
DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38100 Povo — Trento (Italy), Via Sommarive 14
http://dit.unitn.it/

R-EVO
A REACTIVE EVOLUTIONARY ALGORITHM
FOR THE MAXIMUM CLIQUE PROBLEM

Roberto Battiti, Mauro Brunato

June 6, 2007

Technical Report # DIT-07-034





1

R-EVO: a Reactive Evolutionary Algorithm for the
Maximum Clique Problem
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Abstract—An evolutionary algorithm with guided mutation
(EA/G) has been proposed recently for solving the maximum
clique problem. In the framework of estimation-of-distribution
algorithms (EDA), guided mutation uses a model distribution
to generate the offspring by combining the local information of
solutions found so far with global statistical information. Each
individual is then subjected to a Marchiori’s repair heuristic,
based on randomized extraction and greedy expansion, to ensure
that it represents a legal clique.

The novel reactive and evolutionary algorithm (R-EVO) pro-
posed in this paper starts from the same evolutionary framework
but considers more complex individuals, which modify tentative
solutions by local search with memory, in the reactive search
framework. In particular, the estimated distribution is us ed to
periodically initialize the state of each individual basedon the
previous statistical knowledge extracted from the population.
We demonstrate that the combination of the estimation-of-
distribution concept with reactive search produces significantly
better results than EA/G and is remarkably robust w.r.t. the
setting of the algorithm parameters.

R-EVO adopts a drastically simplified low-knowledge version
of reactive local search (RLS), with a simple internal diversi-
fication mechanism based on tabu-search, with a prohibition
parameter proportional to the estimated best clique size. R-
EVO is competitive with the more complex full-knowledge RLS-
EVO which adopts the original RLS algorithm. For most of
the benchmark instances, the hybrid scheme version produces
significantly better results than EA/G for comparable or smaller
CPU times.

Index Terms—Maximum Clique, Reactive Search, Estimation
of Distribution, guided mutation

I. I NTRODUCTION

PROBLEM-solving systems, both natural and artificial,
can be made more efficient by working along different

directions. One direction measures the complexity of a single
problem-solving entity (an individual in the population in
GA terms), another one is the number of individuals and the
amount of their mutual interaction. For example, an individual
may be very simple, leaving to mutation, cross-over and selec-
tion the work of exploring and exploiting the fitness surface, or
it may become more complex, embodying for example repair
procedures [1], or elements of local search, as inmemetic
algorithms [2], [3]. The interaction in the population can
be indirect, based on the current fitness of the individuals
which influences the reproduction, or more direct and based
on both global and local information, see for example the
“particle swarm” technique where each member of the swarm
is updated based on the global best position and the individual
best [4]. Interaction through explicit statistical modelsof
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the promising solutions is advocated in the “estimation of
distribution algorithms” (EDA), see for example [5]–[9]. In a
different community, methods to combine solutions have been
designed with the term “scatter search” [10], [11], showing
the advantages provided by intensification and diversification
mechanisms that exploit adaptive memory, drawing on foun-
dations that link scatter search to tabu search [12].

While a complete coverage of the tradeoffs between com-
plexity of the individual population members and complexity
of their interaction is beyond the scope of this paper (some
useful historical references can be found in the cited papers),
this work is motivated by a recent evolutionary algorithm with
guided mutation for the maximum clique proposed in [13],
where the authors obtain state-of-the-art results in the area
of evolutionary algorithms for the problem, by improving
upon Marchiori’s results [1], [14] and upon an advanced EDA
algorithm like MIMIC [15].

The Maximum Clique problem in graphs (MC for short)
is a paradigmatic combinatorial optimization problem with
relevant applications [16], including information retrieval,
computer vision, and social network analysis. Recent inter-
est includes computational biochemistry, bio-informatics and
genomics, see for example [17], [18]. The problem is NP-
hard and strong negative results have been shown about its
approximability [19], making it an ideal test-bed for search
heuristics.

Let G = (V, E) be an undirected graph,V = {1, 2, . . . , n}
its vertex set,E ⊆ V × V its edge set, andG(S) = (S, E ∩
S × S) the subgraph induced byS, whereS is a subset of
V . A graph G = (V, E) is completeif all its vertices are
pairwise adjacent, i.e.,∀i, j ∈ V, (i, j) ∈ E. A clique K
is a subset ofV such thatG(K) is complete. The Maximum
Clique problem asks for a clique of maximum cardinality.

The initial motivation of this work was to assess whether
the incorporation of Reactive Search ideas developed in [20],
[21] into an evolutionary approach could lead to a competitive
technique. Furthermore, we wanted to confirm whether the
advantage of the technique persisted after radical simplifi-
cations of the Reactive Search algorithm. The simplification
has been motivated by a note in the cited paper [13], stating
that, while more effective, “reactive local search is much more
complicated and sophisticated than EA/G”. We propose here a
radically simplified reactive scheme, hybridized with an EDA
approach, which maintains a significant advantage over EA/G,
when both clique sizes and CPU times are considered.

Reactive Search, see [22], [23] for seminal papers, advocates
the use ofmachine learningto automate the parameter tuning
process and make it an integral and fully documented part
of the algorithm. Learning is performed on-line, and therefore
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task-dependent and local propertiesof the configuration space
can be used. In this way a single algorithmic framework
maintains the flexibility to deal with related problems through
an internal feedback loop that considers the previous history
of the search.

The main novelties introduced by the R-EVO algorithm are:
• While guided mutation is used to generate new individ-

uals in EA/G, individuals which are then subjected to
a repair heuristics to create a legal clique, the model
obtained by estimation of distribution is used to create
new individuals in R-EVO

• Memetic evolution: each individual is subjected to a short
run of intelligent local search (prohibition-based reactive
search) which considers the given individual as a starting
point.

• Extreme simplification through the design of a low-
knowledge version of the reactive local search algorithm:
instead of the complete memorization of previous so-
lutions, only the best cliques (up to a given tolerance
parameter∆) are used to derive a probabilistic model
of the fittest individuals and to self-tune the prohibition
period on a specific instance.

• Simplification of the model derivation. The model is
not obtained through an exponentially weighted moving
average but in a parameter-less manner from the best
previous solutions (within tolerance parameter∆).

• Proposal of number of iterations and prohibition period
scaled according to the best clique-size estimated at run-
time on a specific instance.

II. EVOLUTION WITH GUIDED MUTATION

Estimation of Distributions (EDA) algorithms [5]–[9], [24]
have been proposed in the framework of evolutionary com-
putation for modeling promising solutions in a probabilistic
manner, and for using such models to produce the next genera-
tion. A survey in [25] considers population-based probabilistic
search algorithms based on “modeling promising solutions by
estimating their probability distribution and using the model
to guide the exploration of the search space.” The main idea of
model-based optimization is to create and maintain amodel
of the problem, whose aim is to provide some clues about
the problem’s solutions. If the problem is a function to be
minimized, for instance, it is helpful to think of such model
as asimplified versionof the function itself; in more general
settings, the model can be a probability distribution defining
the estimated likelihood of finding a good quality solution at
a certain point.

To solve a problem, we resort to the model in order to
generate a candidate solution, then check it. The result of
the check shall be used to refine the model, so that the
future generation is biased towards better and better candidate
solutions. Clearly, for a model to be useful it must provide as
much information about the problem as possible, while being
somehow “more tractable” (in a computational or analytical
sense) than the problem itself.

Although model-based techniques can be used in both
discrete and continuous domains, the latter case better supports
our intuition. In Fig. 1 a function (continuous line) must
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Fig. 1. Model-based search: one generates sample points from model1 and
updates the generative model to increase the probability for point with low
cost values (see model2). In pathological cases, optimal pointe runs the risk
of becoming more and more difficult to generate (figure from [21]).
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Fig. 2. Model-based architecture: a generative model is updated after learning
from the last generated samples and the previous long-term memory (figure
from [21]).

be minimized. An initial model (the dashed line) provides
a prior probability distribution for the minimum (in case of
no prior knowledge, a uniform distribution can be assumed).
Based on this estimate, some candidate minima are generated
(points a throughd), and the corresponding function values
are computed. The model is updated (dotted line) to take into
account the latest findings: the global minimum is more likely
to occur aroundc andd, rather thana and b. Further model-
guided generations and tests shall improve the distribution:
eventually the region around the global minimume shall be
discovered and a high probability density shall be assignedto
its surroundings. The same example also highlights a possible
drawback of naı̈f applications of the technique: assigninga
high probability to the neighborhood ofc and d could lead
to a negligible probability of selecting a point neare, so the
global minimum would never be discovered. The emphasis is
on intensification(or exploitation) of the search. This is why,
in practice, the models are corrected to ensure a significant
probability of generating points also in unexplored regions.

The scheme of a model-based search approach, see
also [26], is presented in Fig. 2. Represented entities are:

• a model used to generate sample solutions,
• the last samples generated,
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• a memory containing previously accumulated knowledge
about the problem (previous solutions and evaluations).

The process develops in an iterative way through a feedback
loop were new candidates are generated by the model, and
their evaluation —together with memory about past states—
is used to improve the model itself in view of a new generation.

The design choices consist of defining a suitable generative
model, and an appropriate learning rule to favor generation
of superior models in the future steps. The simple model
considered in this paper is as follows. The search space
X = {0, 1}n is the set of all binary strings of lengthn, the
generation model is defined by ann-tuple of parameters

p = (p1, . . . , pn) ∈ [0, 1]n,

wherepi is the probability of producing1 as thei-th bit of the
string and every bit is independently generated. One way to
look at the model is to “remove genetics from the standard
genetic algorithm” [6]: instead of maintaining implicitlya
statistic in a GA population,statistics are maintained explicitly
in the vector(pi).

The initial state of the model corresponds to indifference
with respect to the bit values:pi = 0.5, i = 1, . . . , n. In the
Population-Based Incremental Learning (PBIL) algorithm [6]
the following steps are iterated:

1. Initialize p;
2. repeat:
3. Generate a sample setS using the vectorp;
4. Extract a fixed number̄S of the best solutions fromS;
5. for each samples = (s1, . . . , sn) ∈ S̄:
6. p ← (1− λ)p + λs,

whereλ is a learning rate parameter (regulating exploration
versus exploitation). The moving vectorp can be seen as
representing an exponentially weighted moving average of the
best samples, a prototype vector placed in the middle of the
cluster providing the recently-found best quality solutions. As
a parallel with machine learning literature, the update rule is
similar to that used in Learning Vector Quantization, see [27].
Variations include moving away from bad samples in addition
to moving towards good ones. A schematic representation is
shown in Fig. 3.

Estimates of probability densities for optimization consider-
ing possible dependencies in the form of pairwise conditional
probabilities are studied in [15]. Their MIMIC technique
(Mutual-Information-Maximizing Input Clustering) aims at
estimating a probability density for points with value below
a given threshold (remember that the function is to bemin-
imized). These more complex models have been considered
for the maximum clique problem in [13], which demonstrates
inferior performance with respect to the simpler PBIL, in spite
of added computational overhead.

The EA/G algorithm proposed in [13] for the maximum
clique problem is based on the following principles:

• Use of the PBIL algorithm [5] to create a model of the
fittest individuals created in the population.

• Use of a guided mutation operator to produce the off-
spring. This is motivated by the “proximate optimality
principle” [28] which assumes that good solutions tend
to have similar structures. Global statistical information
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Fig. 3. PBIL: the “prototype” vectorp gradually shifts towards good quality
solutions (qualitative example in two dimensions).

is extracted through EDA from the previous search and
represented as a probability model (a vectorp) character-
izing the distribution of promising solutions in the search
space. A new individual is moved in a stochastic manner
towards the center of the model. In detail, for each bit of
the binary string describing the individual, one flips a coin
with head probabilityβ. If head turns up, the specific bit
is set to 1 with probabilitypi, to 0 otherwise. Ifβ = 1,
the string is sampled from the probability modelp.

• Use of a lower bound on the maximum clique (size of
best clique found so far) to search for progressively larger
cliques.

• Use of Marchiori’s repair heuristic [1] to create a legal
clique (some of the internal connections can be missing
in the individual created with guided mutation) and to
extend it in a greedy manner until a maximal clique is
reached.

Fig. 4 outlines the EA/G code. The algorithm accepts as
input the population sizeN and some parameters described
below. The guided mutation operator described above is im-
plemented in functionMutation, while Marchiori’s repair
heuristic is performed by functionRepair. The algorithm
works by maintaining a population of sizeN . At each step,
theM (equal toN/2 in the cited paper) fittest individuals are
kept, while the others are replaced by repaired mutations of
the fittest individual. This is achieved in the pseudo-code by
sorting individuals according to their fitness (line 15) andby
using the first one,x1, for generation of others (lines 18–20).
Elementsx2, . . . , xM do not generate offspring, but participate
to the PBIL model update (line 17). If a new population is to
be generated (for instance, when a larger clique is found, or
population converges to a single individual), new individuals
are selected among strings of lengthSbest + 1 . . . Sbest + ∆
(whereSbest is the lower bound on the maximum clique size,
i.e., the size of the best clique found so far) and thepi

distribution is reset (lines 9–13). The PBIL model is initialized
at line 13 and updated by a moving average at line 17.
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1. function EA/G (N , M , ∆, λ, β, α)
2. t ← 0;
3. pick x ∈ Ω;
4. Qbest← Repair (x, α);
5. Sbest← |U |;
6. restart ← true;
7. repeat
8. if restart or all xi’s are equal
9. for i ← 1, . . . , N

10. pick x ∈
⋃Sbest+∆

j=Sbest+1 Ωj ;
11. xi ← Repair(x, α);
12. for i ← 1, . . . , n

13. pi ←
∑N

j=1 xj
i/N ;

14. restart ← false
15. SortBySize (xi, i = 1, . . . , N );
16. for i ← 1, . . . , n

17. pi ← (1 − λ)pi + λ
∑M

j=1 xj
i/M ;

18. for i ← M + 1, . . . , N
19. x ← Mutate ( x1, ( pi), β);
20. xi ← Repair (x, α);
21. if (size of fittest individual)> Sbest

22. Qbest← new maximum clique;
23. Sbest← |Qbest|;
24. restart ← true;
25. t ← t + 1
26. until stopping condition

Fig. 4. The EA/G algorithm for the Maximum Clique problem.

III. A LOW-KNOWLEDGE REACTIVE LOCAL SEARCH

ALGORITHM

A Reactive Local Search (RLS) algorithm for the solution of
the Maximum-Clique problem is proposed in [20], [29] and
obtains state-of-the-art results in computational tests on the
second DIMACS implementation challenge1.

RLS is based on local search complemented by a feed-
back (history-sensitive) scheme to determine the amount of
diversification. The reaction acts on the single parameter that
decides the temporaryprohibition of selected moves in the
neighborhood. In detail, given the prohibition parameterT ,
after being moved (added to the clique or dropped from it)
a node remains prohibited for the nextT iterations. We shall
refer to non-prohibited nodes asallowed nodes.

In local search algorithms for MC, the basic moves consist
of the addition to or removal of single nodes from the current
clique. A swap of nodes can be trivially decomposed into two
separate moves. The local changes generate a search trajectory
X{t}, the current clique at different iterationst. Two sets
are involved in the execution of basic moves: the set of the
possible additions(PA) which contains nodes connected to all
the elements of the clique, and the set of thelevel neighbors
oneMissing containing the nodes connected to allbut one
element of the clique, see Fig. 5.

The RLS algorithm [20] is presented in Fig. 6. It
consists of a local search loop; every iteration basically

1http://dimacs.rutgers.edu/Challenges/

current clique (Q)

oneMissing

Possible additions (PA)

Fig. 5. Neighborhood of current clique.

1. function RLS
2. t ← 0; T ← 1; tR ← 0; Initialization
3. Q ← ∅; Qbest← ∅; Sbest← 0; tb ← 0;
4. repeat
5. T ← MemoryReaction (Q, T );
6. Q ← BestNeighbor (Q);
7. t ← t + 1;
8. if f(Q) > Sbest

9. Qbest← Q;
10. Sbest← |Q|;
11. tb ← t;
12. if t−max{tb, tR} > A
13. tR ← t;
14. Restart ();
15. until Sbest is acceptable
16. or maximum iterations reached;

Fig. 6. The RLS algorithm for the Maximum Clique problem.

calls theBestNeighbor function that provides the fittest
neighboring configuration, given the current one. Function
BestNeighbor, outlined in Fig. 7, alternates between ex-
pansion and plateau phases, and it selects the nodes among
the allowed ones which have the highest degree inPA. In
particular, the function searches for an allowed node within
PA with the highest degree withinPA itself (lines 4–6). If no
such node is available, then it tries to remove an allowed node
from the clique which would maximally increasePA (lines 10–
11). If all such nodes are prohibited, then it proceeds removing
a random node from the clique (line 13).

The part that differentiates RLS from other local search
mechanisms is functionMemoryReaction, which maintains
the history of the search by storing each visited cliqueQ (or
a suitable fingerprint) into a dictionary structure, e.g., ahash
table, together with some details, such as the number of times a
given clique was found and the last time it has been generated.
Such information is used to adjust the prohibition timeT :
if MemoryReaction detects that the same clique has been
visited too often (a hint that the search is trapped inside a local
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1. function BestNeighbor (Q)
2. type ← notFound;
3. if {allowedv ∈ PA} 6= ∅
4. type ← addMove;
5. Dmax← maxdegG(PA)({allowedv ∈ PA});
6. pick v ∈ {allowedw ∈ PA| degG(PA)(w) = Dmax};
7. if type = notFound
8. type ← dropMove;
9. if {allowedv ∈ Q} 6= ∅
10. ∆max← max{∆PA[j]|j ∈ Q ∧ j allowed};
11. pick v ∈ {allowedw ∈ Q|∆PA[w] = ∆max};
12. else
13. pick v ∈ Q;
14. IncrementalUpdate (v, type);
15. if type = addMove
16. return Q ∪ {v}
17. else
18. return Q \ {v}

Fig. 7. Search for the best neighboring configuration in RLS.
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minimum), it can try to improve differentiation by increasing
the prohibition periodT , thus forcing a larger Hamming
distance in subsequent steps. Restarts are executed only when
the algorithm cannot improve the current configuration within
a number of iterationsA from either the last restart or the
last improvement in clique size. Additional and more recent
implementation details are described in [30].

Let us now come to the extreme simplification of the RLS
algorithm. By analyzing the evolution of the prohibition period
T during runs on different instances we noted a tendency of
the T values during the run to grow as a function of the size
of the maximum cliques contained in the graph.

The evolution ofT for the graph C1000.9 on three different
RLS runs is shown in Fig. 8. One observes a transient period
whenT grows from the initial value1 to a value which then
tends to remain approximately stable during the run (apart
from random fluctuations caused by the reactive mechanism).

In Fig. 9 we show the evolution ofT for a couple of
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representative significant graphs. To make the approximate
proportionality to the clique dimension clear we plot directly
the ratio between the currentT value and the size of the best
clique found at iterationt, calledQbest(t).

After confirming the hypothesis of a parameterT being
adapted to approximately a fraction ofQbest(t) we exper-
imented with a simplified reactive scheme which sets the
prohibition valueT (t) equal toτ · Qbest(t). This version is
called a low-knowledgereactive scheme because the only
information used from the previous history of the search is
given by the size of the best clique.

The average results obtained forQbest in ten different runs
are plotted in Fig. 10. It can be observed that a small value
for the proportionality constantτ is associated to the best
results obtained. Furthermore, one observes a robust behavior
of the results as a function ofτ , provided that its value
ranges approximately between0.15 and 0.25. After these
experimental results, confirmed also on the other graphs, we
decided to fixτ = 0.2 for all cases.

The difference is coded in theMemoryReaction mech-
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1. function R-EVO (N )
2. for i ← 1, . . . , N Generate population
3. Ri ← new RLS searcher;
4. for i ← 1, . . . , n Initialize model uniformly
5. pi ← 0.5;
6. repeat
7. for i ← 1, . . . , N Iterate through solvers
8. execute one step ofRi;
9. Qi ← best clique ofRi;
10. Smax← max{|Qi| : i = 1, . . . , N}
11. B ← {Qi : i = 1, . . . , N ∧ |Qi| ≥ Smax−∆;
12. for i ← 1, . . . , n Update PBIL model
13. pi ← (1 − λ)pi + λ

∑
Q∈B χQ(i)/|B|;

14. until Smax is acceptable
15. or maximum iterations reached;

Fig. 11. The RLS-EVO algorithm for the Maximum Clique problem. The
R-EVO simplified version only differs in the implementation of theRLS step,
so the pseudo-code fits R-EVO as well.

anism: the simplified version does not need to maintain a
history structure, and the only action is to update the value
of T according to the size of the largest clique found up to
that moment.

IV. T HE HYBRID EVOLUTIONARY AND REACTIVE

ALGORITHMS (R-EVO)

To distinguish the new and simplified version of RLS, the
hybrid algorithm is called R-EVO, while the hybrid algorithm
adopting the original RLS method is called RLS-EVO. Both
algorithms have the same overall structure, shown in Fig. 11.
The pool of searching individuals(Ri) is created with an
empty clique, and the initial estimate(pi) of the node dis-
tribution in the clique is set to a uniform value (each node
having a50% probability of appearing in a maximum clique).

Every iteration of the algorithm consists of a single iteration
of each individual searcher (lines 7–9). After all searchers have
been executed, the model is updated. The average is computed
by counting, for each nodei, how many searchers include
nodei in their maximum clique. In order to reduce noise, only
searchers providing cliques whose size is comparable (within
a tolerance∆ ∈ N) with the largest one are taken into account.

The model(pi) is used within functionRestart (see the
RLS pseudo-code in Fig. 6) in order to build an initial clique
with the most probable nodes. In detail, the initial clique is
built in a greedy fashion, where candidate nodes at every step
are selected with probability proportional to model values(pi).
The model is the only data which is globally shared by all
searchers.

V. COMPUTATIONAL EXPERIMENTS

All experiments have been performed with the following
parameters, derived from [13]: population ofN = 10 individ-
uals, 10 runs per problem instance, model depth∆ = 3; the
restart parameterA in Fig. 6 is100 ·Qbest. The EA/G data are
obtained from [13], where 20000 calls of the repair operator
per run were considered. The construction of a new individual

in EA/G requires a sequence of node additions and removals,
while an R-EVO iteration only performs one node addition
or removal, so a direct comparison is not possible. To solve
this problem, two series of experiments have been performed:
one with a fixed but larger number of iterations, another with
a number of iterations proportional to the maximum clique
found. Both choices are motivated in the following sections.

Our experiments were executed on a Dual Xeon 3.4GHz
machine with 6GB RAM and Linux 2.6 operating system.
However, all tested algorithms were implemented as mono-
lithic processes, so only a single processor core was in use at
any time, and no CPU core parallelism has been exploited. To
take hardware differences into account, some runs of EA/G
have been reproduced and their average execution times were
used to obtain the0.85 speedup factor used to re-estimate
execution times in the EA/G time columns.

A. Fixed number of iterations

The first series of tests was performed on R-EVO with
200, 000 solver steps (20, 000 steps per solver). The number
of iterations has been chosen in order to approach the amount
of work that the EA/G heuristic performs at every iteration.
With this choice the execution times of R-EVO are significantly
lower than those allowed for EA/G, therefore the comparison
is unbalanced in favor of EA/G.

Results are reported in Table I. The first set of columns
reports the average maximum clique found (with the corre-
sponding standard error), the overall maximum and the average
execution time for 10 runs of the EA/G algorithm; the second
set of columns contains the corresponding results for the R-
EVO algorithm. Finally, the results of a Student’s t-test for
equality of means with unequal sample variance [31] has
been applied in order to test the equality of the two clique
size averages (last column contains the significance of the
null hypothesis, i.e., that the two distributions have the same
average). Note that some tests could not be performed due to
null variance in both algorithms.

Results show that the R-EVO algorithm has a significant
superiority to EA/G in the case of dense random graphs (the
C*.9 andDSJC* lines), for example the average size is7%
better inC2000.9; for the small instances both algorithms
always locate the maximum clique. The onlygen*-type in-
stance (random graphs embedding a known clique) which was
not always solved by both algorithms is the 400-node graph
with 55-node clique, where R-EVO outperforms EA/G. Also
the p_hat1500-* instances (random graphs with higher
spread in node degree) and thehamming* instances (graphs
of bit strings with connections between words if they are far
apart) show a slight superiority of R-EVO in the cases that are
not optimally solved by both algorithms.

The performance tends to be more difficult to assess in
the Brockington-Culberson graphs (thebrock* lines), where
the best clique is hidden in a very effective manner so that
intelligent techniques tend to be not competitive with respect
to brute force local search (in fact, the camouflaging process
is designed tofool intelligent techniques).

The R-EVO algorithm does not perform at the EA/G level
on Steiner Triple Problem graphs (theMANN* lines), however
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TABLE I
COMPARISON BETWEENEA/G AND R-EVO FOR A FIXED NUMBER OF ITERATIONS.

EA/G R-EVO (200000) t-test
Avg. (std) Best Time (s) Avg. (std) Best Time (s) t sig.

C125.9 34.0 (0.0) 34 1.3 34.0 (0.0) 34 0.464 - -
C250.9 44.0 (0.0) 44 2.5 44.0 (0.0) 44 0.491 - -
C500.9 55.2 (0.9) 56 4.8 57.0 (0.0) 57 0.719 6.325 0.000
C1000.9 64.4 (1.4) 67 18.0 67.3 (0.5) 68 1.189 6.169 0.000
C2000.9 70.9 (1.0) 72 38.4 75.8 (0.6) 77 2.900 13.287 0.000
DSJC5005 13.0 (0.0) 13 4.0 13.0 (0.0) 13 1.206 - -
DSJC10005 14.5 (0.3) 15 10.3 15.0 (0.0) 15 3.107 5.270 0.000
C2000.5 14.9 (0.7) 16 24.3 16.0 (0.0) 16 4.372 4.969 0.001
C4000.5 16.1 (0.3) 17 51.9 17.0 (0.0) 17 9.342 9.487 0.000
MANN a27 126.0 (0.0) 126 10.3 125.6 (0.5) 126 0.651 2.530 0.026
MANN a45 343.7 (0.7) 345 68.2 342.2 (0.4) 343 2.852 5.883 0.000
MANN a81 1097.2 (0.6) 1098 705.1 1096.9 (0.6) 1098 5.754 1.118 0.208
brock200 2 12.0 (0.0) 12 1.5 11.5 (0.5) 12 0.844 3.162 0.009
brock200 4 16.5 (0.5) 17 1.7 16.1 (0.3) 17 0.500 2.169 0.044
brock400 2 24.7 (0.4) 25 3.1 25.0 (0.0) 25 0.722 2.372 0.034
brock400 4 25.1 (2.6) 33 3.3 25.8 (2.5) 33 1.158 0.614 0.323
brock800 2 20.1 (0.4) 21 7.6 21.0 (0.0) 21 1.430 7.115 0.000
brock800 4 19.9 (0.5) 21 7.6 21.0 (0.0) 21 2.253 6.957 0.000
gen200p0.9 44 44.0 (0.0) 44 1.8 44.0 (0.0) 44 0.402 - -
gen200p0.9 55 55.0 (0.0) 55 3.3 55.0 (0.0) 55 0.586 - -
gen400p0.9 55 51.8 (0.7) 55 3.6 54.0 (1.1) 55 0.621 5.336 0.000
gen400p0.9 65 65.0 (0.0) 65 3.6 65.0 (0.0) 65 0.940 - -
gen400p0.9 75 75.0 (0.0) 75 3.7 75.0 (0.0) 75 0.948 - -
hamming8-4 16.0 (0.0) 16 1.7 16.0 (0.0) 16 0.597 - -
hamming10-4 39.8 (0.6) 40 14.2 40.0 (0.0) 40 1.427 1.054 0.217
keller4 11.0 (0.0) 11 1.3 11.0 (0.0) 11 0.730 - -
keller5 26.9 (0.3) 27 9.1 26.9 (0.3) 27 1.275 0.000 0.393
keller6 53.4 (1.2) 56 53.6 53.3 (0.7) 54 6.210 0.228 0.381
p hat300-1 8.0 (0.0) 8 2.0 8.0 (0.0) 8 1.191 - -
p hat300-2 25.0 (0.0) 25 2.0 25.0 (0.0) 25 0.705 - -
p hat300-3 36.0 (0.0) 36 2.3 36.0 (0.0) 36 0.972 - -
p hat700-1 11.0 (0.0) 11 5.6 11.0 (0.0) 11 1.772 - -
p hat700-2 44.0 (0.0) 44 7.6 44.0 (0.0) 44 1.407 - -
p hat700-3 62.0 (0.0) 62 11.1 62.0 (0.0) 62 1.233 - -
p hat1500-1 11.1 (0.3) 12 16.8 11.7 (0.5) 12 3.933 3.254 0.006
p hat1500-2 65.0 (0.0) 65 24.6 65.0 (0.0) 65 4.182 - -
p hat1500-3 93.7 (0.5) 94 29.2 94.0 (0.0) 94 2.408 1.897 0.072

the t-test figures are uncertain in the larger case, where both
techniques could find a (non-optimal, however) 1098-node
clique. Finally, while average cliques are comparable in the
keller6 instance, the 10 EA/G runs find a larger clique.

B. Iterations proportional to (estimated) maximum clique size

The CPU time differences in the previous series of ex-
periments tended to increase on larger graphs, in particular
on graphs with larger cliques. In order to attain a more
fair comparison, we chose a different termination criterion
for R-EVO by limiting the overall number of iterations to
20, 000×max{Qi}, whereQi is the maximum clique found
by searcherRi (see Fig. 11).

Results are reported on Table II. We can see that all cases
where the null hypothesis is rejected with high confidence
(significance column< 0.05) R-EVO outperforms EA/G, with
the exception of some Steiner Triple Problem (MANN*) and
Brockington-Culberson (brock*) instances. Note that time
differences have greatly reduced; in particular, now large
graphs are searched for a time that is in the same order of
magnitude as EA/G.

C. Internal comparison betweenR-EVO and RLS-EVO

Another set of experiments has been devoted to a com-
parison between the full-fledged RLS-EVO heuristic and its
much simpler low-knowledge R-EVO counterpart used in the
previous experiments.

Results are shown in Table III. CPU times are not reported
because they are very similar in Table II for R-EVO. The
simpler version shows some marginal performance degrada-
tion, but in many cases experimental variance is very large.
For instance, the more complex RLS-EVO found the 33-node
clique of brock400_4 once, and the higher average is due
to this single event.

The last group of columns in Table III refers to a final ex-
periment with a mixed population: 5 searchers implement the
RLS-EVO algorithms, 5 implement R-EVO. The results show
that in some cases this technique helps achieving the “best of
both worlds,” however in other cases a slight degradation can
be observed. As examples, thebrock400_4 andkeller6
cases show that the mixed technique can obtain a performance
equal to the best of its components.
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TABLE II
COMPARISON BETWEENEA/G AND R-EVO FOR A NUMBER OF ITERATIONS PROPORTIONAL TO THE MAXIMUM DETECTED CLIQUE.

EA/G R-EVO (20000×cliquesize) t-test
Avg. (std) Best Time (s) Avg. (std) Best Time (s) t sig.

C125.9 34.0 (0.0) 34 1.3 34.0 (0.0) 34 1.215 - -
C250.9 44.0 (0.0) 44 2.5 44.0 (0.0) 44 3.237 - -
C500.9 55.2 (0.9) 56 4.8 57.0 (0.0) 57 4.227 6.325 0.000
C1000.9 64.4 (1.4) 67 18.0 68.0 (0.0) 68 10.165 8.132 0.000
C2000.9 70.9 (1.0) 72 38.4 76.5 (0.5) 77 29.196 15.839 0.000
DSJC5005 13.0 (0.0) 13 4.0 13.0 (0.0) 13 1.573 - -
DSJC10005 14.5 (0.3) 15 10.3 15.0 (0.0) 15 3.732 5.270 0.000
C2000.5 14.9 (0.7) 16 24.3 16.0 (0.0) 16 6.833 4.969 0.001
C4000.5 16.1 (0.3) 17 51.9 17.1 (0.3) 18 15.729 7.454 0.000
MANN a27 126.0 (0.0) 126 10.3 125.8 (0.4) 126 7.991 1.581 0.114
MANN a45 343.7 (0.7) 345 68.2 342.5 (0.5) 343 46.859 4.411 0.000
MANN a81 1097.2 (0.6) 1098 705.1 1096.7 (0.5) 1097 438.570 2.024 0.056
brock200 2 12.0 (0.0) 12 1.5 11.4 (0.5) 12 0.654 3.795 0.003
brock200 4 16.5 (0.5) 17 1.7 16.1 (0.3) 17 1.249 2.169 0.044
brock400 2 24.7 (0.4) 25 3.1 25.0 (0.0) 25 1.794 2.372 0.034
brock400 4 25.1 (2.6) 33 3.3 25.0 (0.0) 25 2.965 0.122 0.385
brock800 2 20.1 (0.4) 21 7.6 21.0 (0.0) 21 3.725 7.115 0.000
brock800 4 19.9 (0.5) 21 7.6 21.0 (0.0) 21 2.977 6.957 0.000
gen200p0.9 44 44.0 (0.0) 44 1.8 44.0 (0.0) 44 1.789 - -
gen200p0.9 55 55.0 (0.0) 55 3.3 55.0 (0.0) 55 2.026 - -
gen400p0.9 55 51.8 (0.7) 55 3.6 55.0 (0.0) 55 3.378 14.456 0.000
gen400p0.9 65 65.0 (0.0) 65 3.6 65.0 (0.0) 65 3.744 - -
gen400p0.9 75 75.0 (0.0) 75 3.7 75.0 (0.0) 75 5.114 - -
hamming8-4 16.0 (0.0) 16 1.7 16.0 (0.0) 16 1.814 - -
hamming10-4 39.8 (0.6) 40 14.2 40.0 (0.0) 40 8.110 1.054 0.217
keller4 11.0 (0.0) 11 1.3 11.0 (0.0) 11 0.837 - -
keller5 26.9 (0.3) 27 9.1 26.8 (0.4) 27 3.680 0.632 0.319
keller6 53.4 (1.2) 56 53.6 53.7 (0.7) 55 34.573 0.683 0.307
p hat300-1 8.0 (0.0) 8 2.0 8.0 (0.0) 8 1.149 - -
p hat300-2 25.0 (0.0) 25 2.0 25.0 (0.0) 25 2.774 - -
p hat300-3 36.0 (0.0) 36 2.3 36.0 (0.0) 36 2.194 - -
p hat700-1 11.0 (0.0) 11 5.6 11.0 (0.0) 11 1.950 - -
p hat700-2 44.0 (0.0) 44 7.6 44.0 (0.0) 44 6.166 - -
p hat700-3 62.0 (0.0) 62 11.1 62.0 (0.0) 62 12.579 - -
p hat1500-1 11.1 (0.3) 12 16.8 11.8 (0.4) 12 5.181 4.427 0.000
p hat1500-2 65.0 (0.0) 65 24.6 65.0 (0.0) 65 18.577 - -
p hat1500-3 93.7 (0.5) 94 29.2 94.0 (0.0) 94 24.735 1.897 0.072

VI. CONCLUSIONS

The paper presented a hybrid algorithm which uses an
evolutionary scheme in the framework of “estimation of
distribution algorithms” to generate new individuals, which
are then subjected to memetic evolution through a simplified
reactive search method. In this manner, each individual in the
population executes a short local search with prohibition (a.k.a.
tabu search). The prohibition period is determined in a simple
reactive manner on a specific instance based on the estimated
size of the maximum clique.

The results show that the proposed technique is competitive
with respect to state-of-the-art evolutionary algorithmsbased
on similar assumptions (the EA/G algorithm).

It is remarkable how a drastic simplification of the original
RLS algorithm, complemented by the interaction of more pop-
ulation members through a model derived by EDA is capable
of achieving results which are comparable to those obtainedby
a very complex individual searcher. Coupling a limited formof
“intelligence” (actually a low-knowledge reactive local search
technique) with an evolutionary scheme achieves state-of-the-
art results on the maximum clique problem.
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and H. Schwefel, Eds., 1996, pp. 178–187.

[25] M. Pelikan, D. Goldberg, and F. Lobo, “A survey of optimization by
building and using probabilistic models,”Computational Optimization
and Applications, vol. 21, no. 1, pp. 5–20, 2002.

[26] M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo, “Model-based
search for combinatorial optimization,”Annals of Operations Research,
no. 131, pp. 373–395, 2004.

[27] J. Hertz, A. Krogh, and R. Palmer,Introduction to the Theory of
Neural Computation. Redwood City, CA: Addison-Wesley Publishing
Company, Inc., 1991.

[28] F. Glover and M. Laguna,Tabu Search. Kluwer, Norwell, MA, 1997.



10

[29] R. Battiti and M. Protasi, “Reactive local search for the maximum clique
problem,” ICSI, 1947 Center St.- Suite 600 - Berkeley, California, Tech.
Rep. TR-95-052, Sep 1995.

[30] R. Battiti and F. Mascia, “Reactive local search for maximum clique:
a new implementation,” University of Trento, Tech. Rep. DIT-07-018,
2007.

[31] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C, 2nd ed. Cambridge University Press, 1992.


	Introduction
	Evolution with Guided Mutation
	A low-knowledge reactive local search algorithm
	The hybrid evolutionary and reactive algorithms (R-evo)
	Computational experiments
	Fixed number of iterations
	Iterations proportional to (estimated) maximum clique size
	Internal comparison between R-evo and RLS-evo

	Conclusions
	References

