
DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (Italy), Via Sommarive 14
http://dit.unitn.it/

A MEMORY-BASED RASH OPTIMIZER

Mauro Brunato, Roberto Battiti, Srinivas Pasupuleti

April 26, 2006

Technical Report # DIT-06-023

A Memory-Based RASH Optimizer

Mauro Brunato, Roberto Battiti
Srinivas Pasupuleti

Dept. of Computer Science and Telecommunications
University of Trento, Italy,

brunato@dit.unitn.it

April 26, 2006

Abstract

This paper presents amemory-based Reactive Affine Shaker (M-RASH) algo-
rithm for global optimization. The Reactive Affine Shaker isan adaptive search
algorithm based only on the function values. M-RASH is an extension of RASH
in which good starting points to RASH are suggested online byusing Bayesian
Locally Weighted Regression (B-LWR). Both techniques use the memory about
the previous history of the search to guide the future exploration but in very differ-
ent ways. RASH compiles the previous experience into a localsearch area where
sample points are drawn, while locally-weighted regression saves the entire previ-
ous history to be mined extensively when an additional sample point is generated.
Because of the high computational cost related to the B-LWR model, it is applied
only to evaluate the potential of an initial point for a localsearch run. The exper-
imental results, focussed onto the case when the dominant computational cost is
the evaluation of the targetf function, show that M-RASH is indeed capable of
leading to good results for a smaller number of function evaluations.

1 Introduction

Like furniture is in the searching look of a carpenter walking in a forest, technology
is in the eyes of the computer scientist both as an end (e.g., solving optimization and
planning problems) and as a means by which larger and larger instances can be solved.
It is now a truism that the growing availability of massive amounts of memory, starting
from the eighties, opened new windows of opportunity for memory-based optimization
techniques, in particular memory-based heuristics. The underlying assumption of a
rich internal structure of most relevant optimization tasks makes techniques capable of
gradually learning that structure potentially more powerful and effective than memory-
less techniques. Notable examples are the use ofpattern databases originally proposed
by [6] to solve tile puzzles. In these problems, the final state is known and the sequence
of moves to reach it, is to be determined. The database is usedto obtain a lower bound
on the cost to reach the goal from a given state in the search space, by looking up

1

all possible subgoals, see also [10] for more accurate admissible heuristic evaluation
functions.

A different context is that of stochastic local search [8], where one aims at mini-
mizing a functionf of discrete or continuous variables. In this case the optimal config-
uration is not known at the beginning and generating a trajectory by local search in the
configuration space is a way to explore promising configurations aiming at discovering
good local optima. The authors of this paper used history-sensitive (or memory-based)
techniques to solve combinatorial problems [3] and continuous optimization problems.
The recent publication [2] summarizes the methods and the main applications, while
[1] is dedicated to data structures based on hashing and dynamic sets to support history-
sensitive heuristics.

In this small contribution, because of the limited space andbecause we think it
could offer a different point of view we concentrate on a recent exploration related to
the usage of models based on memory in order to speed up a simple stochastic search
method denoted as Reactive Affine Shaker proposed in [4]. In the following sections
the basic building blocks, the RASH local search heuristic and the B-LWR model-
ing technique, are described. Next, a combination of the twotechniques is proposed.
Finally, experimental results on classical optimization problems are discussed.

2 Building blocks

In the following discussion, we make the assumption that thedominant computational
cost is related to evaluating the target functionf at trial points. This assumption is
justified in many practical applications, for example when the evaluation off requires
running a lengthy simulation, or even running an industrialplant and measuring the
output. It is in these cases that the use of memory is worth theeffort and to make
the assumption explicit we will discuss about results obtainable as a function of the
number off evaluations in the next part of the paper. A more detailed analysis taking
into account the trade-off between the overhead involved inthe usage of memory for
cases when this is not negligible is in preparation and not shown in this paper because
of space reasons.

The proposed memory-based technique, M-RASH, is based on two major com-
ponents: an efficient local search heuristic, RASH, for rapidly finding local minima,
and a statistically sound method, Bayesian Locally-weighted Regression, to model and
predict its global behavior. In this Section we briefly describe these two components.

2.1 The RASH heuristic

The Reactive Affine Shaker Heuristic [4], RASH for short, is aself-tuning local search
algorithm based on the framework proposed in [13], where no prior knowledge is as-
sumed on the function to be minimized and only evaluations atarbitrary values of the
independent variables are allowed. The RASH heuristic tries to rapidly move towards
better objective values by maintaining and updating a small“search region”R around
the current pointx.

2

f Function to minimize
x Initial point
R Search region
∆ Current displacement

1. function RASH (f , x)
2. R← small istropic set aroundx
3. while (local termination condition is not met)
4. Pick∆ ∈ R

d such thatx + ∆, x−∆ ∈ R
5. if f(x + ∆) < f(x)
6. x← x + ∆;
7. ExtendR along∆

8. CenterR onx

9. else if f(x−∆) < f(x)
10. x← x - ∆;
11. ExtendR along∆

12. CenterR onx

13. else
14. ReduceR along∆

15. return x;

Figure 1: The RASH algorithm

The use of memory in RASH is limited: the entire previous history of the search
(the trajectory of the generated sample points and the outcome of the evaluations) is
summarized through adynamic search region, intended to zoom in onto the promising
areas where to find points better than the current best.

The efficiency of RASH lies in the ability to reshape the search regionR according
to the occurrence or lack of success during the last step: if astep in a certain direction
yields a better objective value, thenR is expanded along that direction; it is reduced
otherwise. Therefore, once a promising direction is found,the probability that subse-
quent steps will follow the same direction is increased, andsearch shall proceed more
and more aggressively in that direction until bad results reduce its prevalence. The
algorithm is outlined in Fig. 1.

The algorithm starts with an isotropic search region centered around the initial point
(line 2). Next, new trail points are repeatedly generated (line 4). If the resulting point
x + ∆ yields a lower objective value (line 5 and following), then the current position
is updated andR is expanded along the direction of∆. To increase the probability
of finding a better point, ifx + ∆ does not lead to an improvement, alsox −∆ is
checked (line 9 and following). If none of the points improves the objective value, then
the search region is reduced along the direction of∆ (line 14) and the current position
is not updated. This sequence of steps is repeated until a local termination condition is
verified. Common criteria to terminate the search are the number of iterations, the size
of the search region (if too small, it indicates that no precise direction for improvement

3

f Function to minimize
x, x′ Initial and final position of run
bestPoint, bestValue Best position found and its value

1. function RepeatedRASH (f)
2. bestValue← +∞
3. while (overall termination condition is not met)
4. x← random point inf domain
5. x’ ← RASH (f , x)
6. if f(x′) < bestValue
7. bestPoint← x

8. bestValue← f(x′)
9. return bestPoint

Figure 2: The Repeated RASH algorithm

can be detected, therefore the system is already close to a local minimum), a large
number of iterations without further improvement.

To keep an acceptable level of complexity, the search regionis implemented as a
box defined byd independent vectors (b1 . . . bd), whered is the number of dimensions
of the search domain. Shape modifications are implemented asaffine transformations
of these vectors, as described in the following equation:

∀j bj ←

(

I + (ρ− 1)
∆∆T

‖∆‖2

)

bj

The value ofρ is of 1.2 for expansions and 0.8 for compressions of the search region
respectively. The easiest, although effective, way of improving the performance of the
algorithm is to restart the search from a random point as soonas the local termination
condition is verified, as shown in Fig. 2. This corresponds tohaving a population of
searchers, each unaware of the others.

2.2 Bayesian Locally Weighted Regression

On the coordinate axis of “amount of memory usage”, RASH stays at a very low level,
while the extreme position is occupied by methods storing the entire history in memory
aiming at mining it in the most flexible and effective way in order to generate a single
additional trial point.

In particular, Bayesian Locally Weighted Regression [5, 11, 7], denoted as B-LWR,
is characterized as alazy memory-base technique where all points and evaluations are
stored and a specific model is builton-demand for a specified query point. The usual
power of Bayesian techniques derives from the explicit specification of the modeling
assumptions and parameters (for example, aprior distribution can model our initial
knowledge about the function) and the possibility to model not only the expected values

4

but entire probability distributions, so that for example confidence intervals can be
derived to quantify the confidence in the expected values.

B-LWR is the second fundamental building block considered to complement the
M-RASH heuristic. B-LWR is a learning technique used to build a model out of data
provided, for instance, by a stochastic or noisy function such as the outcome of an
experiment.

The B-LWR algorithm relies on a set ofn sample data {(x1, y1), . . . , (xn, yn)}
whereyi ∈ R is the outcome of a stochastic function evaluation on independent vari-
ablexi ∈ R

d. To predict the outcome of an evaluation on a pointq (named aquery
point), linear regression is applied to sample points. To enforcelocality in the determi-
nation of regression parameters each sample point is assigned a weight that decreases
with its distance from the query point. A commonkernel function used to set the rela-
tionship between weight and distance is

wi = e−
‖xi−q‖2

K ,

whereK is a parameter measuring the kernel width, i.e. the sensitivity to far sample
points.

The occasional lack of sample points near the query point would pose problems
in estimating the regression coefficients with a simple linear model. Hence Bayesian
regression is used, where we can specify prior information about what values the coef-
ficients should have when there is not enough data to determine them. Bayesian LWR
commonly assumes wide, weak Gaussian prior distribution ofthe coefficients of the
regression model and a wide Gamma prior on the inverse of the noise covariance.

The linear regression model with Gaussian noiseσ2 is

yi = xT
i β + ǫ,

whereβ is the vector of parameters of the linear model. Note that a constant1 is
appended to all input vectorsxi to include a constant term in the regression, so that the
dimensionality of all equations is actuallyd + 1. The samples can be collected in a
matrix equation:

y = Xβ

whereX is ann× (d + 1) matrix whoseith row isxT
i (complemented with a 1 entry

to account for the constant term) andy is a vector whoseith element isyi.
The task is to estimate the coefficientsβ = (β0 . . . βd). The prior assumption onβ

is that it is distributed according to a multivariate Gaussian of mean 0 and covariance
matrix Σ, and the prior assumption onσ is that1/σ2 has a Gamma distribution with
k andθ as the shape and scale parameters. Since we use a weighted regression, each
data point and the output response are weighted using Guassian weighting function. In
matrix form, the weights for the data points are described inn × n diagonal matrix
W = diag(w1, . . . , wn). The prior assumesΣ = diag(202, . . . , 202) for β distribution
andk = 0.8, θ = 0.001 for Gamma distribution.

The model local to the query pointq is predicted by using the marginal posterior
distribution ofβ whose mean is estimated as

β̄ = (Σ−1 + XT W 2X)−1(XT W 2y). (1)

5

The matrixΣ−1 + XT W 2X is the weighted covariance matrix, supplemented by the
effect of theβ priors. Its inverse is denoted byVβ . The variance of the Gaussian noise
based onn data points is estimated as

σ2 =
2θ + (yT − βT XT)W 2y

2k +
∑n

i=1
w2

i

.

The estimated covariance matrix of theβ distribution is then calculated as

σ2Vβ =
(2θ + (yT − βT XT)W 2y)(Σ−1 + XT W 2X)

2k +
∑n

i=1
w2

i

.

The degrees of freedom are given byk +
∑n

i=1
w2

i . Thus the predicted output
response for the query pointq is

ŷ(q) = qT β̄,

while the variance of the mean predicted output is calculated as:

Var(ŷ(q)) = qT Vβqσ2. (2)

3 A global model for a local search heuristic

Locally Weighted Regression is an efficient way to model stochastic dependencies,
such as those arising from experimental data. In this Section we define a local search
heuristic as a stochastic function, and show how we use LWR (all the references to
LWR mean Bayesian-LWR) to model its global behavior and predict the position of
good starting points.

3.1 Local search algorithms as stochastic functions

Let f be a real-valued function defined over a limited domainD ⊂ R
d. Let L be

a local optimization heuristic, and letLf the algorithm obtained by applyingL to
function f . Lf works by starting from an initial pointx1 ∈ D and generating a
trajectory(x1, . . . , xN), whereN is the number of steps the algorithm performs before
a termination condition is verified. If we treat the initial point x1 as an independent
variable (i.e., not randomly generated by the algorithm itself, but fed as a parameter),
the algorithmLf can be seen as a function mapping the initial point of the trajectory to
the smallest function value found along the trajectory:

Lf : D → R (3)

x1 7→ min
i=1,...,N

f(xi).

Note that, sinceL is a stochastic heuristic relying on random choices, the trajectory is
stochastic too, andLf must be regarded as a stochastic function.

6

1

2

Basin of Basin of Basin of

m 1 m 2 m 3

m 3

m

m

y

x

Sample points ofL f

f

LWR model of L f

Figure 3: Modeling the local search algorithmLf

3.2 An LWR model of the stochastic local search transformation

The stochastic functionLf models the transformation executed by local search, from
an initial point to the local minimum point in a given attraction basin. After some
runs of local search have been executed, one begins to deriveknowledge about the
structure of the search space, about which region is mapped to which local minima,
and about a possible large-scale structure of the local minima showing the way to the
most promising areas. Of course, the so-called “no free lunch” theorems of global
optimization [14] imply that these techniques will not be effective for general functions
(for sure they will not be effective if the value at one point is not related to values at
nearby points), but most optimization problems of real interest are indeed characterized
by a rich structure which can be profitably mined.

The integration proposed in this paper considers the LWR to model the transforma-
tion executed byLf , therefore to evaluate the potential of future initial points to lead
to promising local minima. For each run of the stochastic local search, the memory-
based model will be mined to identify the next initial point.Other options are possible,
like the consideration of an LWR model for describing the original functionf . This
second hypothesis is not considered here because of space reasons and because it leads
to a more CPU-time consuming algorithm, but see [9] for an independent preliminary
investigation.

To visualize the effect of theLf transformation and the related modelling by LWR,
Fig. 3 describes the application of a LWR technique toLf in order to model it. Function
f has three local minima, whose values are represented asm1, m2 andm3, with m2 as
the global minimum value. Black dots represent sample points, of the form(x, Lf (x)),
i.e., each is obtained by generating an initial valuex, feeding it to the local search al-
gorithm, and retrieving the minimum value off found along the subsequent trajectory.
If the search algorithm makes local moves, as is the case withRASH, the sample points
will approximately outline a stepwise function, constant in every attraction basin cor-

7

 0

 20

 40

 60

 80

 100

 120

-10 -5 0 5 10

Sample Points
LWR Model(g)
Rastrigin Fn.(f)

Figure 4: Modeling the Rastrigin function in 1 dimension

8

f Function to minimize
D Domain off
g B-LWR model ofLf , initially empty
n Number of initial sample points ing

1. function BLWR RASH (f , n)
2. for i← 1 ton
3. x← random point inD
4. x′← RASH (f , x)
5. g.addSamplePoint (x, f(x′))
6. while (termination condition is not met)
7. x← RepeatedRASH (g)
8. x′← RASH (f , x)
9. g.addSamplePoint (x, f(x′))
10. return best point found

Figure 5: The memory-based M-RASH heuristic

responding to a given local minimum. Let’s note that the smooth approximation to
the stepwise function is actually useful to give the algorithm a direction to follow to
reach promising areas, while an exact constant model on the plateau would not give
such direction hint. The LWR model, shown in thick dashed line, is a smoothed out
version of this stepwise function. Figure 4 shows a practical example executed on the
1-dimensional Rastrigin function. The sequence of sample points models the trend of
local minima towards the global minimum, situated anx = 0. Note that the sample
points represent the initial point and the the final functionvalue as a result of apply-
ing the local search technique. The error bars indicate the variance on the predicted
function value using the LWR model.

The LWR model ofLf (derived in Figs. 3 and 4) is in turn minimized in order to
find the best suitable starting point for the subsequent run of Lf , as described in the
following Section, where the technique just described is applied to the RASH heuristic.

3.3 The M-RASH Heuristic

Fig. 5 presents the pseudo-code for the M-RASH heuristic. The parameters are the
functionf to be minimized and the number of initial sample points in themodel. Since
we are using the Bayesian version of LWR with prior coefficient distribution, we are
not forced to insert into the model a minimum number of pointsbefore it becomes
useful.

The modelg is initially empty; we assume that it can be evaluated at a query point
as a real-valued function (in our C++ implementation, the B-LWR model implements
a function interface), and that it can be updated by adding new points by calling the
methodg.addSamplePoint (x, y). The RASH local search algorithm is made avail-
able through the two function calls described in Fig. 1 and Fig. 2. In particular, it is
important to remember that

9

Table 1: Benchmarks for simulations

Function
Name

d Mathematical Representation

Rosenbrock 10
d
∑

i=1

(

100(xi+1 − x2
i)

2 + (xi − 1)2
)

Rastrigin 10
d
∑

i=1

(

x2
i − 10 cos2πxi + 10

)

Schaffer 2 0.5−
(sin

√

x2 + y2)2 − 0.5

(1.0 + 0.001(x2 + y2))2

• RASH (f , x) is a single-run local search which starts at the initial point x and
outputs the best point found over the functionf until a termination condition is
verified.

• Repeated RASH(f) allows search to restart as soon as it detects that it is stuck
at a local minimum. The search shall always start from a random point within
D.

Lines 2–5 populate the B-LWR model with a number of sample points, each of the
form (x, Lf (x)), by repeatedly generating random points in the domain, following a
RASH trajectory starting from that point (line 4) and storing the result according to the
definition (3).

Once the modelg is populated, the algorithm proceeds by alternating model mini-
mizations and objective function minimizations (lines 6–9). A promising starting point
can be found by minimizingg with a multiple-run RASH heuristic starting from a
random point (line 7). The point is used to begin the minimization trajectory forf
(line 8). Finally, the result of the optimization run (in terms of initial point, best value
in trajectory) is stored intog in order to refine it for the next run.

Note that optimization runs aimed at functionf are always single: a repeated run
would generate a “broken” trajectory where the final optimumhas no relationship with
the initial point in the trajectory, therefore the modelg would become useless. The
same concern is not valid forg minimizations.

4 Experimental Results

We compare the performance of Repeated-RASH and M-RASH on the benchmarks
shown in Table 1. Rosenbrock is a unimodal function in the domain [−100, 100]d with
a long narrow valley and has a global minimum of zero located at (1, 1)d. Rastrigin
is a multimodal function in the domain[−10, 10]d with huge number of local minima
and a global minimum of zero at origin. The Schaffer functionis a 2-dimensional
maximization function in the range[−100, 100]2 with a lot of valleys surrounding the
global maximum of 1 at(0, 0).

10

 0.01

 1

 100

 10000

 1e+006

 1e+008

 1e+010

 100 1000 10000 100000

A
vg

. O
pt

im
um

No. of Fn Evals

M-RASH
Repeated-RASH

Figure 6: Rosenbrock Function

The termination condition for both Repeated-RASH and M-RASH is set to 100000
function evaluations. In M-RASH, we start withn = 2 initial sample points. The
termination condition forRASH(line 4) in Fig. 5 is set to 50 function evaluations. The
idea is to feed the model with couple of sample points before querying it to find the
next data points to explore (lines 6–9). TheRepeatedRASH call(line 7) searches
the regression modelg for the optimum point. As the execution ofRepeatedRASH
on the model doesn’t add to the function evaluations off , it is run for large number
of iterations to make sure that with a high probability that an optimum point on the
model is achieved. The call toRASH(line 8) takes the optimum point suggested by the
RepeatedRASH as the starting pointx for minimizing f . This call is terminated if
RASH fails to improve the optimum value on functionf for a fixed number of consec-
utive steps. Hence, RASH continues to run as long as it is ableto find better optimum
values and not stuck at local minimum. In our simulations, weterminate the call to
RASH(line 8) if it doesn’t improve on the optimum value foundfor 100 consecutive
steps. The starting point used by RASH along with the best value found is then added
to the regression modelg. The above procedure is repeated till the overall termination
condition of 100000 function evaluations is met.

The algorithms are run for 100 trails and the average optimumfound along with
standard deviation is plotted against the number of function evaluations in log-log
scale. The comparison graphs between Repeated-RASH and M-RASH are shown in
Fig. 6 - 8. The performance of M-RASH is slightly worse at the beginning but even-

11

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000

A
vg

. O
pt

im
um

No. of Fn Evals

M-RASH
Repeated-RASH

Figure 7: Rastrigin Function

tually better compared to Repeated-RASH for the uni-modal Rosenbrock function as
shown in Fig. 6. The M-RASH algorithm outperforms Repeated-RASH for the two
multimodal functions as shown in Fig. 7 and Fig. 8. This can beexplained by the struc-
ture of one-dimensional Rastrigin shown in Fig. 4. Once the B-LWR model is fed with
enough sample points to get a global structure of the function, it will immediately di-
rect the local search algorithm to the data points near the global minimum. In the case
of Repeated-RASH, due to large number of local minima it often gets stuck at them and
thus proceeds slowly towards the global minimum. This is also true for the Schaffer
function. Thus, M-RASH quickly converges to the areas closeto the global minimum
for the functions with high local minima where the B-LWR plays an important role in
learning the trend of local minimum and guiding the local search RASH technique to
promising areas.

5 Conclusion

We have presented the framework of M-RASH technique with some preliminary re-
sults. M-RASH, which is an integration of B-LWR and RASH techniques, results in
faster convergence and better average optimum values compared to Repeated-RASH.
There are a number of critical parameters in the B-LWR and RASH techniques which
include the kernel widthK, the kernel function [12], prior assumptions onβ distribu-

12

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 100 1000 10000 100000

O
ne

 m
in

us
 A

vg
. O

pt
im

um

No. of Fn Evals

M-RASH
Repeated-RASH

Figure 8: Schaffer Function

tion, the initial number of sample pointsn, the termination conditions of the function
callsRASH andRepeatedRASH and the initial search regionR in RASH algorithm.
Ongoing work not described in this paper because of limited space and future efforts
will consider the detailed effect of these parameters on theeffectiveness of the tech-
nique.

References

[1] Roberto Battiti. Partially persistent dynamic sets forhistory-sensitive heuristics.
In D. S. Johnson, M. H. Goldwasser, and C.C. McGeoch, editors, Data Structures,
Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Challenges,
volume 59 ofDIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 1–21. American Mathematical Society, 2002.

[2] Roberto Battiti and Mauro Brunato. Reactive search: Machine learning for
memory-based heuristics. Technical Report DIT-05-058, Università di Trento,
September 2005. To appear as a chapter in the book: Teofilo F. Gonzalez (Ed.),
Approximation Algorithms and Metaheuristics, Taylor & Francis Books (CRC
Press), 2006.

13

[3] Roberto Battiti and Marco Protasi. Reactive search, a history-sensitive heuristic
for MAX-SAT. ACM Journal of Experimental Algorithmics, 2, 1997.

[4] Mauro Brunato and Roberto Battiti. The reactive affine shaker: a building block
for minimizing functions of continuous variables. Technical Report DIT-06-012,
Università di Trento, February 2006.

[5] W. S. Cleveland and S. J. Devlin. Locally-weighted regression: An approach to
regression analysis by local fitting.journal of the American Statistical Associa-
tion, 83: 596–610, 1988.

[6] J. C. Culberson and J. Schaeffer. Pattern databases.Computational Intelligence,
14(3):318–334, August 1998.

[7] Artur Dubrawski and Jeff Schneider. Memory based stochastic optimization for
validation and tuning of function approximators. InConference on AI and Statis-
tics, 1997.

[8] H. H. Hoos and T. Stuetzle.Stochastic local search: Foundations and applica-
tions. Morgan Kaufmann, 2005.

[9] W. Jacquet, B. Truyen, P. de Groen, I. Lemahieu, and J. Cornelis. Global opti-
mization in inverse problems: A comparison of kriging and radial basis functions.
2005.

[10] Richard E. Korf and Ariel Felner. Disjoint pattern database heuristics.Artif.
Intell., 134(1-2):9–22, 2002.

[11] Andrew Moore and Jeff Schneider. Memory-based stochastic optimization. In
D. Touretzky, M. Mozer, and M. Hasselm, editors,Neural Information Processing
Systems 8, volume 8, pages 1066–1072. MIT Press, 1996.

[12] Andrew Moore, Jeff Schneider, and Kan Deng. Efficient locally weighted poly-
nomial regression predictions. In D. Fisher, editor,Proceedings of the Fourteenth
International Conference on Machine Learning, pages 236–244, 340 Pine Street,
6th Fl., San Francisco, CA 94104, 1997. Morgan Kaufmann.

[13] Francisco J. Solis and Roger J.-B. Wets. Minimization by random search tech-
niques. volume 6, pages 19–30, 1981.

[14] David H. Wolpert and William G. Macready. No free lunch theorems for opti-
mization. IEEE Transactions on Evolutionary Computation, 1(1):67–82, April
1997.

14

