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Abstract— User’s location in a wireless mobile environment is
an important information item. Knowledge of the position can
be added to the existing user profile in order to provide efficient
services.

We propose a web-based recommender system that auto-
matically adapts relevance parameters of the recommendable
items (in our case web links) through implicit collaboration with
users, taking into account their position both during parameter
estimation and during the list generation phase. After an initial
tuning phase, a specific URL will be recommended to a user in
a given location in a way that considers where and how often it
was accessed by the previous users. A new middleware layer, the
location broker, associates past user positions and selected links.
These data are used to develop a spatial usage pattern for each
site.

We describe a data structure that permits scalability and ana-
lyze the empirical computational complexity both on a simulated
scenario and in a real-world context in our province1.

I. INTRODUCTION

Mobile and wireless applications need to be developed in a
user-centric way. Reduction of the cognitive burden required
to make the system provide the appropriate information is
mandatory, because the average user is not willing to spend
time in tuning the system, selecting information from a small
output device and entering large amounts of data through slow
input interfaces such as a thumb keyboard or a graffiti stylus.
Adaptive context-aware systems have to develop models of the
relevance of different resources (e.g. URLs) for a specific user,
and to filter the information so that only a small selection of
relevant and limited resources is presented.

Of course, location is a critical component of a mobile
user’s context. A recommender system, taking into account
location among other data, and providing a few links that
are considered most interesting to the user in a particular
context, will provide an agile and flexible environment for a
mobile user. This system can be an ideal complement to meth-
ods providing dynamic customization of content for wireless
clients [1], once the relevant links are selected. Location-aware
mobile commerce systems are considered for example in [2],
location-aware shopping assistance is described in [3].

Mapping physical locations to Internet URIs was proposed,
among others, in the HP’s CoolTown project2, where relevant
locations are equipped with short-range infrared emitters that

1This research is partially supported by the Province of Trento (Italy) in
the framework of the WILMA (Wireless Internet and Location Management)
project (http://www.wilmaproject.org/).

2http://cooltown.hp.com/

periodically broadcast their related URI to listening mobile
devices. The context of pervasive computing in a wireless
Internet framework is also explored by our WILMA Project3

(Wireless Internet and Location Management) at the University
of Trento, where the PILGRIM location-broker and mobility-
aware recommender system is being developed.

This paper deals with scalability issues to make the system
available for a global use in the Internet, where the number
of resources in the system database may easily grow to reach
millions of items.

The rest of the paper is organized as follows. In Section II a
brief survey of recommender systems is reported, then a model
for describing the preferences of mobile users is presented,
together with an overview of the architecture of the PILGRIM
(Personal Item Locator and General Recommendation Index
Manager) system. In Section III the ER-tree, a spatial index-
ing structure tailored for the requirements of the PILGRIM
system, is introduced and motivated. Section IV is devoted to
experimental evaluation of the ER-tree structure in simulated
random environments. Finally, in Section V conclusions are
drawn.

II. A LOCATION-AWARE MODEL OF USER PREFERENCES

FOR WEB SITES

A typical recommender system [4] answers the question:
“What are the k more interesting items for the current user?”

For this purpose, a recommender system maintains a finite
list of users, identified by unique IDs. Each user is associated
to some profile information. A list of items, for instance web
links, is also maintained along with relevant properties. The
term current user will identify the user whom the recommen-
dation list is being built for.

Techniques of collaborative filtering can be introduced
where user profiles and evaluations are stored and used to
automatically build a list of links specifically tailored for a
particular user. Many recommender systems, such as Tapestry
[5] or Fab [6], require users to express their evaluation of
the visited item, while others can gather implicit information.
For example, the GroupLens [7] USENET news recommender
system uses reading times as a user interest measure. PHOAKS
[8] uses data mining techniques to extract URLs or other in-
formation pointers from USENET postings or from bookmark
collections.

3http://www.wilmaproject.org/
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Fig. 1. Architecture of the PILGRIM system.

The PILGRIM recommender system [9] generates recom-
mendation lists based on the user location and on web site
information gathered from previous usages of the same sites
by other people. For completeness we briefly summarize the
PILGRIM approach in the current section.

A location-aware recommender system should be able to
produce a top-k items list for a given user whose location is
known with a precision ranging from a few meters to some
hundreds of meters. Position estimates can be obtained by
means of many systems, such as GPS (outdoor only, with a
precision of about 10m), active badges [10] (precisions ranging
from few centimeters to room size), or by exploiting the radio
propagation properties of the wireless networking medium
[11], [12] (with precisions of few meters in the Wi-Fi case).
The latter solution is of particular interest because it does
not need additional infrastructure, and the normal networking
equipment is used both for communication and for location
detection.

A mobile user is likely to handle the PDA only for the time
that is strictly needed to find an interesting link and follow
it and may not be willing to fumble with the device in order
to give an explicit evaluation of the chosen item. So, only
implicit information about the choice can be gathered, e.g.,
whether the recommended item was clicked or not, how long
it remained on screen, what was the subsequent action of the
user (she abandoned the site, or she visited also linked pages).
In a mobile environment, however, another crucial piece of
information is the user’s position when she clicked the link.

The purpose of the PILGRIM system is to integrate in-
formation about the current user location into traditional
recommender systems in an adaptive way.

A. Architecture of the system

The PILGRIM system is structured as an automated learn-
ing component to develop models relating resources to their
spatial usage pattern by mining the historic database that
records past accesses to sites.

The basic building blocks of the system are shown in Fig-
ure 1. On the client side, possibly a PDA with low computing
speed, two components are active. The first, the normal off-the-
shelf Internet browser, is the only component appearing on the
screen during normal operation. The second component, the
location discovery application, is a small process that enables
the PDA to obtain positioning data and to send them to the

server; for instance, radio signal strength from surrounding
Wi-Fi access points or raw GPS data. This module is mostly
transparent to the user; it will only display a startup dialog for
initialization purposes, for example to change privacy settings.
The two components are independent: the system could take
advantage from an integrated solution, but this may not be
applicable to all systems. For instance, many lightweight
browsers in use on PDAs do not allow component technologies
such as Java or ActiveX, and even scripting languages may not
be supported.

The location discovery application running on the client
sends position updates to the server-side location broker. Its
first component, the user tracker, uses the location data trans-
mitted by the client to compute an estimate of the user position
(this may be done by the PDA itself, if it has enough spare
CPU). The second component, the recommendation engine,
maintains the access database, containing data about what links
have been followed, and from what physical position. These
data, together with the user’s location provided by the user
tracker module, are employed to generate a list of possibly
interesting links.

B. Collaborative filtering and ranking procedure

Once the database is populated with past user accesses to
items, its data can be used to build a model of user preference.
Thus, the chosen approach considerably differs from other
systems such as Websigns, where the database is updated and
maintained by hand, and is more similar to the collaborative
filtering paradigm, where the quality of recommendations
shapes up as long as users interact with the system.

The models relating resources (URLs) and usage patterns
in physical space are expressed in terms of a metric based on
inertial ellipsoids. The basic motivation is that of obtaining a
smooth metric, where the spatial distribution of interest for a
specific URL may have a preferred orientation in space.

The recommendation engine works on a set of s links, each
identified by a unique id l = 1, . . . , s. Suppose that site l
has been visited Nl times (possibly by different users), and
let the set of points P l

i = (xl
i, y

l
i), 1 ≤ i ≤ Nl, represent

the Nl physical locations where link l was clicked. A locality
measure of link l can be obtained by calculating the inertial
ellipsoid of its points. Points can be associated to a “mass”
that is related to the level of trust of the received feedback
or to the length of time that a user spent on a web page. In
the current version, for simplicity, all points are modeled as
unit masses. The inertial ellipsoid has the following quadratic
equation:
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where x̄l and ȳl are the coordinates of the center of mass, while
matrix Ml is the second-order moment matrix (the covariance
matrix):
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Fig. 2. Two sample sites with different access metrics.
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Nl
∑

i=1

(yl
i − ȳl)
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Because the matrix is positive definite, the matrix M−1

l

defines a distance between points P = (xP , yP ) and Q =
(xQ, yQ):

dl(P, Q) =
(

xP − xQ yP − yQ

)

M−1

l

(

xP − xQ

yP − yQ

)

.

Let P̄l = (x̄l, ȳl) be the center of mass for site l. The
distance dl can be used as a measure of interest of site l for a
user located at position P = (x, y). The preference for a site
l at point P is defined as:

rl(P ) =
1

dl(P, P̄l)
,

so that site l is preferable to site l′ at point P if rl(P ) > rl′ (P )
(preference is rl(P ) = +∞ on the center of mass).

The set of preference functions (rl)1≤l≤s induces at every
point P a permutation πP = (πP

1 , . . . , πP
s ) of the site IDs

having the property

∀i ∈ {1, . . . , s} rπP

i

(P ) ≥ rπP

i+1
(P ).

The permutation is uniquely defined modulo equalities of the
preference function; in this case, any tie-breaking rule, such
as ID order, properly defines a unique permutation:

∀i ∈ {1, . . . , s} rπP

i

(P ) = rπP

i+1
(P ) ⇒ πP

i < πP
i+1.

The advantages of the ellipsoid metric with respect to
simpler techniques can be understood by referring to Figure 2.
Consider two candidate links. The first contains informa-
tion about the status of a highway, and is mostly used by
people driving along that road. Almost all accesses to the
site have been performed along the highway. Because of the
uni-dimensionality of the road, there is a strong correlation
between the x and y coordinates of the points (the small
black squares in the figure), and the resulting ellipse, with
the solid outline, has high eccentricity. Its preference function,
rhighway(P ) decreases slowly when moving from the average
access position along the highway, while it drops very rapidly
when moving outside the road. On the other hand, a restaurant
placed near the highway, but not directly accessible, has a
less eccentric region of interest (the small black circles).

The resulting ellipse, with a dashed outline, is less eccentric,
even though it still shows a preferential direction, due to the
physical visibility of the building, or to the terrain morphology.
The preference function, rrestaurant(P ), decays more regularly
with distance from the center. Note that the center of the
ellipse does not coincide with the restaurant. In fact, no a
priori information is built in the system, and the geographical
relevance of a link is gradually inferred through the ellipsoid
metric: every time a user clicks a link, the recommendation
engine updates the database; inertial ellipsoids are periodically
updated on the basis of the database records.

III. THE ER-TREE: A SCALABLE IMPLEMENTATION

The PILGRIM recommender system relies on a site
database recording the site name, URL, access statistics and
preference ellipsoid. To efficiently satisfy queries about site
location, some spatial indexes must be implemented. The
number of sites is bound to grow rapidly as the system
develops and learns, and the basic algorithm based on a
sequential scan of all items in order to find the nearest neigh-
bors rapidly becomes impractical. Smarter data structures,
specifically tailored for speeding up spatial queries need to
be implemented.

A wide range of spatial data structures has been proposed in
the literature [13]. In this paper a new data structure, the ER-
tree (Elliptic R-tree), is introduced to handle spatial queries
when objects have different metrics.

The proposed structure is based on the R-tree [14]. The
two-dimensional R-tree is a hierarchy of nested rectangles. At
each node, the corresponding rectangle is the bounding box of
all enclosed objects. Leaves are the objects (or pointers to the
objects) in the database. Every node is required to have more
than m and less than M sons (M/2 ≤ m ≤ M ); only the
root is allowed to have as few as two children. Algorithms
that build the R-tree structure try to keep the tree in a
good condition for queries by minimizing interval overlapping,
which is in principle unavoidable. Nearest-neighbor queries
can take advantage from branch-and-bound techniques. In fact,
distance from a bounding box is a lower bound for distances
from all enclosed objects. The leaves of the ER-tree are the
centroids of the ellipses, having pointwise extension.

Euclidean distance of a point from a bounding box is not a
lower bound for the actual distances from the enclosed objects.
In fact, in the aforementioned site model every site has a
different elliptical metric. To make the lower bound work,
every time a bounding box is calculated from the enclosed
objects, a corresponding elliptical metric must be applied. The
overall metric for a bounding box is calculated by translating
all ellipsoids to to the origin, and by building a “bounding
ellipse” such that its major axis corresponds with the largest
major axis of the ellipses, while the minor axis is calibrated
in order to contain all ellipses. Since every ellipse represents
the unit-distance locus for the corresponding metric, it is
straightforward that the overall metric is a lower bound for all
enclosed metrics. Every node in the tree contains, as additional
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Fig. 3. An ER-tree node: bounding boxes b to h are directly contained in
box a, and are therefore its children.

TABLE I

COMPARISON BETWEEN LINEAR ARRAY AND ER-TREE SEARCH FOR A

100000-SITE SAMPLE

R-tree Array Ratio % Differ.
Time (ms) 5.00 42.00 0.119 88.1%
Distance evals 9672.8 100000 0.097 90.3%
Memory (bytes) 22073344 21600000 1.022 2.2%

information, the overall metric corresponding to its bounding
box.

Figure 3 shows part of an ER-tree by its actual spatial
structure (its actual transposition to a tree structure should be
evident). Node a is shown with its corresponding bounding
box (the dashed rectangle) and its subnodes (b to h). All
subnodes, with the exception of d and g, contain objects, i.e.
leaves of the ER-tree (black bullets); nodes d and g contain
lower-level nodes, which will be further decomposed. The
thick line surrounding the bounding box of a is the locus
of points having unit distance from the rectangle, and is
determined by the overall metric of the node.

IV. EXPERIMENTAL EVALUATION

Performance of algorithms and data structures has been
evaluated with respect to k-nearest-neighbor queries. Some
tests have been performed on randomly-generated sites. On
a square one-kilometer area a certain number N (100 to
100000) of sites are uniformly spread and their access patterns
(their area of interest) are modeled by ellipses whose major
axes follow a Gaussian distribution with given average µ and
standard deviation σ. The inclination of the major axis and the
eccentricity are uniformly distributed, the first in the interval
[−π/2, π/2), the second in [emin, 1], where emin is the smallest
admitted eccentricity. We used a distribution of N = 100 sites
with emin = 0.1 and µ = σ = 100m.

The ER-tree depends on one parameter M , the node maxi-
mum degree or “node size”, while the corresponding minimum
for non-root nodes has been set to m = bM/2c. The nearest
neighbors search algorithm depends on the number k of
neighbors to be returned.

Figure 4 shows the performance comparison between a
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Fig. 4. Comparison between linear array and ER-tree search for different
item populations and different node sizes.

linear search in an array of sites and the branch-and-bound
search on the ER-tree for different node sizes. Along the x
axis the number of sites is reported; the y axis represents
the average performance improvement obtained by the ER-
tree search. Performance is tested by counting the number
of distance evaluations. In fact, from preliminary experiments
such as that shown in Table I we see that counting the
number of evaluations gives a good measure of the actual
time improvement, while time itself, when tested on a time-
shared machine, can suffer from many external influences.
Parameters of the test are k = 10, µ = 100m, emin = .1,
σ = 100m. The different lines in the graph show the behavior
for different values of M , from 10 to 200. Every point in the
graph shows the average of 100 tests, and error bars indicate
the 95% confidence interval.

Note that for small node sizes the advantage over sequential
search is almost negligible (if N ≤ M all nodes must be
visited anyway). Small node sizes become unpractical for a
large number of nodes, probably because the depth of the tree
grows considerably, and a long downwards exploration must
be undertaken before arriving to the leaves. Search speedups
by more than 90% are obtained as the number of items grows
to N = 100000.

A second set of experiments has been performed in order
to evaluate the performance of the system in a more realistic
context. The population structure of the Trentino region has
been used in order to generate a more structured pattern of
web sites. Trentino is a mountain region with most people
living within short distance from the bottom of the valleys
and concentrated near the main towns. The system is likely
to be used also by people moving along roads, or by tourists
spread along the whole territory. A simulated usage test with
N = 100 web sites resulted in the pattern shown in Figure 5.
Most ellipsoids are concentrated in towns, but a few are of
wide interest: they may correspond to a famous resource or to
a mountain visible from a large distance.

Figure 6 shows some preliminary comparisons between
linear scans and ER-Trees for the simulated environment.
Every point represents the average of 100 ten-nearest-neighbor
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Fig. 5. Ellipsoids of interest for localized web sites in a realistic setting,
the Trentino region. Small dots represent distribution of single users; while
many are concentrated in towns and valleys, some are spread throughout the
territory.
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Fig. 6. Performance ratio of the R-tree data structure versus linear scan for
different node sizes and different numbers of indexed sites.

searches, and the error bars show the 95% confidence interval
for the mean. Note that the improvement with respect to linear
scan is comparable to that obtained on the random distribution
in Figure 4.

V. DISCUSSION AND CONCLUSIONS

We proposed a location-aware recommender system that
is integrated with a basic browser and that filters resources
(URLs) for a specific user. The filter is adaptive and takes
into account both the current user location and models relating
resources to geographic locations built by mining the previous
usage history. The main advantage with respect to existing
systems lies in the automated creation of models (without an
explicit design to couple locations and URLs), the flexibility
and the independence from ad-hoc systems implemented by
resource owners.

To allow the degree of scalability demanded by a large-
scale implementation, a hierarchical data structure has been
proposed and analyzed. The results on a model that con-
siders the population and building distribution of our region
(Trentino) show that performance of the ER-tree structure does
not degrade when implemented on a more structured pattern

of usage. Techniques to select the appropriate privacy level
can also be easily introduced in the system.

The system is currently under development as a set of
independent modules (shown in Figure 1) interacting via
TCP/IP using XML/SOAP queries. User interaction is man-
aged by CGI modules invoked by the usual HTTP mechanism.
The final goal is to develop a distributed implementation
where local databases contain information about items close
to the server location, and a peer-to-peer content distribution
scheme enables synchronization among all local servers. To
this purpose, a distributed version of the ER-Tree structure
and a synchronization protocol are being studied.

A future issue on the project agenda is the integration of the
location broker with traditional recommender systems. This
will permit specialized implementations (like for example a
system dedicated to gourmet restaurants, to tourists interested
in art and monuments, to mobile shopping, etc.).
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[6] M. Balabanovič and Y. Shoham, “Fab: Content-based, collaborative
recommendation,” Communications of the ACM, vol. 40, no. 3, pp.
66–72, Mar. 1997. [Online]. Available: http://www.acm.org/

[7] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon,
and J. Riedl, “GroupLens: Applying collaborative filtering to USENET
news,” Communications of the ACM, vol. 40, no. 3, pp. 77–87, Mar.
1997. [Online]. Available: http://www.acm.org/

[8] L. Terveen, W. Hill, B. Amento, D. McDonald, and J. Creter,
“PHOAKS: a system for sharing recommendations,” Communications
of the ACM, vol. 40, no. 3, pp. 59–62, Mar. 1997. [Online]. Available:
http://www.acm.org/

[9] M. Brunato and R. Battiti, “PILGRIM: A location broker and mobility-
aware recommendation system,” in Proceedings of IEEE PerCom2003,
Fort Worth, TX (USA), Mar. 2003.

[10] R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The active badge
location system,” ACM Transaction on Information Systems, vol. 10,
no. 1, pp. 91–102, Jan. 1992.

[11] P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-based
user location and tracking system,” in Proceedings of IEEE INFOCOM
2000, Mar. 2000, pp. 775–784.

[12] R. Battiti, M. Brunato, and A. Villani, “Statistical learning theory for
location fingerprinting in wireless LANs,” Dipartimento di Informatica e
Telecomunicazioni, Università di Trento, Tech. Rep. DIT-02-0086, Oct.
2002. [Online]. Available: http://eprints.biblio.unitn.it/archive/00000238/

[13] V. Gaede and O. Günther, “Multidimensional access methods,”
Institut für Wirtschaftsinformatik, Humboldt-Universität zu Berlin,
Tech. Rep., 1996. [Online]. Available: http://citeseer.nj.nec.com/
gaede97multidimensional.html

[14] A. Guttman, “R-tree: A dynamic index structure for spatial searching,”
in Proceedings of ACM SIGMOD, 1984.


