
RASH: A Self-adaptive Random Search Method

Mauro Brunato, Roberto Battiti

Department of Computer Science and Telecommunications,

Università di Trento, via Sommarive 14, I-38050 Trento — Italy.

E-mail: (battiti|brunato)@dit.unitn.it

Abstract

This paper presents an adaptive stochastic search algorithm for the optimization of func-
tions of continuous variables where the only hypothesis is the pointwise computability of the
function.

The main design criterion of the proposed scheme consists of the adaptation of a search
region by an affine transformation which takes into account the local knowledge derived from
trial points generated with uniform probability. Heuristic adaptation of the step size and
direction allows the largest possible movement per function evaluation. Our results show that
the proposed technique is, in spite of its simplicity, a promising building block to consider
for the development of more complex optimization algorithms, particularly in those cases
where the objective function evaluation is expensive.

Keywords — Stochastic local search, Function optimization, Reactive search.

1 Introduction

Significant effort has been spent during the last decades to the problem of finding the global
minimum of a function of continuous variables [7]. Indeed, many real-world problems can be
modeled as functions of real-valued parameters; however, such models are not always analytical,
and the evaluation of objective functions on a given set of parameter values may involve costly
physical experiments. It is therefore important to locate optimal points with as few function
evaluations as possible.

While no method can guarantee a desired accuracy within predictable computing times for
all functions [11], most real-world problems are characterized by a rich structure underlying
candidate solutions, and local search techniques take advantage of this fact by assuming that a
better solution can usually be found in the neighborhood of the current tentative solution: after
starting from an initial configuration of the independent variables x

(0), a search trajectory, where
point x

(t+1) is chosen in the neighborhood of point x
(t), is generated. Under suitable conditions,

the trajectory will converge to a local minimizer. The set of initial points for trajectories that
converge to the same local minimizer is called the basin of attraction of the minimizer.

Many recent global optimization techniques deal with ways to use a local search technique
without being trapped by local minimizers, notably the Simulated Annealing technique based
on Markov chains, see for example [5] and [8].

Current research considers tailoring the appropriate set of basic algorithmic building blocks
to a specific optimization instance, a process that implies an expensive learning phase by the
user and that can be partially automated by machine learning techniques, as it is advocated
in the reactive search framework [2]1. Each component demands a careful design and a sound
statistical analysis as an isolated part before considering integration in more complex schemes.

1
see also the web site www.reactive-search.org.

1

Variable Meaning
f Function to minimize
x Initial point
b1, . . . , bd Vectors defining search region R around x

ρe, ρr Box expansion and reduction factors
t Iteration counter
P Transormation matrix
x, ∆ Current position, current displacement

1. function AffineShaker (f , x, (bj), ρe, ρr)

2. t ← 0;
3. repeat

4. ∆ ←
P

j Rand(−1, 1)bj ;

5. if f(x+ ∆) < f(x)

6. x ← x + ∆;

7. P ← I + (ρe − 1)
∆∆T

‖ ∆ ‖2
;

8. else if f(x- ∆) < f(x)

9. x ← x - ∆;

10. P ← I + (ρe − 1)
∆∆T

‖ ∆ ‖2
;

11. else

12. P ← I + (ρc − 1)
∆∆T

‖ ∆ ‖2
;

13. ∀j bj ← P bj ;
14. t ← t+1
15. until convergence criterion;
16. return x;

C’

A

B

C

A’
B’

Figure 1: Affine Shaker algorithm (left) and geometry (right).

In this paper we describe the “Reactive Affine Shaker” (RASH) method, based on the stochastic
(or random) local search framework [9]. The seminal idea of the scheme was presented for a
specific application in neural computation [1], while a complete description can be found in [3].
The method has been implemented in the C++ language, and its applicability is demonstrated
on a widely used set of benchmark functions.

2 The Reactive Affine Shaker Algorithm

The Reactive Affine Shaker algorithm (RASH for short) is an adaptive random search algorithm
based on function evaluations alone. Let f : D → R be the function to be minimized, and let
D ⊆ R

d be its d-dimensional domain.
Figure 1 shows the behavior of the algorithm, both by presenting its pseudocode and by

some sample search trajectories. The algorithm starts by choosing an initial, possibly random,
point x in the configuration space; this point is surrounded by an initial search region R (grey
boxes A and A’) where the next point along the trajectory is searched for. In order to keep a
low computation overhead, the search region is identified by d vectors, b1, . . . , bd ∈ R

d which
define a “box” around the point x:

R =

{

x +
d

∑

i=1

αibi, α1, . . . , αd ∈ [−1, 1]

}

. (1)

The search occurs by generating points in a stochastic manner with uniform probability in
the search region. To speed up operation, a single displacement ∆ from the current point is
generated (line 4) and the two points x

(t) + ∆ (lines 5–7) and x
(t) − ∆ (lines 8–10), specular

with respect to x
(t), are considered in the region for evaluation (double shot). If the value of f

at one of the two points is better than the value at x
(t), then the better point shall be chosen

as the new point in the trajectory, x
(t+1) (lines 6, 9); otherwise, x

(t+1) = x
(t).

The main feature of the RASH optimization technique, however, is its ability to modify the
size and the shape of the search region R according to the local function landscape, for example
when the search trajectory is moving down a narrow “valley”, such as in point C’ of Figure 1.
Therefore, while the search area is obviously enlarged if the search is successful and reduced if

2

Table 1: Experimental results on test functions.
f d Success Evals CPU time ∆Min

Goldstein-Price 2 76 476 0.121 2.85 · 10−3

Hartmann d,4
3 96 2227 1.73 4.26 · 10−4

6 63 257 0.995 2.24 · 10−3

Shekel 4,5 4 35 170 0.338 0.261
Shekel 4,7 4 31 306 0.542 0.370
Shekel 4,10 4 30 164 0.362 0.438

Zakharov

10 100 2473 13.9 9.46 · 10−7

20 100 12259 464 9.86 · 10−7

50 100 83605 42099 9.95 · 10−7

100 100 260358 1843765 9.86 · 10−7

Rosenbrock
3 100 3595 2.06 7.98 · 10−7

4 65 12085 11.0 9.33 · 10−5

5 1 15122 — 1.54 · 10−3

unsuccessful, it is also stretched along the successful direction (leading, e.g., to the diamond-
shaped areas around B and C’), or shortened if neither evaluation leads to an improvement.
This is achieved by applying an affine transformation to the vectors defining the area (line 13)
whose matrix is determined according to the outcome of the last evaluation (lines 7 and 10 in
case of success, line 12 if the current displacement does not lead to an improvement).

By design, RASH is an aggressive local minima searcher: it aims at converging rapidly to the
local minimizer corresponding to the attraction basin where the initial point falls. The scheme
described above is devised in order to maintain the search region size as large as possible while
still ensuring that the probability of a success per evaluation does not become too small.

3 Experimental results

The proposed RASH algorithm has been tested on various classical test functions, whose analyt-
ical formulation and properties are reported in many optimization papers, see for example [4].

Table 1 shows the results for 100 independent optimization runs for each function. A run is
considered successful if the heuristic finds a point x such that

f(x) − fmin < εrel|fmin| + εabs (2)

where fmin is the known global minimum. Following [4], we have set εrel = 10−4 and εabs = 10−6.
Runs are stopped, and lack of success is recorded, if the global minimum is not located after
5000d function evaluations.

The number of successful runs is shown in column Success. The average number of function
evaluations required in successful runs is shown in column Evals, (unsuccessful runs are trun-
cated). Column ∆Min reports the average value of the difference between the found minimum
and the actual global minimum achieved by all 100 runs, including unsuccessful ones.

Column CPU time reports the average execution time of successful runs, given in standard
CPU time units as defined in [6].

For some functions like Goldstein-Price, Hartmann and Zakharov the success rate is large and
the number of function evaluations is comparable to, and in some cases better than, the number
of function evaluations used by more complex techniques like Enhanced Simulated Annealing,
see for comparison Table I of [8]. However, by design RASH has no mechanism to escape local
minima after they are identified. Therefore the percentage of success is lower for other functions
(e.g., Shekel). Very ill-conditioned problems, such as the Rosenbrock function, are solved in a
satisfactory way only for a small number of dimensions. The effects of high dimensionality are

3

Table 2: Number of successes, average function evaluations and average minimum found for 100
optimization runs on the test functions on 2d parallel threads.

f d Threads Success Evals CPU time ∆Min
Goldstein-Price 2 4 99 337 0.152 1.25 · 10−4

Hartmann d,4
3 6 100 856 0.556 2.55 · 10−4

6 12 100 2420 5.38 2.41 · 10−4

Shekel 4,5 4 8 93 1296 1.28 1.2 · 10−3

Shekel 4,7 4 8 94 1323 1.28 1.03 · 10−3

Shekel 4,10 4 8 85 1336 1.34 2.53 · 10−3

Table 3: Comparison with other techniques — number of successful minimizations; see text for
the description of the techniques

Method G. − P. H3 H6 S4,5 S4,7 S4,10

RASH 99 100 100 93 94 85
ECTS 100 100 100 75 80 75
ESA 100 100 100 54 54 50
ISA 1 n.a. 99 97 7 1 3
ISA 2 n.a. 100 0 19 28 18

also apparent on the CPU time column of Table 1. Due the relative simplicity of the benchmark
functions, the dominating factor for a large number of dimensions is the affine transformation
of the search region vectors, amounting to d vector multiplications by a d × d matrix, totaling
to an O(d3) time per optimization step. For high-dimensional problems and functions requiring
small computation more specialized techniques like ESA of [8] should be considered.

A second test has been performed by iterating through 2d independent solvers (where d is the
dimension of the function’s domain) until either one of the solvers finds a value that satisfies (2)
or the overall maximum number of function evaluations is reached.

The results of interest, where parallelization actually leads to an improvement, are shown
in Table 2. Note that most problem instances benefit from parallel search. However, highly
dimensional problems such as Zakharov are already solved with a single thread. In this case, a
single solver is more effective, and the success rate for a fixed number of iterations decreases if
parallel threads are exploited.

3.1 Comparison with other techniques

The RASH algorithm behavior has been compared with other local search heuristics, and results
are presented in Table 3. In particular, we focused on two recent proposals, Enhanced Simulated
Annealing [8] and Enhanced Continuous Tabu Search [4], which, like RASH, aim at minimizing
functions of continuous variables. Another classical proposal, the Improved Simulated Annealing
algorithm [10] is shown in two different variants (wide and narrow search domain). Techniques
have been selected on the basis of similar hypotheses (continuous functions, no analytical tools
other than evaluation) and on similar criteria for estimating success and efficiency.

For comparison purposes, we rely on data provided in [4] and on the original sources. The
definition of “successful” run takes into account the criteria defined in [4, 8], where the maximum
number of allowed evaluations is 5000d, as described before. For RASH, we chose to employ the
multi-thread results shown on Table 2.

The results clearly show that the RASH heuristic achieves state-of-the-art results on various
classical problems, ranging from 85% to 100% successful minimizations. This result is of interest
because of the simplicity of the technique, which can be an effective building block for more
complex heuristic schemes.

4

4 Conclusions

In this paper the Reactive Affine Shaker adaptive random search algorithm has been described.
Experiments show a performance which is in some cases comparable or better with respect to

competitive techniques. The results are unexpected given the algorithmic simplicity of RASH,
in particular its design based on converging rapidly to the local minimizer in the attraction basin
of the initial point. We argue that these good results are due to a rapid and effective adaptation
of the search region based on feedback from function evaluations at random points. Therefore
we believe that this component can be considered for more complex meta-heuristic schemes.

References

[1] Roberto Battiti and Giampietro Tecchiolli. Learning with first, second and no derivatives:
A case study in high energy physics. Neurocomp, 6:181–206, 1994.

[2] Roberto Battiti and Giampietro Tecchiolli. The reactive tabu search. ORSA Journal on

Computing, 6(2):126–140, 1994.

[3] Mauro Brunato and Roberto Battiti. Technical Report DIT-06-012, Dipartimento di Infor-
matica e Telecomunicazioni, Università di Trento, March 2006.

[4] Rachid Cheluoah and Patrick Siarry. Tabu search applied to global optimization. European

Journal of Operational Research, 123:256–270, 2000.

[5] Angelo Corana, Michele Marchesi, Claudio Martini, and Sandro Ridella. Minimizing mul-
timodal functions of continuous variables with the “simulated annealing” algorithm. ACM

Trans. Math. Softw., 13(3):262–280, 1987.

[6] Lawrence C. W. Dixon and Gábor P. Szegő, editors. Towards Global Optimization 2. North
Holland, Amsterdam, The Netherlands, 1978.

[7] Panos M. Pardalos and Mauricio G. C. Resende, editors. Handbook of Applied Optimization.
Oxford University Press, NY, USA, 2002.

[8] Patrick Siarry, Gérard Berthiau, François Durbin, and Jacques Haussy. Enhanced sim-
ulated annealing for globally minimizing functions of many-continuous variables. ACM

Transactions on Mathematical Software, 23(2):209–228, June 1997.

[9] Francisco J. Solis and Roger J.-B. Wets. Minimization by random search techniques. Math-

ematics of Operations Research, 6(1):19–30, 1981.

[10] Ah C. Tsoi and M. Lim. Improved simulated annealing technique. In Proceedings of the

IEEE International Conference on Systems, Man and Cybernetics, pages 594–597, Piscat-
away, NJ (USA), 1988. IEEE Press.

[11] David H. Wolpert and William G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, April 1997.

5

