
Proceedings of DIAL M for Mobility — Budapest, october 3, 1997 1

Cellular Channel Assignment:
Comparing and Simplifying Heuristics

Roberto Battiti∗† Alan A. Bertossi∗† Mauro Brunato∗†‡

Abstract

As the use of mobile communications systems grows, the need arises for new and more efficientchannel
allocation techniques. In the model problem a geographic area is partitioned into a number ofcells, each one
served by a fixed station. When a mobile host wants to establish a connection to the network, it asks for a
free channelto the server of the cell. The total number of available channels on a real-world network is a
scarce resource, and many assignment heuristics suffer from a clear lack of flexibility (FCA), or from high
computational and communication complexity (BCO, BDCL). Performance can be improved by representing
the system with an objective function whose minimum is associated to a good configuration; the various
constraints appear as penalty terms in the function. The problem is thus reduced to the search for a global
minimum, that is often performed via heuristic algorithms like Hopfield neural networks, simulated annealing,
reinforcement learning. These strategies require a central process to have global information and decide for
all cells.

We consider a problem that has been previously solved by heuristics, we demonstrate that the search time
for the global minimum isO(n log n), and therefore there is no need for search techniques, and that the
algorithm can be distributed. We compare the main algorithms by simulating a cellular network with mobile
hosts on the well-established hexagonal-cell pattern with a uniform call arrival distribution.

1 Cellular Networks

Consider a geographic area partitioned into zones (cells). In each cell a multi-channel transceiver server station
is placed in a convenient place with the purpose to serve all the mobile hosts which are found in its cell. Of
course, the area reached by the signal of the station is larger than the cell itself. As in figure 1, the cells need
not be regular or of equal size; however, most of the times we shall refer to a more regular setting, like the
hexagonal cell pattern used in practice.

Usually a server station can be received by server stations in other cells. In this case, mutually interferring
stations must employ different communication channels (i. e. frequency bands, time slices or codes from an
orthogonal set), in order to avoidco-channel interference(interference caused by transmissions on thesame
channel). In its simplest form, the channel assignment problem is equivalent to the Euclidean graph coloring
problem, hence it is NP-hard. This problem can be treated with simple greedy heuristics [5] [3] [1]. Because
a server station must communicate with several mobile hosts at once, however, we must assign more than one
channel to each server. When this problem is treated with graph-coloring heuristics, the substitution of every
node with a clique of cardinality equal to the required number of channels causes the combinatorial explosion
of the problem.

The general problem, however, can be made harder. For instance, if the interference phenomena are strong
enough, even stations that use different channels may interfere, provided that they operate on adjacent frequency
bands or on subsequential time slices (propagation delays may cause a time slice to partially invade another one).
This problem becomes significant when the overall frequency spectrum has to be minimized; indeed, the strong
request of radio bands for several purposes makes the reserved bandwidth for cellular communications rather

∗Universit̀a di Trento, dipartimento di Matematica, via Sommarive 14, I-38050 Pantè di Povo (TN) — Italy
†E-mail: battiti|bertossi|brunato@science.unitn.it
‡Corresponding author.

Interference zones

Strong

Medium

Weak

of station

Figure 1: A geographic cellular network and its interference area

small (≈ 60MHz in the900MHz band for the GSM system [2]), and hardware techniques1 can’t do all the job
by themselves.

2 Channel Assignment Algorithms

2.1 Combinatorial strategies

The state of the art about channel assignment algorithms is presented in [7]. Many algorithms are analyzed
in [6] In particular, we consider the following techniques:

• The FCA (Fixed Channel Allocation) algorithm. Each cell is assigned a fixed pool of frequencies, so that
no near cells can use the same channel. No communication is needed between cells; when all channels
are in use, subsequent requests shall be rejected.

• The SBR (Simple Borrow from the Richest) algorithm. Each cell has an assigned pool of frequencies,
but a channel can be borrowed from a richer neighbor, provided that its use does not cause interference.
When more than one neighbor has a free channel, the cell chooses the richest one. It is more efficient than
FCA with low traffic rates, but it equals its performances when the traffic rate increases.

• A DCA (Dynamic Channel Assignment) technique, by which every cell can have access to every channel,
as long as it does not cause interference; the cell chooses the channel which is most ‘blocked’ (due to the
interference constraints) in the neighboring cells, so that it gives rise to the least blocking probability.
It is better than FCA at low traffic rates, but worse at high traffic rates, because many cells might find
themselves with no channels at all.

• The BDCL (Borrow with Directional Channel Locking) algorithm. Like SBR, but the choice of the
channel to borrow is done by the criterion of the above proposed DCA technique. It is maybe the best
known combinatorial algorithm.

Later, we shall compare these algorithms with the following technique based on objective function mini-
mization [8].

2.2 A penalty function heuristic

Many heuristics have been applied to the channel assignment problem ([9], [4], [8]). Let us consider the case
[8]. We havenCE cells and a total numbernCH of channels. Every celli, i = 1, . . . , nCE, has a traffic demand
trafi. Let us denote withdii′ the euclidean distance between the centers of cellsi andi′, and let interfii′ be a

1Namely, Minimum Shift Keying and Gaussian Minimum Shift Keying to eliminate spectrum bumps around the channel, and frequency
hopping schemes to eliminate constant interferences.

2

{0, 1}-valued function which states if the two cells interfer or not. When a connection or termination request
is issued in celli∗, we must optimize the frequency allocation in this cell. The status of channel allocation is
given by a{0, 1}-valued matrixAij whose entry(i, j) is 1 if and only if channelj is currently in use in celli.
The new channel allocation for celli∗ is stored in vectorVj , j = 1, . . . , nCH.

Let us build an objective function whose minimum is likely to be a good solution of the new allocation
for cell i∗. First, we need a term to privilege those solutions without interference (all terms depend onV , our
unknown solution):

a(V) =
nCH∑
j=1

nCE∑
i=1
i 6=i∗

VjAij interfii∗ .

This term adds1 for each cell interfering withi∗ which uses a channel in use ini∗. Second, the requests of the
cell i∗ should be respected as much as possible:

b(V) =

trafi∗ −
nCH∑
j=1

Vj

2

.

The only reason to make this term quadratic is that we want it nonnegative. Third, we add apacking condition:
we want to reuse a channel as near as possible (outside the interference zone), to restrict the blocking probability
in other cells.

c(V) = −
nCH∑
j=1

nCE∑
i=1
i 6=i∗

VjAij
1− interfii∗

dii∗
.

This subtracts a positive term for each cell outside the interference zone which reuses a channel employed in
cell i∗; the larger the distance, the smaller the subtracted term. Next, changes in the present allocation of the
cell i∗ should be minimized:

d(V) = −
nCH∑
j=1

VjAi∗j .

This subtracts1 every time a channel currently used by celli∗ is chosen for the next configuration (this means
that a mobile host needs to change its channel as rarely as possible). If the frequency hopping technique is
used, however, this requirement does not make much sense, as the host is equipped for configuration changes.
Last, experimental evidence shows that to achieve a good performance the channel reuse should follow a regular
scheme (for example, a compact pattern [10]). We introduce the{0, 1}-valued matrix resii′ whose entry(i, i′)
is 1 if and only if the cellsi andi′ belong to the same reuse scheme (should use the same channels if possible).
Common reuse schemes follow some sort of “knight” move (for instance, the one shown in figure 2).

e(V) =
nCH∑
j=1

nCE∑
i=1
i 6=i∗

VjAij(1− resii∗).

Notice that all terms are arranged to go towards a lower value when the constraints are satisfied. Let us
combine them in a single objective function to minimize:

J(V) = A · a(V) + B · b(V) + C · c(V) + D · d(V) + E · e(V),

vhereA, B, C, D andE give different importance to the various constraints.

2.3 A polynomial algorithm

To minimizeJ(V), [8] employs Hopfield neural networks, but actually the minimization of this function is
straightforward and does not require any search technique. In fact, we can rewriteJ(V) as a quadratic function

3

Figure 2: Building a reuse scheme: the basic move

in which the quadratic termdepends only on the number of channels, and not on the single channels used. Let
us rewrite

a(V) =
nCH∑
j=1

Vjaj , where aj =
nCE∑
i=1
i 6=i∗

Aij interfii∗ ;

the termaj simply counts the number of cells in the interference zone ofi∗ which use the channelj. The term
b(V) can be rewritten as

b(V) =

nCH∑
j=1

Vj

2

− 2 trafi∗
nCH∑
j=1

Vj .

The traf2i∗ term is constant and can be omitted, while the quadratic term is the square of the number of channels
reserved for the celli∗ (the number of1’s in vectorV). Let us rewrite it in a way similar to the other ones:

b(V) =

nCH∑
j=1

Vj

2

+
nCH∑
j=1

Vjb, where b = −2 trafi∗ .

Clearly,b does not depend onj. The other terms can be rewritten as follows:

c(V) =
nCH∑
j=1

Vjcj , d(V) =
nCH∑
j=1

Vjdj , e(V) =
nCH∑
j=1

Vjej

where

cj = −
nCE∑
i=1
i 6=i∗

Aij
1− interfii∗

dii∗
,

dj = −Ai∗j , ej =
nCE∑
i=1
i 6=i∗

Aij(1− resii∗).

The termcj evaluates the packing condition for channelj; the termdj rewards the choice of channelj if it was
already in use; the termej penalizes the use of a channel outside the reuse scheme.

We can collect the single coefficients into global ones:

wj = A · aj + B · b + C · cj + D · dj + E · ej ;

the global objective function is then

J(V) =

nCH∑
j=1

Vj

2

+
nCH∑
j=1

wjVj ,

4

where, as we have already pointed out, the square term is just the square of the number of assigned channels.
To minimizeJ(V) we calculate the weightswj for each channel; each calculation requires at mostnCE

steps to test interferences, reusals and packings. Globally, the calculation of the weightswj requires time
O(nCEnCH). If we had fixed the numbern of channels that we want to assign, the minimization would be
achieved by taking the channelsj whosewj are the least (the quadratic term is constant among the solutions
with the same number of channels). To take advantage of this, we calculate a permutationσj , j = 1, . . . , nCH,
such that the vector(wσj)j=1,...,nCH is sorted in increasing order. The sort requires timeO(nCH log nCH). At
last, let us callJn the minimum of the objective function restricted ton-channel solutions. Its value is

Jn = n2 +
n∑

j=1

wσj
, n = 0, . . . , nCH,

and the difference between the minima for successive values ofn is

Jn − Jn−1 = 2n− 1 + wσn
, n = 1, . . . , nCH.

So, a simple scan of the vectorwσj is enough to find the minimum for alln, that is the global minimum, in time
O(nCH).

Hence, the global minimum of the objective function,

min
V ∈{0,1}nCH

J(V) = min
n=0,...,nCH

Jn,

can be found in total timeO
(
nCH(nCE + log nCH)

)
. The procedure returns also the number of channels in the

optimal solution, sayn∗, therefore the channels to be assigned to celli∗ are

nσ1 , nσ2 , . . . , nσn∗ .

Because we do not use any heuristic search algorithm, we are not restricted to those values forA, B, C, D
andE which ensure stability of the search, but we may let them variate over all the nonnegative real range.

3 A distributed polynomial algorithm

We first note that the previous technique can be improved by storing at each cell a permanently sorted array of
weights to be updated at each change of state in the nearby cells. TheO(n log n) sorting time can thus be cut
down to a simpleO(n) update of the array at each call.

We need, however, to simplify our objective function by eliminating non-locality. There are only two global
terms in the function:

• The “reuse scheme” given by the array resii′ ; some preliminary tests shown in section 4 will suggest that
it is ininfluent on the overall system performance.

• The “packing condition”, whose weight decreases at increasing distances; the same preliminary tests cited
above prove that we can restrict the “packing condition” to the2r-th ring of neighboring cells (wherer is
the interference radius).

3.1 A communication scheme

Once the objective function is localized, we just need a good communication strategy to replace the central
authority which took all the decisions in the previous algorithm. When a cell initiates or terminates a call, it
must broadcast its new status to its neighbors (up to the2r-th ring). To do so, we need a simple broadcasting
scheme, like the one presented in figure 3. The message contains a flag bit; if the bit is set, we shall call it a
“corner” message. The source sends six “corner messages” to its neighbors; when a cell receives a message, if it
is not far enough, it must relay it to the cell on the opposite side; if it is a corner message, it must also propagate
a non-corner copy of the message to the next direction (clockwise).

5

"Straight" message

"Corner" message

Figure 3: A local broadcasting scheme

source: for d in 0 . . . 5 do
send(1, 4, 1,m) along direction d;

relay: upon receipt of (c, r, h, m) from direction d do begin
if h < r then begin

send(c, r, h + 1,m) along direction d + 3 (mod 6);
if c then

send(0, r, h + 1,m) along direction d + 4 (mod 6)
end;
Act according to the received message (c, r, h, m)

end;

Figure 4: The local broadcasting algorithm

Let us now consider in greater detail the implementation. Let the message be structured as a tuple(c, r, h, m),
wherec is the “corner” flag, indicating if the message must be duplicated,r is the maximum distance from the
source the message must reach,h is the number of steps the message has taken up to now andm is the message
itself. Suppose that in each cell the directions of incoming and outgoing messages are numbered clockwise
modulo6. Then if a message arrives on directiond, the opposite direction will bed+3 (mod 6). For the case
of two rings of interferring cells and of propagation distance up to 4, the algorithm is shown in figure 4.

3.2 A Mutual Exclusion technique

Last, to avoid conflicts in channel choice we must ensure that, when a cell is changing its configuration, none of
its neighbors up to the reuse distance does the same thing simultaneously. For this we can implement a multiple
token-passing protocol such that no two tokens are nearer than the reuse distance. If the distance is two and the
network is a regular hexagonal grid, let us refer to figure 5. The grey cells are possessing the token; when a
cell is done with it, it sends a “token” message “upwards” (following the thick arrow) and two “free” messages
along the thin arrows (this requires two other cells to act as relays). Before entering the critical state, a cell
must wait for one “token” and two “free” messages. The “token” message ensures that all preceding cells in
the token-passing chain are safe, while the two “free” messages declare the safety of the two possible blocking
cells which are possibly using the token at the same time in its neighborhood. To take account of border effects,
however, the two leftmost columns and the two uppermost rows should wait for just one “free” message, the
cells in the upper left corner don’t have to wait for any “free” message, while the lower row cells should generate
a token whenever they get enough “free” messages.

The actual algorithm for a7 × 7 grid with a reuse distance of 2 is presented in figure 6 (the directions are
numbered from0 to 5 going clockwise and starting from west). All cells must initially call theInit procedure,
except those initially possessing the token (the grey ones in figure 5). The cells that initially possess the token

6

"Token" message

"Free" messages

Figure 5: A multiple token-passing scheme

must start calling the procedureHave tokenat the beginning. Cells that need to process a channel request (or
release) must call the procedureEnter critical sectionthat sets theCritical sectionflag, so that the algorithm
runs the channel-assignment procedure when possible, and waits until that same bit is reset. Of course the main
loop is executed concurrently, and theCheckprocedure must end before any other message is received. For
routing purposes, the “Free” messages have an integer part.

4 Experiments and tests

We consider seven rows of seven hexagonal cells, disposed as in figure 5, like in most of the literature. A fixed
server station is placed at the center of each cell, while a number of mobile hosts is free to move across the
whole land. The total number of available channels is70 and the co-channel interference is extended to the
second ring of neighbors.

A program has been written in C++ to execute simulations of the type described in [8]. Figure 7 shows the
preliminary results of a series of simulations of five algorithms (FCA, SBR, BDCL, DCA with local optimization
and the penalty optimization heuristic described in section 2.2).

For FCA, the reuse scheme (a reuse distance of two cells has been considered) consists in seven partitions
of ten channels each. The euclidean distance between the centers of two neighbors is1, and the reuse scheme
given by the function resii′ of section 2.2 is built by iterating the basic “knight” move of figure 2, which gives
the same pattern as the token placement in figure 5. The same scheme has been used to distribute the seven
channel groups among the cells for the FCA algorithm.

The mean duration of a connection is exponential with an average of180sec; the simulations have been run
for 10000 seconds (of simulated time) and connection rates of160, 170, 180, 190 and200 calls per hour with
Poissonian distribution (and hence exponential interarrival time), corresponding to a traffic of8, 8.5, 9, 9.5 and
10 erlangs. The results are shown in figure 7, where we have tested the original asset of [8]. The elimination
of the reuse scheme and the localisation of the channel packing condition as in section 3 finally lead us to the
data in figure 8, where we compare the original and the distributed scheme. As it is apparent, all differences lie
within the standard error. This enables us to transform the algorithm into a local one with no performance loss.

References

[1] Roberto Battiti, Alan A. Bertossi, and Maurizio A. Bonuccelli. Assigning codes in wireless networks:
Bounds and scaling properties.Wireless Networks, 5:195–209, 1999.

[2] Onelio Bertazioli and Lorenzo Favalli.GSM — Il Sistema Europeo di Comunicazione Mobile: Tecniche,
Architettura e Procedure. ATES. Hoepli, Milan, 1996.

[3] Alan A. Bertossi and Maurizio A. Bonuccelli. Code assignment for hidden terminal interference avoidance
in multihop packet radio networks.IEEE/ACM Transactions on Networking, 3:441–449, 1995.

7

ProcedureHave tokenat the beginning:
Tokenflag← true;
Free count← 0;
do Check

end procedureHave tokenat the beginning;
ProcedureInit:

if (node is in the first row)then
Tokenflag← true

else
Tokenflag← false;

Free count← 2;
if node is in the two upper rowsthen

decreaseFree count;
if node is in the two leftmost columnsthen

decreaseFree count;
Critical sectionflag← false;

end procedureInit;
ProcedureEnter critical section:

Critical sectionflag← true;
wait until Critical sectionflag= false;

end procedureEnter critical section;
procedureCheck:

if Tokenflagand Free count= 0 then begin
if Critical sectionflag then

Run the channel assignment procedure;
SendTokenalong direction 1;
SendFree(0) along directions3 and 4;
do Init

end
end procedureCheck;
Main polling loop :

Upon receipt ofTokendo begin
Tokenflag← true;
do Check

end;
Upon receipt ofFree(0) from direction 1 do

sendFree(1) along direction 5;
Upon receipt ofFree(0) from direction 0 do

sendFree(1) along direction 3;
Upon receipt ofFree(1) do begin

decreaseFree count;
do Check

end;
End main loop.

Figure 6: The token-passing algorithm

8

0

0.05

0.1

0.15

0.2

0.25

150 160 170 180 190 200 210

B
lo

ck
in

g
fr

eq
ue

nc
y

Cell load (calls per hour)

FCA
SBR
DCA

BDCL
BBB

Figure 7: Comparison among algorithms

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

150 160 170 180 190 200 210

B
lo

ck
in

g
fr

eq
ue

nc
y

Cell load (calls per hour)

BBB
dBBB

Figure 8: Global vs. local optimization

9

[4] Manuel Duque-Ant́on, Dietmar Kunk, and Bernhard Rüber. Channel assignment for cellular radio net-
works using simulated annealing.IEEE Transactions on Vehicular Technology, 42(1):14–21, February
1993.

[5] Eli Upfal Eli Shamir. Sequential and distributed graph coloring algorithms with performance analysis in
random graph spaces.Journal of Algorithms, 5:488–501, 1984.

[6] Scott Jordan and Eric J. Schwabe. Worst-case performance of cellular channel assignment policies.Wire-
less Networks, 2:265–275, 1996.

[7] Irene Katzela and Mahmoud Nagshineh. Channel assignment schemes for cellular mobile telecommuni-
cation systems: A comprehensive survey.IEEE Personal Communications, pages 10–31, June 1996.

[8] Enrico Del Re, Romano Fantacci, and Luca Ronga. A dynamic channel allocation technique based on
hopfield neural networks.IEEE Transactions on Vehicular Technology, 45(1):26–32, February 1996.

[9] Satinder Singh and Dimitri Bertsekas. Reinforcement learning for dynamic channel allocation in cellular
telephone systems.Submitted to NIPS96, 1996.

[10] Kwan Lawrence Yeung and Tak-Shing Peter Yum. Compact pattern based dynamic channel assignment for
cellular mobile systems.IEEE Transactions on Vehicular Technology, 43(4):892–896, November 1994.

10

