresee the
use of scatternets in interfering industrial environments
with machinery that autonomously or semi-autonomously
accomplishes its tasks. Components of such an automated
environment are static and mobile robots, sensors of various
type and human supervisors. All these components need to
be networked for exchanging the data necessary for accom-
plishing their tasks. Raw data used for the tasks, progress
reports and control data are all examples of information that
need to be exchanged among the components. Also, each
node may have multiple communication peers sustaining
random data traffic sessions with them, sequentially and/or
in parallel.

A data network supporting such a scenario needs to
be adaptive for achieving high performance in terms of
throughput, power consumption and packet delivery delay.
Factors that influence networking predictably in such a sce-
nario, and that in principle can reduce the aggregate system
performance, are mobility, interference and random com-
munication sessions. Bluetooth scatternets are a good can-
didate for supporting such an ad hoc networking scenario
since the technology is robust to interference, given its com-
munication mode based on frequency hopping.

The remaining part of this paper is structured as fol-
lows. In Section 2 we present the way we build the ini-
tial scatternet for our optimization experiments and provide
a scatternet model useful for implementing our technique
and formalize our optimization problem. In Section 3 some
background information are presented, necessary for under-
standing our approach to scatternet optimization. Section 4
presents our approach to dynamic scatternets and describes
our optimization technique while Section 5 presents our ex-
periments.

2 Scatternet Formation and Modeling

In this section, we present how initial scatternets are
formed for our optimizations and provide a scatternet model
that is used by the optimization algorithms. By means of
this model, we also formalize our optimization objectives.

2.1 Scatternet Formation

In order to perform the scatternet optimizations we need
an initial functional scatternet. However, for our work it is
not significant how the initial scatternet is formed, since the
optimizations are based on the idea that the initial network
topology will change in time due to mobility and dynamic
traffic flows. For our work we implemented a scatternet
formation algorithm based on [7, 3], given the good perfor-
mance in reducing the interference of these algorithms.

We form scatternets in two phases. In the first phase,
nodes execute inquiry and inquiry scan with a probability
of 1/4 and 3/4, respectively. As soon as an inquiring node
discovers another node that performs inquiry scan, it pages
it. This way the inquiring node becomes a master of the
other node in the newly formed piconet. A node may reply
to more than one master, thus becoming a slave&bridge be-
tween its masters. However, multiple one-hop connections
between the same two masters are removed later. By con-
tinuing this process, after a while all nodes will be grouped
into piconets and one-hop bridges will provide a first-stage
connectivity among the nodes. At this point the first phase
of the scatternet formation terminates.

The aim of the second phase is to identify master&bridge
nodes between those piconets that could not be connected
with slave&bridge nodes. In this phase slave nodes alter-
nate between inquiry and inquiry scan states while masters
do nothing. If a slave hears the inquiry of another slave
it checks with its master(s) the hop count to that slave. If
the two slaves are not yet connected or they are at least 6
hops away, the slave answers to the inquiry and becomes
a slave&bridge between its old master(s) and the inquiring
slave that now becomes a master&bridge. (Notice that the
minimum distance between the slaves of two two-hop pure
masters is 5, hence the value of 6 above.) In this manner,
if physically possible, also those masters that could not be
connected with a one-hop slave&bridge will be able to com-
municate.

At the end of the above two phases of the scatternet for-
mation algorithm we obtain an initial connected scatternet
on which we can perform our optimization experiments.

2.2 Scatternet Model

For modeling a scatternet we use the following notations.
Let V be the set of nodes in the scatternet, M the set of mas-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’'05)
0-7695-2375-7/05 $20.00 © 2005 IEEE

ters, and S the set of all slaves. Notice that among masters,
pure masters are not elements of S but master&bridge are
elements of S. So, S| M # () if there are master&bridge
nodes in the scatternet. We denote by C the set of traffic con-
nections in the scatternet. (Note that in this work the term
connection refers to one- or multi-hop traffic flows and it
should not be confused with the term link that we use for a
physical Bluetooth radio channel between two nodes.)
The link matrix £ = {l;;} is defined as

oo if 4 is master of j,Vi,j € N;i # j
Y71 0 otherwise.

The link matrix indicates the master-slave connections in
the scatternet. Link matrix properties are explained below.
1) A master k has on its row one entry equal to 1 for each

of its slaves.
N
POLTES
j=1

2) A pure slave k has one entry equal to 1 on its column
corresponding to its master.

N
> =1
i=1

3) A slave&bridge k has on its column exactly one entry
equal to 1 for each of its masters.

N
> ik 22
i=1

4) A master&bridge k node has one entry equal to 1 for
each of its slaves on its row and for each of its masters on
its column.

N N
Dl >1and Y 1y >1
j=1 i=1

5) A free node k — a node not belonging to any piconet — has
all Os on both its row and column.

N N
> Iy =0and Y iy =0
j=1 i=1

The link matrix is subject to the following constraints.
e A piconet must contain one master and up to 7 slaves.
N
Y i <TVkeM (1)
j=1
e If ¢ is master of 7, then j cannot be master of 7.

lj+1i <LVijeNsi#] @

We also define the hop matrix H = {hsq}, which
contains the minimum number of hops on any connection
(s,d) € C. If we denote by R4 the set of all possible paths
between source s and destination d

de = {{kl,...,kz}“{?lzs,kn:d,
lklki+1 + lki+1k1 =LVi=1,...,n— 1}7

then the minimum number of hops between s = k; and
d = k,, can be obtained as

hsa = Knel%%ld |K|7
where | K| represents the number of nodes in the sequence
K € Rgq.
For any pair of nodes (s, d) that do not communicate
(i.e., (s,d) & C) we have hgg = 0.
We define function F' as the total number of hops on all
traffic connections in the scatternet:

F = Z Rsq. 3)

(s,d)eC

Thus, by solving the following minimization problem re-
peatedly, for the different configurations of the scatternet
topology as it changes in time, we manage to keep the
length of communication paths shorter, which leads to the
objective of our optimizations: higher aggregate throughput
and reduced overall power consumption in dynamic scatter-
nets.

P : min F'
H

The above problem is solved by our optimization algorithms
that in our approach are executed by each node in a dis-
tributed fashion, as explained in Section 4.

3 Background

In this section we briefly present the basic ingredients of
our optimizations. For details the reader is referred to [5].

After generating a connected and totally functional scat-
ternet and setting up an initial set of traffic connections, net-
work nodes repeatedly reconfigure the scatternet topology
in their neighborhood to achieve higher performance for the
communication on their connections. In our approach, the
neighborhood reconfiguration is achieved through so-called
moves. A move is a set of modifications on the links and
master-slave relationship of scatternet nodes. Such modifi-
cations are made by link creation, deletion and/or role ex-
change. Due to these modifications, some nodes may be-
come disconnected, then the operations necessary to recon-
nect them to the scatternet are considered as a part of the
same move.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’'05)
0-7695-2375-7/05 $20.00 © 2005 IEEE

O Pure slave
. Pure Master
. Slave&bridge
o Master&bridge

Figure 1. Scatternet snapshot

We identify four kinds of possible moves.

Slave to Slave (SS)— a slave removes its link to its current
master and connects to a different master.

Slave to Master (SM) — a slave removes its link to its
current master and creates a new piconet by paging another
node.

Master to Slave (MS) — a master becomes a pure slave by
assigning all of its slaves to other masters.

Master to Master (MM) — merging two piconets: a mas-
ter overtakes all of the slaves of another master as well as
the old master itself.

As an example, consider the scatternet shown in Fig-
ure 1. If there is a high traffic flow between slaves 3 and
6 then the scatternet can be optimized by removing node 3
from master 2 and assigning it to master 1. These modifica-
tions represent an SS move. It is easy to see that such moves
are simple to perform on the above link matrix based scat-
ternet model, since they only imply the modification of sev-
eral link matrix entries. Also notice that, in order to avoid
the interruption of traffic flows through a link that it is to
be replaced with another, it is possible to set up the new
link first and remove the old link only when its traffic was
rerouted on the new link.

The optimizations are executed periodically. We call the
time between two executions optimization period. Each
node may use a different optimization period. Implicit feed-
back from the scatternet, like the number of recently ar-
rived/left nodes and the gain of previous executions, may be
used for dynamically determining the optimization period.

4 Dynamic Scatternets

Users participating in a Bluetooth scatternet may want
to communicate with multiple peers sequentially. There-
fore, the traffic pattern in a real scatternet in most od the
cases is not static, but is changing dynamically. Further,
node mobility also introduces a high degree of dynamics in
such networks. In this section we present how we address
dynamic traffic flows and mobility in our optimizations and
we describe the used optimization process.

4.1 Dynamic Connections

In our model, connections are assigned a life time during
which we assume that they communicate on the full band-
width that has been allocated to each of them. A connec-
tion is removed as soon as its associated life time expires.
For generating new connections, two methods were consid-
ered. Originally connections were generated according to
the Poissonian distribution. Later, we switched to a sim-
pler connection generation method which simply replaces
the expired connections with new ones. Although the Pois-
sonian method is more realistic, it does not guarantee a con-
stant number of connections during the entire simulation.
Since the number of traffic connections in the scatternet has
a major impact on the aggregate throughput and power con-
sumption, for obtaining a clear view on the performance im-
provement caused by our optimization algorithms, we need
to keep this number constant. Therefore, for the simula-
tions we used the latter approach without loss of generality.
By repeatedly replacing expired traffic flows with new ones
(i.e. with communication sessions between different end-
nodes) we obtain a permanently changing traffic pattern in
the scatternet, similar to the traffic flow dynamics in real ad
hoc networks. This motivates the periodic execution of the
optimization procedure, which reconfigures the scatternet to
support the newly evolved traffic pattern more efficiently.

The details of how dynamic traffic connections are em-
bedded in the optimization process can be found in Section
4.3.

4.2 Mobility

For simulating mobility, we use the random waypoint
model. Initially, we set a random walking speed in a prede-
fined range and a random moving direction for each node.
Then, the direction is periodically changed with an offset in
the range [-10,10] degrees with respect to the original direc-
tion. A node reaching the boundary of the simulation area
is “mirrored” back into the area, that is, the smaller angles
between the moving direction and area boundary before and
after reaching the boundary are equal.

4.3 Optimization Process

For performing the scatternet optimizations we define
the optimization processes presented in Figure 2 and 3. The
entire optimization is controlled from the main optimiza-
tion process (Figure 2) while individual optimizations are
performed by the node process (Figure 3) executed by each
node. In our approach, these two processes control the dy-
namics of the network and execute the scatternet optimiza-
tions in a decentralized manner.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’'05)
0-7695-2375-7/05 $20.00 © 2005 IEEE

1. OPTIMIZATION PROCESS
2. set unit_t, sim_t

5. set N, nr_conns, conn_length
4+ set node positions

s, set optimization type

s. build scatternet topology

7. repeat nr_conns times

5. [generate new connection ¢
9. c.src < rand(N)
0. c.dst + rand(N) # c.src

1. c.expiration_t <— rand(conn_length)
2. | send connection data to c.src NODE PROCESS
1. while ¢ < sim_t do

u. [if crt_nr_conns < nr_conns then

15, generate new connection ¢

6. c.src < rand(N)

1. c.dst + rand(N) # c.src

8. c.expiration_t < t + rand(conn _length)

19, send connect. data to c.src NODE PROCESS
20. t < t+ unitt

2. end OPTIMIZATION PROCESS

Figure 2. Pseudo code of the main process

The purpose of the main optimization process is to man-
age the scatternet data necessary for performing simulations
and to generate traffic connections in a controlled man-
ner. The main optimization process starts out by initial-
izing the minimum time period, unit_f, in which we eval-
uate the performance of the scatternet and the simulation
time, sim_t. Further, the number of network nodes N, the
total number of traffic connections nr_conns and the time
range conn_length that limits the length of connections, are
also initialized. The initial positions of the nodes are set
in line 4 while the used optimization module is specified
in line 5. In line 6 an algorithm is used to form the ini-
tial scatternet topology. An initial set of traffic connections
is generated in lines 7 — 12. The source c.scr and desti-
nation c.dst of each connection is randomly selected from
the N nodes of the network. Each connection is assigned
an expiration time c.expiration_t, which represents the time
instant when the connection will be removed from the net-
work. The newly generated connection data are transmitted
to the source node c.scr which then will set up the connec-
tion in its node process.

In real scenarios, the applicantions running at each de-
vice initiate a connection setup. In contrast to that, in our
approach we generate the connections in a centralized man-
ner to ensure a constant number of connections through the
simulation. This is necessary for the performance evalu-
ation considerations presented earlier in this section, and
it does not jeopardize the decentralized nature of our ap-

. NODE PROCESS

>, get initial data from OPTIMIZATION PROCESS
5. set optimiz_t

4+ while ¢ < sim_t do

s. [if nromy_conns > 0 and\ \

6. (t - init_t) % optimiz_t = O then

7 [~ hop_count < total hop count on my connects.
8. execute appropriate optimization module

9. if new_hop_count < hop_count

10. L execute move

. forall my connections c do

1. [if t > c.expiration_t then

3. B remove ¢

14, if new connection initiated by \ \

15. OPTIMIZATION PROCESS or other node then
i6. [establish connection

7. nr_my_conns < nr_my_conns + 1

8. if nr_my_conns =1 then

19. L init_t—t

2. calculate new direction

a1 move to new position

n |t t+unitt

. end NODE PROCESS

Figure 3. Pseudo code of the node optimiza-
tion process

proach.

The main loop of the optimization process starts in
line 13. The only objective of this loop is to generate
new connections when the current number of connections,
crt_nr_conns, decreases. The newly generated connection
data is transmitted to the appropriate source node, which
then sets up the connection. The current simulation time is
maintained in the variable ¢, which is synchronized at all of
the nodes.

The node process (Figure 3) is run individually by each
node. Each node process receives from the main optimiza-
tion process a set of initialization data that enables the node
to participate in the scatternet. For the nodes that start out
with one or more connections the relevant connection data
is also communicated. These data include also the value of
the init_t variable, which represents the time instant when
the number of connections of this node was changed from 0
to 1. After this centralized initialization each node process
operates autonomously. Thus, the optimization period opti-
miz_t, representing the time between two consecutive opti-
mizations, can be initialized with different values for each
node.

The main loop of the node process starts in line 4. If
the node has at least one connection, it will immediately

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’'05)
0-7695-2375-7/05 $20.00 © 2005 IEEE

perform an optimization since we have ¢ = init_t in the
beginning. To decide which optimization to perform, the
node will match its role against the optimization type com-
municated by the main optimization process. The node will
execute all of the specified optimizations corresponding to
its role. For example, if the SS_MS_MM optimization type
was specified, a master would execute the MS and MM op-
timizations only, while a slave would perform only the SS
one.

After the optimization, the hop count on all of the node’s
connections is counted (new_hop_count) and is compared to
the hop_count before the optimization (measured in line 7).
If the hop count has been reduced by the optimization the
move is made permanent (line 10).

After finishing the optimization, the node removes its ex-
pired links, if any (lines 11 — 13), and then checks for newly
created connections. New connection notifications may ar-
rive directly from the main optimization process if the node
has been selected to be the source. Otherwise, the node will
be a destination in a connection initiated by another node. In
any case, the node will cooperate in setting up a new con-
nection and increase its connection counter, nr_my_conns,
by 1. If this is the only connection of the node then it sets
the initial optimization time, init_t, to the current time in-
stant.

Before moving to the next cycle of the main loop, the
node process updates the position, including the moving di-
rection, of the node.

5 Simulation

In this section we present the simulation environment
that we used for evaluating our approach. Further, we de-
scribe and discuss the experiments that we performed with
this simulator.

5.1 UCBT Simulator

For evaluation purposes, we implemented our optimiza-
tion algorithms in the UCBT ns-2-based Bluetooth simu-
lator [2], which is the only publicly available open source
Bluetooth simulator that supports mesh-shaped scatternets.
We also tried to use the Blueware simulator [9], which adds
scatternet support to the ns-2 based Bluehoc simulator [1] of
IBM. However, Blueware supports tree-shaped scatternets
only and it does not support slave&bridge type of nodes,
thus requiring voluminous modifications for supporting our
algorithms that were designed for mesh-shaped scatternets.

UCBT implements the majority of the protocols in the
Bluetooth protocol stack. The simulator has recently added
support for mesh-shaped scatternets, although only manual
scatternet topology formation is possible at the moment.
Therefore, in order to test our optimization technique on

many scatternets, we also added to UCBT a simple scat-
ternet formation protocol (described in Section 2.1), beside
our optimization algorithms and the support for dynamic
connections. In the following section we present the ex-
periments that we performed with this simulator in order to
evaluate our optimization technique.

5.2 Results

For evaluating our approach we performed experiments
of 300s with scatternets made of 50 nodes scattered on an
area of 22 x 22m?2. For the experiments we considered both
static and dynamic traffic connections, on which data was
transmitted in DHS packets. In both cases we kept the total
number of connections constant at 25. This number of con-
nections implies that, on average, each node is involved in
one traffic connection either as source or destination. How-
ever, there may be nodes participating in multiple connec-
tions, while others are not involved in any of them.

In the case of dynamic connections the connection life-
time was randomly distributed in the range of 10 to 30 sec-
onds. After the expiration of a connection, a new one was
generated on its place to keep the number of connections
constant for the entire simulation, as explained in Section
4.1. Considering an average connection lifetime of 20s, on
25 connections we obtain 375 connection replacements dur-
ing a 300s simulation. These settings enable the observation
of the scatternet performance in its steady state of opera-
tion when nodes continuously change their communication
peers.

We evaluated the scatternet performance with mobile
nodes moving with different walking speeds from 0 to
1.2m/s. With higher speeds the topology changed too fast,
so the optimizations could not have long-lasting effect.

The main simulation results are shown in Figure 4. In
the left and right side of the figure we show the scatternet
performance with static and dynamic connections, respec-
tively. The main metrics that we are interested in are the
overall throughput and power consumption in the scatter-
net. Further, since an increased throughput implies higher
power consumption because of the higher number of trans-
mitted bits, we also use the energy efficiency metric to ex-
press the number of bits transmitted with the unit of energy.

In Figure 4.a, we show the evolution of the aggre-
gate throughput in the scatternet with different optimization
types and compare the results to the non-optimized scatter-
net throughput. In the throughput calculations we consid-
ered those packets only that reached the destination. Cor-
rupted and lost packets were not considered. As shown in
the figure, our optimizations in both static and dynamic con-
nections improved the overall throughput significantly with
respect to the non-optimized case. Also, in both cases the
negative impact of mobility on the throughput shows up im-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’'05)
0-7695-2375-7/05 $20.00 © 2005 IEEE

a) Throughput

Static connection

Dynamic connection

T T T

1 1 1

0.3 0.6 0.9 1.2

Speed (m/s)

Dynamic connection

T T

no opt

N 4

sm_ms oo
sm_ms_mm

L L L

0.3 0.6 0.9 1.2

Speed (m/s)

Dynamic connection

700 . . . 700
no opt
ss_ms -------
sm_ms
sm_ms_mm
600 [\ 1
2 500 |] 2
g)
= =
s s
2 a
£ £
=) 5
3 3
s L N N | 3
£ 400 | IS
300 [
200 L L L 200
0 0.3 0.6 0.9 1.2 0
Speed (m/s)
b) Power consumption
Static connection
T T T
no opt
640 - SS_MS ------- bl 640 |
sm_ms -
sm_ms_mm
620 [1 620 -
600 -
E E 580 -
o]
H H
s 5
o o
560 -
540 | 4 540 £
520 | 4 520
500 L L L 500
0 0.3 0.6 0.9 1.2 0
Speed (m/s)
c) Energy efficiency
Static connection
T T T
5 s
E £
=2 =
3 3
2 2
3 =
2 2
2 2
4] 2
E £
o o
02 1 02
0 L L L 0
0 0.3 0.6 0.9 1.2 0

T T

no opt

L L L

Speed (m/s)

0.3 0.6 0.9 1.2
Speed (m/s)

Figure 4. Disseminated simulation results with static (left) and dynamic (right) traffic flows: a)

Throughput; b) Power

mediately as soon as we set

0.3m/s for the nodes. When the nodes do not move (i.e. at
Om/s) the optimizations can not provide such a big through-

consumption; c) Energy efficiency

a very low moving speed of

Proceedings of the Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’'05)

0-7695-2375-7/05 $20.00 © 2005 IEEE

put improvement like later on. This shows that our opti-
mizations make sense in dynamic scenarios. However, if
the moving speed increases, even at running speeds the im-

YF]',F.

COMPUTER
SOCIETY

Throughput(kbps)

0 200 400 600 800 1000 1200 1400
Time(sec)

Figure 5. Throughput

pact of the optimizations becomes insignificant, since the
optimized topology changes before the communication can
take advantage of it.

Mobility has its individual impact on the scatternet topol-
ogy, therefore the network is not exclusively shaped by our
optimization algorithms. Occasionally this can lead to situ-
ations where the optimized case produces somewhat worse
results than the non-optimized one. This may happen when
the optimization algorithms can not provide a significant
hop count reduction and mobility reconfigures the network
topology very unfavorably with respect to the current traffic
connections.

The dynamic traffic flows have not as high impact on the
throughput as mobility. However, it can be seen in the fig-
ure that the overall throughput in the static case is generally
higher and it decreases more slowly. The best optimization
was produced by the most complex optimization type used,
SM_MS_MM, because this optimization takes advantage of
three-move types to find a better topology instead of the
two-move types used by the other two optimizations.

The evolution of the power consumption is presented
in Figure 4.b. The power consumption is calculated at
the lower layers (i.e. Baseband), therefore it includes also
the power consumed for transmitting lost packets. There-
fore, packet retransmissions have a significant impact on
the power consumption. Since static connections last for
the entire duration of the simulations (dynamic connections
last 10 — 30s only) there will be more retransmissions in the
static case because after the termination of a dynamic con-
nection no retransmissions are done for the lost packets of
that connection. This is one of the reasons why the power
consumption in the case of dynamic connections is signif-
icantly lower than with static connections. Another reason
is that the higher throughput obtained with the static con-
nections consumes more power as well. This is confirmed

650 T T T T T T

350 L L L L L L
0 200 400 600 800 1000 1200 1400

Time(sec)

Figure 6. Power consumption

Efficiency(kbit/mJ)

0 200 400 600 800 1000 1200 1400
Time(sec)

Figure 7. Energy efficiency

also by the different optimizations. For instance, while the
SM_MS_MM optimization produced the highest through-
put improvement, it also implied the highest consumption
of energy.

The impact of mobility can be seen also on the power
consumption. In both cases the power consumption in-
creases with the moving speed of the nodes.

As mentioned above, the optimization types that pro-
duce bigger throughput improvements imply higher energy
consumption as well. To demonstrate that it is still worth
performing these optimizations, we define a metric that we
call energy efficiency as the ratio of the throughput to the
power consumption. This metric expresses the amount of
bits transmitted with the unit of energy. We show the en-
ergy efficiency of the simulated scatternets in Figure 4.c. It
can be seen in the figure that the energy efficiency decreases
with the the moving speed and that scatternets with dynamic
connections use the energy less efficiently than those with

Proceedings of the Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’'05)

0-7695-2375-7/05 $20.00 © 2005 IEEE

YF]',F.

COMPUTER
SOCIETY

static connections. However, using our optimization algo-
rithms, we can still obtain an improvement of 30 — 40% on
this metric.

In Figures 5-7 we present a sample simulation run with
the SS_MS optimization in case of dynamic connections
with the node moving speed of 0.3m/s. The graphs show the
evolution of the throughput, power consumption and energy
efficiency with and without optimization. It can be seen that
the optimizations provide significant improvements on all
these metrics.

6 Conclusion

In this paper we presented a decentralized optimization
technique for dynamic Bluetooth scatternets. Our optimiza-
tions are based on an algorithm suite capable of reconfig-
uring the scatternet topology in order to support the current
traffic flows between the nodes with shorter communica-
tion paths. Shorter paths imply that packets occupy less
bandwidth and consume less energy, because they are re-
transmitted by a lower number of nodes. Thus, a signifi-
cant improvement on the overall scatternet throughput and
power consumption can be achieved through hop count re-
duction. Our simulations show that using such optimiza-
tions the available energy of the nodes can be consumed
about 40% more efficiently than without the optimizations.

Although our results are promising, we still need to per-
form more extensive simulations on bigger scatternets and
with higher moving speeds. Testbed experiments should
also be performed in order to verify our approach in real
environments as well. This would help us to obtain a more
accurate understanding also on the connection setup delays
and power consumption at higher layers. Finally, in the
future we also propose to improve our optimization algo-
rithms to support high mobility.

Acknowledgement

This work was partially funded by the MICRO/STMicro-
electronics award number 03-032a and by the Autonomous
Province of Trento through the WILMA project. We also
thank Qihe Wang for his help with using the UCBT simula-
tor.

References

[1] Bluehoc simulator. http://oss.software.ibm.com/bluehoc/,
Last accessed: December 2004.

[2] UCBT simulator. https://www.ececs.uc.edu/ cdmc/ucbt/,
Last accessed: December 2004.

[3] S. Basagni and C. Petrioli. A scatternet formation protocol
for ad hoc networks of Bluetooth devices. In IEEE Vehicular
Technology Conference (VIC), pages 424-428, 2002.

(4]
(5]

(6]

(7]

(8]

(9]

(10]

(11]

Proceedings of the Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’'05)
0-7695-2375-7/05 $20.00 © 2005 IEEE

Bluetooth SIG. Bluetooth Specification v2.0. 2004.

C. Kiss Kall, C.-F. Chiasserini, R. Battiti, and M. Aj-
mone Marsan. Reducing the number of hops between com-
munication peers in a Bluetooth scatternet. In /EEE Wireless
Communications and Networking Conference (WCNC’04),
Atlanta, GA, USA, March 2004.

C. Kiss Kall6, S. Jung, L.-J. Chen, M. Brunato, and
M. Gerla. Throughput, energy and path length tradeoffs in
Bluetooth scatternets. In IEEE International Conference on
Communications (ICC’05), Seoul, Korea, May 2005.

C. Law, A. K. Mehta, and K.-Y. Siu. A new Bluetooth scat-
ternet formation protocol. Mobile Networks and Applica-
tions, 8:485-498, October 2003.

T. Salonidis, P. Bhagwat, L. Tassiulas, and R. LaMaire. Dis-
tributed topology construction of Bluetooth personal area
networks. In /IEEE INFOCOM, Anchorage, April 2001.

G. Tan. Blueware: Bluetooth simulator for ns. Technical
Report MIT-LCS-TR-866, MIT, Cambridge, MA, USA, Oc-
tober 2002.

Z. Wang, R. J. Thomas, and Z. Haas. Bluenet — a new scat-
ternet formation scheme. In 35th Annual Hawaii Interna-
tional Conference on System Sciences, Big Island, Hawaii,
2002.

G. V. Zaruba, S. Basagni, and I. Chlamtac. Bluetrees - scat-
ternet formation to enable Bluetooth-based ad hoc networks.
In ICC 2001, volume 99, pages 273—7, 2001.

YF]',F.

COMPUTER
SOCIETY

