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Abstract

A novel adaptive random search algorithm for the optimization of
functions of continuous variables is presented. The scheme does not re-
quire any assumptions about the function to be optimized, apart from
the availability of evaluations f(x) at selected test points. We assume
that the main computational cost lies in the function evaluations and the
main design criteria of the RASH scheme consists of the adaptation of
a search region by an affine transformation which takes into account the
local knowledge derived from trial points generated with a uniform prob-
ability. The aim is to scout for local minima in the attraction basin where
the initial point falls, by adapting the step size and direction to maintain
heuristically the largest possible movement per function evaluation. The
design is complemented by the analysis of some strategic choices (like the
double-shot strategy and the initialization) and by experimental results
showing that, in spite of its simplicity, RASH is a promising building block
to consider for the development of more complex optimization algorithms.
The developed software is built to facilitate the scientific experimentation
and the integration of RASH as a component in more complex schemes.

1 Introduction

Finding the global minimum of a function of continuous variables f(x) is a
well known problem for which substantial effort has been dedicated in the last
decades, see for example the bibliography in [12]. Apparently, no general-
purpose panacea method exists which can guarantee its solution at a desired
accuracy within finite and predictable computing times. In fact, the different
versions of the so called “no free lunch theorems” imply that “for any algorithm
any elevated performance over one class of problems is paid for in performance
over another class”, see [16].
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On the other hand, most real-world optimization tasks are characterized by
a rich correlation structure between candidate solutions which are close, in a
suitable metric defined over the independent variables. Local search techniques
capitalize on this local structure by postulating that a better solution can usu-
ally be found in the neighborhood of the current tentative solution. In this
manner, after starting from an initial configuration of the independent variables
x

(0), a search trajectory of a discrete dynamical system is generated, in which
point x

(t+1) is chosen in the neighborhood of point x
(t). Under suitable con-

ditions (e.g., lower-bounded function, decreasing values of f(x(t)) during the
search with a sufficiently fast rate of decrease) the trajectory will converge at a
local minimizer. The set of initial points which are mapped to a specific local
minimizer by the local search dynamical system is called the basin of attraction
of the minimizer.

Many recent global optimization techniques deal with ways to use a local
search technique without being trapped by local minimizers, notably the Sim-
ulated Annealing technique based on Markov chains, see for example [5] and
[13].

Because of the growing awareness that no single general-purpose methods
can be efficiently applied to different problems, recent research consider the ap-
propriate integration of basic algorithmic building blocks, like various stochastic
local search techniques [11], the so-called meta-heuristic techniques [7], the var-
ious combinations of genetic operators proposed by [8], the algorithm portfolio
proposals [9]. The crucial issue is that of tailoring the appropriate combination
of components and values of critical parameters of the algorithms to a specific
optimization instance, a process that implies an expensive learning phase by
the user and that can be partially automated by machine learning techniques,
as it is advocated in the reactive search framework [2] (see also the web site
www.reactive-search.org).

Research and applications demands a careful design of each component,
which should be studied in isolation before considering integration in more com-
plex schemes. In this manner, the added value of the combination w.r.t. the
components can be judged in a statistically sound manner. Software plays a
crucial role in this context, both to ensure reproducibility of results (in many
cases published results cannot be duplicated by other researchers because the
author forgot to mention and document some “implementation details”), and
to facilitate a scientific methodology for the development of complex heuristic
schemes, where the combination and appropriate determination of parameters
should be guided by sound statistical techniques.

In this paper we focus on a “direct method” for optimization, see [10], which
consider only function evaluations. We furthermore assume no a priori knowl-
edge about f , the knowledge will be only that acquired during evaluations f(x)
at different values of the independent parameters. In particular we develop a
component based on the stochastic (or random) local search framework origi-
nally proposed in [14]. We state the main design criteria and study some critical
choices in the development of this component, in particular the initial phase
and the adaptation of the search neighborhood based on the local structure of
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a given attraction basin, leading to a version which we term “Reactive Affine
Shaker” (RASH) for reasons explained later. We develop a software component
in the C++ object-oriented language, and demonstrate its applicability by ex-
perimenting on a widely used set of benchmark functions. Given the algorithmic
simplicity of the component and the effectiveness demonstrated, we suggest the
consideration of the RASH method and software in different and more complex
optimization schemes.

This paper is structured as follows. In Section 2 the RASH technique is
described and motivated and a pseudo-code description is provided. In Section 3
the object–oriented code structure of the continuous optimization framework is
presented. In Section 4 the experimental results are shown, together with the
comparison with other published algorithms.

For completeness, two appendices deal with the mathematical analysis and
theorems to motivate some aspects of the RASH technique. (NOTE: depending
on the reviewers’ opinion, the appendices could be omitted from the final version
of the paper).

2 The Reactive Affine Shaker Algorithm

The Reactive Affine Shaker algorithm (or RASH for short) is an adaptive ran-
dom search algorithm based on function evaluations. The seminal idea of the
scheme was presented for a specific application in neural computation in [1].
The current work motivates the scheme though a detailed analysis the specific
form of search executed (called “double shot”), and it proposes a more effective
strategy during the initial part of the search by analyzing the evolution of the
search direction in the first iterations, when the search succeeds with a very
high probability (close to one). Finally, it designs reusable software components
implementing the scheme.

2.1 Motivation and analysis

The algorithm starts by choosing at random (in the absence of prior knowledge)
an initial point x in the configuration space; this point is surrounded by an initial
search region R where the next point along the trajectory is searched for.

In order to keep a low computation overhead, the search region is identified
by n vectors, b1, . . . , bn ∈ Rn which define a “box” around the point x:

R =

{

x +

n
∑

i=1

αibi, α1, . . . , αn ∈ [−1, 1]

}

. (1)

The search occurs by generating points in a stochastic manner, with a uni-
form probability in the search region. For a reason which will become clear in
the following description, a single displacement ∆ is generated and two specular
points x

(t) +∆ and x
(t)−∆ are considered in the region for evaluation (double

shot, see also [3]). An evaluation is “successful” if the f value is better than the
value at the current point.
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By design, RASH is an aggressive local minima searcher : it aims at converg-
ing rapidly to the local minimizer corresponding to the attraction basin where
the initial point falls.

We assume that most computational effort during the search is spent by
calculating function values f(x) at tentative points. Because of the algorithm
simplicity, the assumption is valid for non-trivial real-world problems.

The search speed is related to the average size of the steps (‖x(t+1) −x
(t)‖)

executed along the search trajectory. Let’s consider two extreme cases. If
the search region is very small and the function is smooth, the “double shot”
strategy will produce a new successful point with probability close to one, see
Appendix A, but the step will be very small. Vice versa, if the search region is
very large and it coincides with the initial range of interest, the search strategy
will become that of näıve random search: points are generated at random in the
entire search space. The step can be large, but the locality assumption is lost
and, unless the problem is very simple, a potentially very large number of points
will have to be evaluated before finding a successful one. Ideally, the maximize
the usage of the information derived from the costly f(x) computations, one
should aim at the largest possible step per function evaluation. This optimal
criterion cannot in general be fulfilled, in particular if the analytic form of the
function is not known and values f(x) are obtained by simulation.

RASH aims at maintaining the search region size as large as possible, while
still ensuring that the probability of a success per evaluation will be reasonably
close to one (success probabilities in the range 0.3 - 0.5 are considered accept-
able). Now, the success probability is related both to the area of the search
region, and to its form. For example, if the attractor basin consists of an elon-
gated and narrow valley leading to a local minimizer, for a fixed area, a search
region elongated along the bottom of the valley will guarantee a higher success
rate of the double shot strategy, and therefore longer average step sizes.

RASH obtains both design objectives: (i) success probability per sample
close to one and (ii) largest possible step size per successful sample, trough a
“reactive” determination of the search area during the search. For objective
(i) the area is enlarged if the search is successful, reduced if unsuccessful, for
objective (ii) the area is elongated along the last successful direction. Of course,
“largest possible” has a heuristic meaning: given the partial knowledge about
f and the lack of constraints about its functional form we are satisfied if a
reasonably large step is determined by a simple reactive scheme.

With more detail, the algorithm proceeds by iterating the following steps:

1. A new tentative point is generated by sampling the local search region R
with a uniform probability distribution and by using the “double shot”
strategy. The second specular shot is evaluated only if the first one does
not succeed.

2. The search region is modified according to outcome of the tentative point.
It is compressed if the new function value is greater than the current
one (unsuccessful sample), it is expanded otherwise (successful sample).
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Modification of the search region is performed by taking into account the
direction of the last tentative step. In RASH, the search area defined by
vectors bi undergoes an affine transformation, see equations (3)–(4) below.

3. If the sample is successful, the new point becomes the current point, and
the search region R is translated so that it becomes centered around the
new point.

A last design decision concerns the initial size of the search area, in the
absence of initial information about the local attraction basin of f . Two simple
options, which do not require critical parameters to be tuned, are to start with
a search area corresponding to the initial search range, which will be rapidly
compressed in the following iterations until it leads to a success, or, on the
contrary, to start with a very small search area, which will be rapidly expanded.
The first option is in conflict with the requirement that RASH should scout for
the local minimizer corresponding to the basin of attraction of the initial point.
If arbitrarily large jumps are permitted at the beginning, all attraction basins
could be reachable, with a probability depending on their sizes. Therefore we
adopted the second option.

As it is demonstrated in the Appendix A, when the function is smooth and
the search region area goes to zero, the probability of success of the “double
shot” strategy tends to one, no matter what the initial direction is. This fact
creates an undesired effect: after picking the first tentative direction, one will
have an uninterrupted sequence of successes. At each step, the search area
will be expanded along the last direction, which in turn was be generated with
uniform probability in an already elongated region. Through this self-reinforcing
mechanism one may easily get an extremely elongated search region, where
the elongation tends to be collinear with the first random direction (and with
no influence from the current basin form). To avoid this spurious effect, the
expansion of the search region is isotropic in the initial part of the search, until
the first unsuccessful direction is encountered, i.e., all box vectors are expanded
by the same factor.

The details about the evolution of directions during the initial phase of the
search, as well as the experiments related to the correlation between initial
search directions, are explained in Appendix B, see for example Fig. 10.

After explaining the design choices, let’s now comment on the name (Re-
active Affine Shaker). The solver’s movements try to minimize the number of
jumps towards the minimum region, and this is achieved by constantly changing
the movement direction and size. Search region and therefore step adjustments
are implemented by a feedback loop guided by the evolution of the search it-
self, therefore implementing a “reactive” self-tuning mechanism. The constant
change in step size and direction creates a “shaky” trajectory, with abrupt leaps
and turns. Last, modifications of the search parameters are through an affine
transformations on the shape of the search region.
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Variable Scope Meaning
f (input) Function to minimize
x (input) Initial point
b1, . . . , bd (input) Vectors defining search region R around x

ρe, ρr (input) Box expansion and reduction factors
d (input) Dimension of the space
t (internal) Iteration counter
P (internal) Transormation matrix
x, ∆ (internal) Current position, current displacement

1. function AffineShaker (f , x, ( bj), ρe, ρr)
2. t ← 0;
3. repeat

4. ∆ ←
∑

j Rand(−1, 1)bj ;

5. if f( x+ ∆) < f( x)
6. x ← x + ∆;

7. P ← I + (ρe − 1)
∆∆T

‖∆ ‖2
;

8. else if f( x- ∆) < f( x)
9. x ← x - ∆;

10. P ← I + (ρe − 1)
∆∆T

‖∆ ‖2
;

11. else

12. P ← I + (ρc − 1)
∆∆T

‖∆ ‖2
;

13. ∀j bj ← P bj ;
14. t ← t+1
15. until convergence criterion;
16. return x;

Figure 1: The Affine Shaker algorithm
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2.2 RASH pseudo-code

Details of the RASH algorithm are shown in Fig. 1. At every iteration, a
displacement ∆ is generated so that the point x+∆ is uniformly distributed in
the local search region R (line 4). To this end, the basis vectors are multiplied
by random numbers in the real range [−1, 1] and added:

∆ =
∑

j

Rand(−1, 1)bj . (2)

If one of the two points x + ∆ or x − ∆ improves the function value, then it
is chosen as the next point. Let us call x

′ the improving point. In order to
enlarge the box along the promising direction, the box vectors bi are modified
as follows.
The direction of improvement is ∆. Let us call ∆′ the corresponding versor

∆′ =
∆

‖∆‖
.

Then the projection of vector bi along the direction of ∆ is

bi|∆ = ∆′(∆′ · bi) = ∆′∆′T
bi.

To obtain the desired effect, this component is enlarged by a coefficient ρe > 1,
so the expression for the new vector b

′

i is

b
′

i = bi + (ρe − 1)bi|∆ (3)

= bi + (ρe − 1)∆′∆′T
bi

= bi + (ρe − 1)
∆∆T

‖∆‖2
bi

= Pbi

where

P = I + (ρe − 1)
∆∆T

‖∆‖2
. (4)

The fact of testing the function improvement on both x + ∆ and x−∆ is
called double-shot strategy: if the first sample x +∆ is not successful, the spec-
ular point x−∆ is considered. This choice drastically reduces the probability
of generating two consecutive unsuccessful samples. The motivation is clear if
one considers differentiable functions and small displacements: in this case the
directional derivative along the displacement is proportional to the scalar prod-
uct between displacement and gradient ∆ · ∇f . If the first is positive, a change
of sign will trivially cause a negative value, and therefore a decrease in f for
a sufficiently small step size. The empirical validity for general functions (not
necessarily differentiable) is caused by the correlations and structure contained
in most of the functions corresponding to real-world problems. See Appendix A
for a thorough analysis motivating the double-shot strategy.
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Figure 2: Affine Shaker geometry: two search trajectories leading to two differ-
ent local minima. The evolution of the search regions is also illustrated.
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An illustration of the geometry of the Reactive Affine Shaker algorithm is il-
lustrated in Fig. 16, where the function to be minimized (in this case the domain
is a square in d = 2 dimensions) is represented by a contour plot showing isolines
at fixed values of f , and two trajectories (ABC and A’B’C’) are plotted. The
search regions are shown for some points along the search trajectory. A couple
of independent vectors define the search region as a parallelogram centered on
the point. The design criteria are given by an aggressive search for local min-
ima: the search speed is increased when steps are successful (points A and A’ in
Figure 16), reduced only if no better point is found after the double shot. When
a point is close to a local minimum, the repeated reduction of the search frame
produces a very fast convergence of the search (point C in Figure 16). Note that
another cause of reduction for the search region can be a narrow descent path
(a “canyon”, such as in point B’ of Figure 16), where only a small subset of all
possible directions improves the function value. However, once an improvement
is found, the search region grows in the promising direction, causing a faster
movement along that direction.

2.3 Termination and repeated runs

For most continuous optimization problems, an effective estimation of the num-
ber of steps required for identifying a global minimum is clearly impossible.
Even when a local minimum is located, it is generally impossible to determine
whether it is the global one or not, in particular if the knowledge about the
function derives only from evaluations of f(x) at selected points.

Because RASH does not include mechanisms to escape from local minima, it
should be stopped as soon as the trajectory is sufficiently close to a local mini-
mizer. Suitable termination criteria can be derived, for instance a single RASH
run can be terminated if the step size ‖∆‖ is smaller than a threshold value ε
for a predefined number S of consecutive steps. The step size, in fact, depends
on the search box size, and the box tends to reduce its diameter in proximity of
a local minimum because of repeated failures in improving the function value.
A sequence of S consecutive steps is considered before termination to reduce the
probability that, by chance, a small step is executed because of the randomized
selection and not because the point is close to a local minimum.

By design, RASH searches for local minimizers and is stopped as soon as
one is found. A simple way to continue the search after a minimizer is found
is to restart from a different initial random point. This approach is equivalent
to a “population” of RASH searchers where each member of the population is
independent, completely unaware of what other members are doing.

In the experimental Section, parallel execution of RASH optimizers is con-
sidered.
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Variable Scope Meaning
f (input) Function to minimize
ρe, ρr (input) Box expansion and reduction factors
L1, . . . , Ld, U1, . . . , Ud (input) Search range
L′

1, . . . , L
′

d, U
′
1, . . . , U

′

d (input) Initialization range
d (input) Dimension of the space
n (input) Number of parallel optimizers
b1, . . . , bd (internal) Vectors defining search region R around x

x, x
′ (internal) Current position, final position of run

1. function ParallelAffineShaker (f , ρe, ρr, (L′
j), (U ′

j), (Lj), (Uj))

2. ∀j bj ←
Uj − Lj

4
· ej ;

3. pardo

4. x ← random point ∈ [L′
1, U

′
1]× · · · × [L′

d, U
′

d];
5. x’ ← AffineShaker(f , x, ( bj), ρe, ρr);
6. return best position found;

Figure 3: The Repeated RASH algorithm

3 Software structure

The main purpose of the developed software is to facilitate the comparison
among different techniques and the integration of basic building blocks into
more complex schemes. The basic software artifacts therefore correspond to a
library of “solvers” and “test functions”.

The library, written in C++, defines two pure virtual classes, Function and
Solver, which expose all methods that are necessary for normal operation. A
Function provides means for evaluating it, getting the number of dimensions
of its domain, its search range; a Solver exposes methods for associating a
Function to it and for executing an optimization step.

While specific implementations differ according to the particular function
and solver, virtual definitions provide a convenient abstraction layer that allows
every possible matching between specific solvers and function, while having a
reasonably small main program to control both objects.

The main design features of the library are shown in Fig. 4. The pure virtual
classes Function and Solver are inherited by specialized functions and solvers,
respectively. Every specialized class has its own construction parameters, so
object construction must be handled in a possibly different way for every spe-
cialized object. However, once a specific function object (e.g. a 4-dimensional
Shekel 5 function) and a specific solver (e.g. RASH) have been created, the re-
maining code is completely independent of them, and only refers to the virtual
classes. The function object is “registered” within the solver object (meaning
that a reference to the function is stored inside the solver), then a single opti-
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1. template <class Targ, class Tres> class Function {
2. private:
3. mutable int fevals;
4. protected:
5. mutable Tres Result;
6. virtual void body(const Targ &x) const = 0;
7. inline Tres& eval (Targ &x) const

8. { ++fevals; body(x); return Result; }
9. public:
10. const int dimension;
11. const Targ minarg, maxarg;
12. Function (int d) : dimension (d), fevals (0) {}
13. virtual ~Function (void) {}
14. const Tres& operator() (void) const { return Result;}
15. const Tres& operator() (Targ &x) const { return eval(x); }
16. int getEvaluations (void) const { return fevals; }
17. };

Figure 5: Pure virtual template Function: all functions are extension of this
class and must implement the constructor, and the body method.

1. class FZakharov: public Function <vector<double>, double> {
2. public:
3. FZakharov(int = 30);
4. protected:
5. void body (const vector<double> &) const;
6. };

Figure 6: Definition of an Rd → R function.

mization step method can be repeatedly invoked by the main program. This
optimization step will require the Solver object to evaluate the Function ob-
ject, accessed through its reference.

An excerpt of the definition of the Function class is shown in Fig. 5. It is
actually defined as a template whose arguments represent the input and output
types of the represented function. The generic constructor initializes the number
of dimensions and the counter of function evaluations. All extensions of the class
are required to call the base function’s constructor and define the pure virtual
protected eval() method.

All data structures used by the library are based on the STL templates, so
the input values are defined as vector<double>. Since the library is used for
continuous optimization, a function mapping a subrange of Rd onto R, shall be
defined as in Fig. 6.

The Solver base class is shown in Fig. 7. The class only defines members
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1. class Solver {
2. protected:
3. Function<vector<double>,double> &function;
4. vector<double> last evaluated point;
5. vector<double> best point;
6. double best value;
7. public:
8. Solver (Function<vector<double>,double>&);
9. virtual ~Solver (void) {}
10. virtual const vector<double>& next (double&) = 0;
11. const vector<double>& getLastPoint (void) const

12. { return last evaluated point; }
13. const vector<double>& getBestPoint (void) const

14. { return best point; }
15. double getBestValue (void) const

16. { return best value; }
17. };

Figure 7: Pure virtual class Solver: all solvers are extensions of this class and
must implemnt the constructor and the next method.

1. FZakharov f (10);
2. RASH r (f);
3. double v;
4. while ( f.getEvaluations() < MAXEVAL )
5. r.next (v);

Figure 8: Excerpt of a main program performing local search.

that are common to all local search methods, namely a reference to the func-
tion to be minimized, the last point being evaluated, the point with the best
evaluation and the corresponding function value. Currently, the registration
of a function is performed at construction. The pure method next() must be
implemented by child classes, and must be used to perform a single iteration of
the local search procedure.

Because of the object-oriented approach and the use of virtual methods,
the RASH solver can accept any function object that is defined as a mapping
Rd → R. Fig. 8 shows an example of code that can be used to actually perform
an optimization run ff the chosen RASH optimizer on the Zakharov function
in 10 dimensions. A complete example of usage is included in the software
distribution package RASH v1.0.
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4 Experimental results

Several tests have been performed in order to both validate and motivate the
chosen strategy and to compare it with other state-of-the-art techniques. The
proposed RASH algorithm has been tested on various classical test functions,
whose analytical formulation and properties are reported in many optimization
papers, see for example [4]. After some experiments on the success rate of the
double-shot strategy (Section 4.1), and a discussion of some spurious effects dur-
ing the initial phase of the search which are solved by our version (Section 4.2),
we introduce the experimental results on the benchmark suite (Section 4.3), and
an analysis of the effectiveness of the heuristic when compared with alternative
techniques (Section 4.4).

4.1 Success rate of the double-shot strategy

A measure of the effectiveness of the RASH heuristic can be the double-shot
success rate during the search. In Appendix A we show that the success rate
must be very high at the beginning, when the search region is very small; how-
ever, after the initial transient the rate should reduce, due to the fact that
the algorithm operates by dynamically setting a balance between step size and
success rate. Fig. 9 shows two representative cases. In both plots, the x axis
reports the number of function evaluations, while the y axis reports a simple
moving average of the rate of double-shot successes over the previous 100 steps
on a representative run. After an initial transient when the success rate is very
high due to the small size of the search region (which confirms the analysis of
Appendix A), during a significant portion of the search the double-shot success
ratio varies from 30% to 55%.

In the first plot, where a local minimum of a Shekel 4,5 function is reached,
we observe a sharp reduction of success rate at the end. This happens when a
local minimum is reached, and further improvement becomes impossible. The
steep reduction of the double-shot success rate can therefore be used as a restart
criterion. In the Rosenbrock case (lower plot), the system proceeds slowly to-
wards better values, by following the very narrow valley leading to the global
optimum. The success rate remains close to 50% during the descent.

These results confirm the “aggressive” attitude of the RASH heuristic, whose
search regionR is continuously adjusted to allow steps as large as possible while
still ensuring a large success probability of each double shot trial.

4.2 Influence of initial conditions

An issue that deserves further study is the dependence of the search strategy
on the initial conditions. In particular, the choice of the first displacement
vector ∆ may influence the subsequent behavior in an improper way, because
on successful moves the search box will expand along ∆, thus influencing the
next choice of ∆, and so on. At the beginning, with a very small search region,
the double-shot strategy succeeds with probability close to one, and the local
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Figure 9: Success rate of the double-shot strategy for a Shekel 4,5 (top) and a
Rosenbrock 10 (bottom) search.
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Figure 10: Angle between the first and the tenth move. The solid line repre-
sents the theoretical angle if the two directions were random (see Appendix B),
the dashed series is obtained after 10 subsequent successes of the double shot
procedure.

characteristics of the f function do not have a chance of influencing the evolution
of the search region in an effective way. The successes depend on the very small
size of the box more than on the local properties.

In order to study this effect, we simulated the algorithm’s behavior during a
sequence of 10 successful applications of the double-shot procedure, by repeat-
edly generating a ∆ vector in the search box R, then updating R according to
equation (3). Finally, the angle between the directions of the first and the tenth
value of ∆ is computed.

Fig. 10 shows the average and standard error of 100 runs on different problem
dimensions. The continuous plot shows the theoretically calculated average
angle between two random directions, as obtained in Appendix B. It can be seen
how a memory effect can be detected after 10 iterations. The initial and final
directions are correlated, not random. As expected, they tend to be collinear.
Because the box elongation can be very large (the search region becomes “needle-
like”), a potentially large number of iterations can be spent to adapt it to the
structure of the local attraction basin.

In order to avoid this spurious effect, as mentioned, in the initial phase of
RASH the box is enlarged in an isotropous manner, by multiplying each basis
vector bi by the same ρe factor, until the first lack of success is encountered and
the affine transformation (3) is used.
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Table 1: Number of successes, average function evaluations and average mini-
mum found for 100 optimization runs on the test functions.

f d Success Evals CPU time ∆Min

Goldstein-Price 2 76 476 0.121 2.85 · 10−3

Hartmann d,4
3 96 2227 1.73 4.26 · 10−4

6 63 257 0.995 2.24 · 10−3

Shekel 4,5 4 35 170 0.338 0.261
Shekel 4,7 4 31 306 0.542 0.370
Shekel 4,10 4 30 164 0.362 0.438

Zakharov

10 100 2473 13.9 9.46 · 10−7

20 100 12259 464 9.86 · 10−7

50 100 83605 42099 9.95 · 10−7

100 100 260358 1843765 9.86 · 10−7

Rosenbrock
3 100 3595 2.06 7.98 · 10−7

4 65 12085 11.0 9.33 · 10−5

5 1 15122 — 1.54 · 10−3

4.3 Benchmarks

This section reports results obtained by running the RASH algorithm on a
benchmark suite of various classical test functions (see for example [4] for defi-
nitions).

Table 1 shows the results for 100 independent optimization runs for each
function. A run is considered successful if the heuristic finds a point x such that

f(x)− fmin < εrel|fmin|+ εabs (5)

where fmin is the known global minimum. Following [4], we have set εrel = 10−4

and εabs = 10−6. Runs are stopped, and lack of success is recorded, if the global
minimum is not located after 5000d function evaluations. In the experiments,
the termination criteria described in Section 2.3 are disabled in order to evaluate
the effectiveness of RASH when applied to the known test cases. The only
retained criterion is the maximum number of iterations, while the execution
is artificially interrupted, for the experimenters’ convenience, when the known
global minimum is located with the given degree of accuracy.

The number of successful runs is shown in column Success. The average
number of function evaluations required in successful runs is shown in column
Evals, (unsuccessful runs are truncated). Column ∆Min reports the average
value of the difference between the found minimum and the actual global mini-
mum achieved by all 100 runs, including unsuccessful ones.

Column CPU time reports the average execution time of successful runs,
given in standard CPU time units as defined in [6].

It can be noted that, for some functions like Goldstein-Price, Hartmann, and
Zakharov, the success rate is large and the number of function evaluations is
comparable to, and in some cases better than, the number of function evalua-
tions used by more complex techniques like Enhanced Simulated Annealing, see
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Table 2: Number of successes, average function evaluations and average mini-
mum found for 100 optimization runs on the test functions on 2d parallel threads.

f d Threads Success Evals CPU time ∆Min

Goldstein-Price 2 4 99 337 0.152 1.25 · 10−4

Hartmann d,4
3 6 100 856 0.556 2.55 · 10−4

6 12 100 2420 5.38 2.41 · 10−4

Shekel 4,5 4 8 93 1296 1.28 1.2 · 10−3

Shekel 4,7 4 8 94 1323 1.28 1.03 · 10−3

Shekel 4,10 4 8 85 1336 1.34 2.53 · 10−3

for comparison Table I of [13]. These results confirm that the standard behavior
of RASH is to rapidly locate a local minimum in the basin of attraction where
the initial point lies. However, by design, RASH has no mechanism to escape
local minima after they are identified. Therefore it is not surprising that the
percentage of success is lower for other functions (like for example for Shekel).
While the RASH algorithm shows a good performance on most test functions,
a very ill-conditioned problem, such as the Rosenbrock function, is solved in
a satisfactory way only for a small number of dimensions. The effects of high
dimensionality are also apparent on the CPU time column of Table 1. Due the
relative simplicity of the benchmark functions, the dominating factor for a large
number of dimensions is the affine transformation of the search region vectors,
amounting to d vector multiplications by a d × d matrix, totaling to an O(d3)
time per optimization step. For high-dimensional problems and functions re-
quiring small computation more specialized techniques like ESA of [13] should
be considered. In any case, let’s note that many functions are extremely costly
to compute, see for example evaluations requiring the simulation of an industrial
plant or a real-world experimentation.

In order to obtain higher success rates, we exploited the fast convergence
speed of the successful runs by parallelizing independent solvers on the same
function. Considering independent repetitions is in fact the simplest way to
use the simple RASH component to obtain a more robust scheme. In this
case, an optimization session is achieved by iterating through 2d independent
solvers (where d is the dimension of the function’s domain) until either one of
the solvers finds a value that satisfies equation (5) or the maximum number of
function evaluations is reached (counting the total number of evaluations by all
independent threads).

The results of interest, where parallelization actually leads to an improve-
ment, are shown in Table 2. Note that most problem instances benefit from
parallel search. However, highly dimensional problems such as Zakharov are al-
ready solved with a single thread. In this case, a single solver is more effective,
and the success rate for a fixed number of iterations decreases if parallel threads
are exploited.
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Table 3: Comparison with other techniques — number of successful minimiza-
tions; see text for the description of the techniques

Method G. − P. H3 H6 S4,5 S4,7 S4,10

RASH 99 100 100 93 94 85
ECTS 100 100 100 75 80 75
ESA 100 100 100 54 54 50
ISA 1 n.a. 99 97 7 1 3
ISA 2 n.a. 100 0 19 28 18

4.4 Comparison with other techniques

The RASH algorithm behavior has been compared with other local search
heuristics, and results are presented in Table 3. In particular, we focused on two
recent proposals, Enhanced Simulated Annealing [13] and Enhanced Continuous
Tabu Search [4], which, like RASH, aim at minimizing functions of continuous
variables. Another classical proposal, the Improved Simulated Annealing algo-
rithm [15] is shown in two different variants (wide and narrow search domain).
Techniques have been selected on the basis of similar hypotheses (continuous
functions, no analytical tools other than evaluation) and on similar criteria for
estimating success and efficiency.

For comparison purposes, we rely on data provided in [4] and on the orig-
inal sources. The definition of “successful” run takes into account the criteria
defined in [4, 13], where the maximum number of allowed evaluations is 5000d,
as described before. For RASH, we chose to employ the multi-thread results
shown on Table 2.

The results clearly show that the RASH heuristic achieves state-of-the-art
results on various classical problems, ranging from 85% to 100% successful min-
imizations. This result is of interest because of the simplicity of the technique,
which can be an effective building block for more complex heuristic schemes.

5 Conclusions

We proposed and analyzed the Reactive Affine Shaker adaptive random search
algorithm based on function evaluations, which builds on a seminal proposal
of [1]. The main algorithmic contributions of this paper consist of a careful
analysis of the double-shot strategy motivating and quantifying what was orig-
inally proposed based on intuition, the proposal of a modified initial phase to
avoid a dangerous effect during the initial growth of the search region and the
evaluation of a simple “portfolio” consisting of independent runs of the local
searcher.

Last but not least, the paper presents a design and implementation of modu-
lar and reusable software components to facilitate the experimentation with the
technique and the development of more advanced schemes by starting from algo-
rithmic building blocks. The software package is made available to researchers
as RASH v 1.0 for non-profit usage at the URL
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http://netmob.unitn.it/software/RASH.tar.gz

The conclusions of the experiments show a performance which is in some
cases comparable or better w.r.t. competitive techniques. The results are unex-
pected given the algorithmic simplicity of RASH, in particular its design based
on converging rapidly to the local minimizer in the attraction basin of the initial
point and are due to a rapid and effective adaptation of the search region based
on feedback from function evaluations at random points. This work motivates
the consideration of this component for more complex meta-heuristic schemes.
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APPENDIX

A Double-shot success probability

If the function f is linear, an increase of the function value at the displaced
point x + ∆ implies a decrease of the value at the specular point x −∆, and
therefore the “double shot” strategy is trivially bound to be successful.

The intuition supporting strategy for a general function is that, if the func-
tion f is smooth, it can be approximated around a given point by a tangent
hyperplane with a good accuracy for small displacements. The “double shot”
should therefore be successful with a high probability if the search region, and
therefore the displacement, becomes very small. The purpose of this section is
to analyze in detail the probability of the strategy used in RASH.

Let B be the current box, shown in light grey in Figure 11:

B =

{

n
∑

i=1

cibi : ∀i − 1 ≤ ci ≤ 1

}

. (6)

Let us define rB = max{‖b1‖, . . . , ‖bn‖} the radius of the box. Of course,
the box B is contained in the circle with radius nrB.
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Figure 12: Description of the setting of Lemmata A.2 and A.3.

Let HB be the subset of B where the double shot strategy does not succeed:

HB = {h ∈ B : f(P + h) ≥ f(P ) ∧ f(P − h) ≥ f(P )}. (7)

In Figure 11 the set HB is contained in the dark grey area, whose exact
meaning shall be made clear later. We want to show that as the box becomes
smaller and smaller the probability of failure of the double shot strategy tends
to zero. Since the choice of the vector h ∈ B is uniform, we just need to show
that the ratio between the measure of HB and the measure of B tends to zero.

More formally, we want to prove the following.

Theorem A.1. Let D ⊆ Rn, a point P ∈ D, a function f : D → R continuous
in P with continuous first partial derivatives, a real constant K > 0.

Then, for every ε ∈ R, ε > 0, there exists δ ∈ R such that, for every set of
vectors b1, . . . , bn ∈ Rn, defining the box B (where P +B ⊆ D) with rB < δ and
measure(B) ≥ Krn

B
, we have

measure(HB)

measure(B)
< ε.

In order to prove Theorem A.1 we need the following lemma (see Figure 12
for a visual representation):

Lemma A.2. Let v ∈ Rn, let H = {h : ‖h‖ ≤ 1 ∧ |h · v| ≤ ‖h‖2}. If h
′ ∈ Rn

is such that ‖h′‖ = 1 and h
′ · v = C‖h‖2 = C, then H lies outside the cone

generated by rotating h
′ around v.

In other words, all vectors in H are “more perpendicular” than h
′ with

respect to v.
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Proof. We just need to show that for every h ∈ H the normalized projection of
h on v, i.e., the cosine of their angle, is smaller than that between h

′ and v.
Indeed,

|h · v|

‖h‖‖v‖
≤

C‖h‖2

‖h‖‖v‖
=

C‖h‖

‖v‖
≤

C

‖v‖
=

h
′ · v

‖h′‖‖v‖
.

This leads to the following corollary (again, see Figure 12 for a visual repre-
sentation):

Lemma A.3. Let v ∈ Rn, let H = {h : ‖h‖ ≤ 1∧h · v ≤ ‖h‖2}. If h
′ ∈ Rn is

such that ‖h′‖ = 1 and h
′ · v = C‖h‖2 = C, then H lies in the n-dimensional

cylinder centered in the origin, with axis along the direction of vector v, having
height 2d, where

d =
h
′ · v

‖v‖

and (n− 1)-dimensional basis of radius 1.

Proof. Such cylinder is the set of vectors w such that the projection of vector
w along the direction of v is less than d, and the norm of the component of w

perpendicular to v is less than 1:

Xv,d =

{

w ∈ Rn :
w · v

‖v‖
≤ d ∧ ‖w‖2 −

(

w · v

‖v‖

)2

≤ 1

}

.

Both conditions are fulfilled for all w ∈ H . In fact, by Lemma A.2,

w ∈ H ⇒
w · v

‖v‖
≤

h · v

‖h‖‖v‖
≤

h
′ · v

‖h′‖‖v‖
=

h
′ · v

‖v‖
= d.

and

w ∈ H ⇒ ‖w‖ ≤ 1 ⇒ ‖w‖2 −

(

w · v

‖v‖

)2

≤ 1.

The last lemma enables us to find a convenient upper bound on the measure
of the set HB.

Proof of Theorem A.1. Since f has continuous first derivatives, we have

f(P + h) = f(P ) + h · ∇f(P ) + σ(h),

f(P − h) = f(P )− h · ∇f(P ) + σ(−h),

where
σ(h) = O(‖h‖2). (8)
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Let σ′(h) = max{σ(h), σ(−h)}. Then (7) implies:

HB ⊆ H ′

B = {h ∈ B : |h · ∇f(P )| ≤ σ′(h)}. (9)

Equation (8) is still valid for σ′, therefore we can find constants C and r0

such that σ′(h) ≤ C‖h‖2 as soon as ‖h‖ ≤ r0. Therefore,

∀B, rB ≤ r0, HB ⊆ H ′

C,B =
{

h ∈ B : |h · ∇f(P )| ≤ C‖h‖2
}

.

Figure 11 shows the set H ′
C,B in dark grey.

Given a box B having rmB ≤ r0 and constrained by the theorem’s hypoth-
esis, let us choose a vector hmax such that ‖hmax‖ = nrB (so that its “tip” lies
on the sphere) and hmax · ∇f(P ) = C(nrB)2 (so that it lies at the border of the
set H ′

C,B).
As proved in Lemma A.3, H ′

C,B is contained in the n-dimensional cylinder
P + nrB · X∇f(P ), d

nrB

, i.e. centered in P , with axis directed as ∇f(P ) having

base radius nrB and height 2d, where

d =
hmax · ∇f(P )

‖∇f(P )‖
=

Cnr2
B

‖∇f(P )‖

is the projection of hmax along the direction of ∇f(P ). Consequently, whenever
rB ≤ r0, as HB ⊆ H ′

C,B ⊆ P + nrB ·X∇f(P ), d

nrB

,

measure(HB) ≤M(nrB)n−1 · 2d =
2MCnn−1

‖∇f(P )‖
rn+1
B

,

where M is the measure of the (n− 1)-dimensional sphere with unit radius.
Therefore,

measure(HB)

measure(B)
≤

2MCnn−1

‖∇f(P )‖
rn+1
B
·

1

Krn
B

=
2MCnn−1

K‖∇f(P )‖
rB,

therefore, given ε > 0, it is sufficient to let

δ = min

{

r0,
K‖∇f(P )‖ε

2MCnn−1

}

to obtain the thesis.

Note that the hypothesis constraining the measure of B to be greater of Krn
B

for some constant K > 0 is necessary in order to avoid degenerate cases where
two vectors generating the box tend to align.

B Angle between random directions in Rd

As we mentioned in Section 2, if RASH starts with a very small and isotropic
search region and enjoys an uninterrupted sequence of successes afterwards
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Figure 13: Angle P̂Ox between a random point in the positive-x hemisurface
and the positive x axis

(caused by the fact that the search region is very small and not by the fact
that the chosen directions are suited to the local attraction basin), the average
direction obtained after some steps can be very different from a random direc-
tion as it can “remember” the initial step. In fact, the affine transformation will
elongate the region along the first direction, and therefore the second directions
will tend to be approximately collinear with the first one, an effect that will con-
tinue for the future iterations. In order to quantify this initial “memory effect”,
it is of interest to compare the probability distribution of directions obtained
after a sequence of affine expansions with a uniform probability.

The problem we are addressing is therefore the following one:

Problem B.1. If we draw two random lines in Rd intersecting at the origin,
what is the average angle between them?

Of the two possible supplementary angles, we always choose the one which
is less than π/2, otherwise the answer would always be zero.

The problem can also be stated as follows.

Problem B.2. Given a d-dimensional hypersphere, consider the positive-x
hemisphere (the case d = 3 is shown in Fig. 13). Choose a random point P on
the surface, i.e., a point P = (x, y, z, . . . ) ∈ Rd such that x ≥ 0 and ‖P‖ = 1.

What is the average value for the angle P̂Ox?
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B.1 An inductive expression for the hemisurface

Let Sd(R) be the value of the hemisurface (half the surface of the sphere) for
a given number d of dimensions and a given radius R of the d-dimensional
hypersphere.

Then, the hemisurface of the d +1-dimensional hypersphere of radius R can
be obtained by integrating the grey ring surface of Fig. 14 for α moving from 0
(the upper point) to π/2 (the equator):

Sd+1(R) =

∫ π

2

0

2Sd(R sin α)R dα. (10)

Consider in fact that the grey ring has radius R sin α, and thus its perime-
ter is 2Sd(R sin α) (twice the hemiperimeter) and its “width” (in the d + 1-th
dimension) is equal to R dα, since α is expressed in radians.

Notice that the hemisurface of the d-hypersphere is also proportional to the
d− 1-th power of R (it is a d− 1-dimensional variety):

Sd(R) = CdR
d−1 (11)

for some positive real constant Cd. This expression shall be useful in the fol-
lowing.
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B.2 The average angle

Equation (10) is very helpful in calculating the average value of α, which we are
looking for. In fact, let ᾱd be the average value of α in d dimensions. Then

ᾱd =

∫

S

P̂Ox dS

|S|
(12)

where S is the hemisurface, the point P scans S and |S| is the measure of S.

Consider that angle P̂Ox is precisely the angle α of equation (10), and that it
is constant within the same ring; then, the probability distribution function of

the angle P̂Ox is

fd(α) =
2Sd(R sin α)R

∫ π

2

0

2Sd(R sin α)R dα

, (13)

and equation (12) becomes

ᾱd =

∫ π

2

0

αfd(α) dα =

∫ π

2

0

α · 2Sd(R sin α)R dα

∫ π

2

0

2Sd(R sin α)R dα

.

Considering the due simplifications and equation (11), we get

ᾱd =
Jd−2

Id−2
, (14)

where

Id =

∫ π

2

0

sind α dα (15)

Jd =

∫ π

2

0

α sind α dα. (16)

With the notation introduced by equations (15) and (16), the probability
density function (13) can be written as

fd(α) =
sind−2 α

Id−2
.

B.2.1 Determining Id and Jd

The value of Id can be obtained by straightforward calculations (integration by
parts) leading to the following inductive expression:

Id =











π
2 if d = 0

1 if d = 1
(d−1)Id−2

d
if d ≥ 2.

(17)
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Table 4: Values of ᾱd for increasing dimensions
d ᾱd (radians) ᾱd (degrees)
2 0.785398 45.0000
3 1.000000 57.2958
4 1.103708 63.2378
5 1.166667 66.8451

10 1.302778 74.6437
15 1.356416 77.7169
20 1.387008 79.4697
30 1.422228 81.4877
40 1.442770 82.6646
50 1.456625 83.4584

100 1.490539 85.4016

The value of Jd is obtained by an analogous procedure and has a similar ex-
pression:

Jd =











π2

8 if d = 0

1 if d = 1
(d−1)Jd−2

d
+ 1

d2 if d ≥ 2.

(18)

B.3 Values of ᾱd for different values of d

While the analytical expression for ᾱd is possible, and all values are in Q(π), it
is easier to write a short C program to print out some values. Table 4 reports
some representative values.
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