
A Memory-Based RASH Optimizer∗

Mauro Brunato, Roberto Battiti and Srinivas Pasupuleti
Dept. of Computer Science and Telecommunications

University of Trento, Italy,
{brunato, battiti, srinivas}@dit.unitn.it

Abstract

This paper presents a memory-based algorithm for global op-
timization of multivariate functions of continuous variables.
The proposed algorithm, M-RASH, is based on the RASH
(Reactive Affine Shaker) heuristic, an adaptive search algo-
rithm based only on point-wise function evaluations. M-
RASH is an extension of RASH in which promising start-
ing points for local search trails are suggested online by us-
ing Bayesian Locally Weighted Regression. Both techniques
maintain memory about the previous history of the search
to guide the future exploration, but in very different ways.
RASH compiles the previous experience into the shape of
a local search area where sample points are drawn, while
locally-weighted regression saves the entire previous history
to be mined extensively when an additional sample point is
generated. Because of the high computational cost related to
the regression model, it is applied only to evaluate the poten-
tial of an initial point for a local search run. The experimen-
tal results show that M-RASH is indeed capable of leading to
good results for a smaller number of function evaluations.

Introduction
Like furniture is in the searching look of a carpenter walking
in a forest, technology is in the eyes of the computer scientist
both as an end (e.g., solving optimization and planning prob-
lems) and as a means by which larger and larger instances
can be solved. It is now a truism that the growing availabil-
ity of massive amounts of memory, starting from the eight-
ies, opened new windows of opportunity for memory-based
optimization techniques, in particular memory-based heuris-
tics. The underlying assumption of a rich internal structure
of most relevant optimization tasks makes techniques ca-
pable ofgradually learningthat structure potentially more
powerful and effective than memory-less techniques. No-
table examples are the use ofpattern databasesoriginally
proposed by (Culberson & Schaeffer 1998) to solve tile puz-
zles. In these problems the final state is known and the
sequence of moves to reach it is to be determined. The
database is used to obtain a lower bound on the cost to reach

∗Work supported by the projects CASCADAS (IST-027807)
and BIONETS (IST-027748) funded by the FET Program of the
European Commission.
Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

the goal from a given state in the search space, by looking
up all possible subgoals, see also (Korf & Felner 2002) for
more accurate admissible heuristic evaluation functions.

A different context is that of stochastic local search (Hoos
& Stuetzle 2005), where one aims at minimizing a func-
tion f of discrete or continuous variables. In this case the
optimal configuration is not known at the beginning and
generating a trajectory by local search in the configuration
space is a way to explore promising configurations aiming
at discovering good local optima. The authors of this pa-
per used history-sensitive (or memory-based) techniques to
solve combinatorial problems (Battiti & Protasi 1997) and
continuous optimization problems. The recent publication
(Battiti & Brunato 2006) summarizes the methods and the
main applications, while (Battiti 2002) is dedicated to data
structures based on hashing and dynamic sets to support
history-sensitive heuristics.

In this small contribution, because of the limited space
and because we think it could offer a different point of view
we concentrate on a recent exploration related to the usage
of models based on memory in order to speed up a simple
stochastic search method denoted as Reactive Affine Shaker
proposed in (Brunato & Battiti 2006). Memory Based meth-
ods make explicit use of the training data, each time a predic-
tion needs to be made. This is in contrast to the model-based
methods, such as neural networks and mixture of Gaussians
where the data is generally discarded after training (Cohn,
Ghahramani, & Jordan 1996). In the following sections the
basic building blocks, the RASH local search heuristic and
the Bayesian Locally Weighted Regression (B-LWR) mod-
eling technique, are described. Next, a combination of the
two techniques is proposed. Finally, experimental resultson
classical optimization problems are discussed.

Building blocks
In the following discussion, we make the assumption that
the dominant computational cost is related to evaluating the
target functionf at trial points. This assumption is justified
in many practical applications, for example when the eval-
uation off requires running a lengthy simulation, or even
running an industrial plant and measuring the output. It is in
these cases that the use of memory is worth the effort and to
make the assumption explicit we will discuss about results
obtainable as a function of the number off evaluations in

f Function to minimize
x Initial point
R Search region
∆ Current displacement

1. function RASH (f , x)
2. R← small istropic set aroundx
3. while (local termination condition is not met)
4. Pick∆ ∈ R

d such thatx + ∆, x−∆ ∈ R
5. if f(x + ∆) < f(x)
6. x← x + ∆;
7. ExtendR along∆
8. CenterR onx
9. else if f(x−∆) < f(x)
10. x← x - ∆;
11. ExtendR along∆
12. CenterR onx
13. else
14. ReduceR along∆
15. return x;

Figure 1: The RASH algorithm

the next part of the paper. A more detailed analysis taking
into account the trade-off between the overhead involved in
the usage of memory for cases when this is not negligible is
in preparation and not shown in this paper because of space
reasons.

The proposed memory-based technique, M-RASH, is
based on two major components: an efficient local search
heuristic, RASH, for rapidly finding local minima, and a
statistically sound method, Bayesian Locally-weighted Re-
gression, to model and predict its global behavior. In this
Section we briefly describe these two components.

The RASH heuristic
The Reactive Affine Shaker Heuristic (Brunato & Battiti
2006), RASH for short, is a self-tuning local search algo-
rithm based on the framework proposed in (Solis & Wets
1981), where no prior knowledge is assumed on the function
to be minimized and only evaluations at arbitrary values of
the independent variables are allowed. The RASH heuris-
tic tries to rapidly move towards better objective values by
maintaining and updating a small “search region”R around
the current pointx.

The use of memory in RASH is limited: the entire pre-
vious history of the search (the trajectory of the generated
sample points and the outcome of the evaluations) is sum-
marized through adynamic search region, intended to zoom
in onto the promising areas where to find points better than
the current best.

The efficiency of RASH lies in its ability to reshape the
search regionR according to the occurrence or lack of suc-
cess during the last step: if a step in a certain direction yields
a better objective value, thenR is expanded along that direc-
tion; it is reduced otherwise. Therefore, once a promising
direction is found, the probability that subsequent steps will
follow the same direction is increased, and the search shall

f Function to minimize
x, x′ Initial and final position of run
bestPoint, bestValue Best position found and its value

1. function RepeatedRASH (f)
2. bestValue← +∞
3. while (overall termination condition is not met)
4. x← random point inf domain
5. x’ ← RASH (f , x)
6. if f(x′) < bestValue
7. bestPoint← x
8. bestValue← f(x′)
9. return bestPoint

Figure 2: The Repeated RASH algorithm

proceed more and more aggressively in that direction until
bad results reduce its prevalence. The algorithm is outlined
in Fig. 1.

The algorithm starts with an isotropic search region cen-
tered around the initial point (line 2). Next, new trail points
are repeatedly generated (line 4). If the resulting pointx+∆
yields a lower objective value (line 5 and following), then the
current position is updated andR is expanded along the di-
rection of∆. To increase the probability of finding a better
point, if x+∆ does not lead to an improvement, alsox−∆
is checked (line 9 and following). If none of the points im-
proves the objective value, then the search region is reduced
along the direction of∆ (line 14) and the current position is
not updated. This sequence of steps is repeated until a local
termination condition is verified. Common criteria to termi-
nate the search are the number of iterations, the size of the
search region (if too small, it indicates that no precise direc-
tion for improvement can be detected, therefore the system
is already close to a local minimum), a large number of iter-
ations without further improvement.

To keep an acceptable level of complexity, the search re-
gion is implemented as a box defined byd independent vec-
tors (b1 . . .bd), whered is the number of dimensions of the
search domain. Shape modifications are implemented as
affine transformations of these vectors, as described in the
following equation:

∀j bj ←

(

I + (ρ− 1)
∆∆T

‖∆‖2

)

bj

The value ofρ is of 1.2 for expansions and 0.8 for com-
pressions of the search region respectively. The easiest, al-
though effective, way of improving the performance of the
algorithm is to restart the search from a random point as soon
as the local termination condition is verified, as shown in
Fig. 2. This corresponds to having a population of searchers,
each unaware of the others.

Bayesian Locally Weighted Regression
On the coordinate axis of “amount of memory usage”,
RASH stays at a very low level, while the extreme position
is occupied by methods storing the entire history in memory

aiming at mining it in the most flexible and effective way in
order to generate a single additional trial point.

Locally Weighted Regression (Cleveland & Devlin 1988;
Atkeson 1990; Moore 1992) is characterized as alazy
memory-based technique where all points and evaluations
are stored and a specific model is builton-demandfor a
specified query point. The occasional lack of sample points
near the query point would pose problems in estimating the
regression coefficients with a simple linear model. Hence
Bayesian Locally Weighted Regression (Atkeson, Schaal,
& Moore 1997; Moore & Schneider 1996; Dubrawski &
Schneider 1997), denoted as B-LWR, is used where we can
specify prior information about what values the coefficients
should have when there is not enough data to determine
them. The usual power of Bayesian techniques derives from
the explicit specification of the modeling assumptions and
parameters (for example, aprior distributioncan model our
initial knowledge about the function) and the possibility to
model not only the expected values but entire probability
distributions, so that for example confidence intervals can
be derived to quantify the confidence in the expected values.

B-LWR is the second fundamental building block consid-
ered to complement the M-RASH heuristic. B-LWR is a
learning technique used to build a model out of data pro-
vided, for instance, by a stochastic or noisy function such as
the outcome of an experiment.

The B-LWR algorithm relies on a set ofn sample data
{(x1, y1), . . . , (xn, yn)} whereyi ∈ R is the outcome of a
stochastic function evaluation on independent variablexi ∈
R

d. To predict the outcome of an evaluation on a pointq
(named aquery point), linear regression is applied to sample
points. To enforce locality in the determination of regression
parameters each sample point is assigned a weight that de-
creases with its distance from the query point. A common
kernel functionused to set the relationship between weight
and distance is

wi = e−
‖xi−q‖2

K ,

whereK is a parameter measuring the kernel width, i.e. the
sensitivity to far sample points. Bayesian LWR commonly
assumes wide, weak Gaussian prior distribution of the coef-
ficients of the regression model and a wide Gamma prior on
the inverse of the noise covariance.

The linear regression model with Gaussian noiseσ2 is

yi = xT
i β + ǫ,

whereβ is the vector of parameters of the linear model.
Note that a constant1 is appended to all input vectorsxi

to include a constant term in the regression, so that the di-
mensionality of all equations is actuallyd + 1. The samples
can be collected in a matrix equation:

y = Xβ

whereX is an n × (d + 1) matrix whoseith row is xT
i

(complemented with a 1 entry to account for the constant
term) andy is a vector whoseith element isyi.

The task is to estimate the coefficientsβ = (β0 . . . βd).
The prior assumption onβ is that it is distributed according
to a multivariate Gaussian of mean 0 and covariance matrix

Σ, and the prior assumption onσ is that1/σ2 has a Gamma
distribution withk andθ as the shape and scale parameters.
Since we use a weighted regression, each data point and
the output response are weighted using Guassian weighting
function. In matrix form, the weights for the data points are
described inn×n diagonal matrixW = diag(w1, . . . , wn).
The prior assumesΣ = diag(202, . . . , 202) for β distribu-
tion andk = 0.8, θ = 0.001 for Gamma distribution.

The model local to the query pointq is predicted by us-
ing the marginal posterior distribution ofβ whose mean is
estimated as

β̄ = (Σ−1 + XT W 2X)−1(XT W 2y). (1)

The matrixΣ−1 +XT W 2X is the weighted covariance ma-
trix, supplemented by the effect of theβ priors. Its inverse
is denoted byVβ . The variance of the Gaussian noise based
onn data points is estimated as

σ2 =
2θ + (yT − βT XT)W 2y

2k +
∑n

i=1
w2

i

.

The estimated covariance matrix of theβ distribution is
then calculated as

σ2Vβ =
(2θ + (yT − βT XT)W 2y)(Σ−1 + XT W 2X)

2k +
∑n

i=1
w2

i

.

The degrees of freedom are given byk +
∑n

i=1
w2

i . Thus
the predicted output response for the query pointq is

ŷ(q) = qT β̄,

while the variance of the mean predicted output is calculated
as:

Var(ŷ(q)) = qT Vβqσ2. (2)

A global model for a local search heuristic
Locally Weighted Regression is an efficient way to model
stochastic dependencies, such as those arising from experi-
mental data. In this Section we define a local search heuristic
as a stochastic function, and show how we use LWR (all the
references to LWR mean Bayesian-LWR) to model its global
behavior and predict the position of good starting points.

Local search algorithms as stochastic functions
Let f be a real-valued function defined over a limited do-
mainD ⊂ R

d. Let L be a local optimization heuristic, and
let Lf the algorithm obtained by applyingL to functionf .
Lf works by starting from an initial pointx1 ∈ D and gen-
erating a trajectory(x1, . . . , xN), whereN is the number of
steps the algorithm performs before a termination condition
is verified. If we treat the initial pointx1 as an independent
variable (i.e., not randomly generated by the algorithm it-
self, but fed as a parameter), the algorithmLf can be seen
as a function mapping the initial point of the trajectory to the
smallest function value found along the trajectory:

Lf : D → R (3)

x1 7→ min
i=1,...,N

f(xi).

Note that, sinceL is a stochastic heuristic relying on ran-
dom choices, the trajectory is stochastic too, andLf must
be regarded as a stochastic function.

1

2

Basin of Basin of Basin of

m1 m2 m3

m3

m

m

y

x

Sample points ofL f

f

LWR model of L f

Figure 3: Modeling the local search algorithmLf

 0

 20

 40

 60

 80

 100

 120

-10 -5 0 5 10

Sample Points
LWR Model(g)
Rastrigin Fn.(f)

Figure 4: Modeling the Rastrigin function in 1 dimension

An LWR model of the stochastic local search
transformation

The stochastic functionLf models the transformation exe-
cuted by local search, from an initial point to the local min-
imum point in a given attraction basin. After some runs of
local search have been executed, one begins to derive knowl-
edge about the structure of the search space, about which
region is mapped to which local minima, and about a pos-
sible large-scale structure of the local minima showing the
way to the most promising areas. Of course, the so-called
“no free lunch” theorems of global optimization (Wolpert
& Macready 1997) imply that these techniques will not be
effective for general functions (for sure they will not be ef-
fective if the value at one point is not related to values at
nearby points), but most optimization problems of real in-
terest are indeed characterized by a rich structure which can
be profitably mined.

The integration proposed in this paper considers the LWR
to model the transformation executed byLf , therefore to
evaluate the potential of future initial points to lead to
promising local minima. For each run of the stochastic lo-
cal search, the memory-based model will be mined to iden-
tify the next initial point. Other options are possible, like
the consideration of an LWR model for describing the orig-
inal functionf . This second hypothesis is not considered

f Function to minimize
D Domain off
g B-LWR model ofLf , initially empty
n Number of initial sample points ing

1. function BLWR RASH (f , n)
2. for i ← 1 ton
3. x← random point inD
4. x′← RASH (f , x)
5. g.addSamplePoint (x, f(x′))
6. while (termination condition is not met)
7. x← RepeatedRASH (g)
8. x′← RASH (f , x)
9. g.addSamplePoint (x, f(x′))
10. return best point found

Figure 5: The memory-based M-RASH heuristic

here because of space reasons and because it leads to a
more CPU-time consuming algorithm, but see (Jacquetet
al. 2005) for an independent preliminary investigation.

To visualize the effect of theLf transformation and the re-
lated modelling by LWR, Fig. 3 describes the application of
a LWR technique toLf in order to model it. Functionf has
three local minima, whose values are represented asm1, m2

andm3, with m2 as the global minimum value. Black dots
represent sample points, of the form(x, Lf (x)), i.e., each
is obtained by generating an initial valuex, feeding it to the
local search algorithm, and retrieving the minimum value of
f found along the subsequent trajectory. If the search al-
gorithm makes local moves, as is the case with RASH, the
sample points will approximately outline a stepwise func-
tion, constant in every attraction basin corresponding to a
given local minimum. Let’s note that the smooth approx-
imation to the stepwise function is actually useful to give
the algorithm a direction to follow to reach promising ar-
eas, while an exact constant model on the plateau would not
give such direction hint. The LWR model, shown in thick
dashed line, is a smoothed out version of this stepwise func-
tion. Figure 4 shows a practical example executed on the
1-dimensional Rastrigin function. The sequence of sample
points models the trend of local minima towards the global
minimum, situated anx = 0. Note that the sample points
represent the initial point and the the final function value as
a result of applying the local search technique. The error
bars indicate the variance on the predicted function value
using the LWR model.

The LWR model ofLf (derived in Figs. 3 and 4) is in turn
minimized in order to find the best suitable starting point
for the subsequent run ofLf , as described in the following
Section, where the technique just described is applied to the
RASH heuristic.

The M-RASH Heuristic
Fig. 5 presents the pseudo-code for the M-RASH heuristic.
The parameters are the functionf to be minimized and the
number of initial sample points in the model. Since we are
using the Bayesian version of LWR with prior coefficient

Table 1: Benchmarks for simulations

Function
Name

d Mathematical Representation

Rosenbrock 10
d
∑

i=1

(

100(xi+1 − x2
i)

2 + (xi − 1)2
)

Rastrigin 10
d
∑

i=1

(

x2
i − 10 cos2πxi + 10

)

Schaffer 2 0.5−
(sin

√

x2 + y2)2 − 0.5

(1.0 + 0.001(x2 + y2))2

distribution, we are not forced to insert into the model a min-
imum number of points before it becomes useful.

The modelg is initially empty; we assume that it can be
evaluated at a query point as a real-valued function (in our
C++ implementation, the B-LWR model implements a func-
tion interface), and that it can be updated by adding new
points by calling the methodg.addSamplePoint (x, y).
The RASH local search algorithm is made available through
the two function calls described in Fig. 1 and Fig. 2. In par-
ticular, it is important to remember that

• RASH (f , x) is a single-run local search which starts at
the initial pointx and outputs the best point found over
the functionf until a termination condition is verified.

• Repeated RASH(f) allows search to restart as soon as
it detects that it is stuck at a local minimum. The search
shall always start from a random point withinD.

Lines 2–5 populate the B-LWR model with a number of
sample points, each of the form(x, Lf (x)), by repeatedly
generating random points in the domain, following a RASH
trajectory starting from that point (line 4) and storing the
result according to the definition (3).

Once the modelg is populated, the algorithm proceeds
by alternating model minimizations and objective function
minimizations (lines 6–9). A promising starting point can be
found by minimizingg with a multiple-run RASH heuristic
starting from a random point (line 7). The point is used to
begin the minimization trajectory forf (line 8). Finally, the
result of the optimization run (in terms of initial point, best
value in trajectory) is stored intog in order to refine it for
the next run.

Note that optimization runs aimed at functionf are al-
ways single: a repeated run would generate a “broken” tra-
jectory where the final optimum has no relationship with the
initial point in the trajectory, therefore the modelg would
become useless. The same concern is not valid forg mini-
mizations.

Experimental Results
We compare the performance of Repeated-RASH and M-
RASH on the benchmarks shown in Table 1. Rosenbrock
is a unimodal function in the domain[−100, 100]d with a
long narrow valley and has a global minimum of zero lo-
cated at(1, 1)d. Rastrigin is a multimodal function in the

 0.01

 1

 100

 10000

 1e+006

 1e+008

 1e+010

 100 1000 10000 100000

A
vg

. O
pt

im
um

No. of Fn Evals

M-RASH
Repeated-RASH

Figure 6: Rosenbrock Function

domain[−10, 10]d with huge number of local minima and
a global minimum of zero at origin. The Schaffer func-
tion is a 2-dimensional maximization function in the range
[−100, 100]2 with a lot of valleys surrounding the global
maximum of 1 at(0, 0).

The termination condition for both Repeated-RASH and
M-RASH is set to 100000 function evaluations. In M-
RASH, we start withn = 2 initial sample points. The
termination condition forRASH(line 4) in Fig. 5 is set to
50 function evaluations. The idea is to feed the model with
couple of sample points before querying it to find the next
data points to explore (lines 6–9). TheRepeatedRASH
call(line 7) searches the regression modelg for the optimum
point. As the execution ofRepeatedRASH on the model
doesn’t add to the function evaluations off , it is run for large
number of iterations to make sure that with a high probabil-
ity that an optimum point on the model is achieved. The call
to RASH(line 8) takes the optimum point suggested by the
RepeatedRASH as the starting pointx for minimizing f .
This call is terminated if RASH fails to improve the opti-
mum value on functionf for a fixed number of consecutive
steps. Hence, RASH continues to run as long as it is able to
find better optimum values and not stuck at local minimum.
In our simulations, we terminate the call to RASH(line 8) if
it doesn’t improve on the optimum value found for 100 con-
secutive steps. The starting point used by RASH along with
the best value found is then added to the regression modelg.
The above procedure is repeated till the overall termination
condition of 100000 function evaluations is met.

The algorithms are run for 100 trails and the average opti-
mum found along with standard deviation is plotted against
the number of function evaluations in log-log scale. The
comparison graphs between Repeated-RASH and M-RASH
are shown in Fig. 6 - 8. The performance of M-RASH is
slightly worse at the beginning but eventually better com-
pared to Repeated-RASH for the uni-modal Rosenbrock
function as shown in Fig. 6. The M-RASH algorithm out-
performs Repeated-RASH for the two multimodal functions
as shown in Fig. 7 and Fig. 8. This can be explained by

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000

A
vg

. O
pt

im
um

No. of Fn Evals

M-RASH
Repeated-RASH

Figure 7: Rastrigin Function

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 100 1000 10000 100000

O
ne

 m
in

us
 A

vg
. O

pt
im

um

No. of Fn Evals

M-RASH
Repeated-RASH

Figure 8: Schaffer Function

the structure of one-dimensional Rastrigin shown in Fig. 4.
Once the B-LWR model is fed with enough sample points
to get a global structure of the function, it will immediately
direct the local search algorithm to the data points near the
global minimum. In the case of Repeated-RASH, due to
large number of local minima it often gets stuck at them and
thus proceeds slowly towards the global minimum. This is
also true for the Schaffer function. Thus, M-RASH quickly
converges to the areas close to the global minimum for the
functions with high local minima where the B-LWR plays
an important role in learning the trend of local minimum
and guiding the local search RASH technique to promising
areas.

Related Work
A framework related to some ideas used in RASH has been
presented in (Boyan & Moore 2001) for solving combi-
natorial optimization problems. The proposed algorithm,
STAGE, works by maintaining a quadratic approximation of
the fitness function to predict the outcome of a local search

algorithm. The quadratic model is then used to bias future
search trajectories toward better optima on the same prob-
lem. An attempt to solve the continuous optimization prob-
lems using approximation and local search has been made
in (Liang, Yao, & Newton 2000).

In (Buche, Koumoutsakos, & Schraudolph 2005), knowl-
edge of past evaluations is used to build an empirical model
based on Gaussian processes to approximate the fitness
function. After building the model from an initial training
set, an evolutionary algorithm is used to search for minima
of the Gaussian process prediction. The resulting minima
are evaluated on the objective function and added to the
data set. Design and Analysis of Computer Experiments
(DACE) (Donald R. Jones & Welch 1998) aims at building
an accurate approximate model of the fitness function and at
obtaining the global minimum from the model. The method-
ology of DACE is to fit a stochastic process to the data, and
to use the “expected improvement” as a figure of merit to
identify the next evaluation points based on the model. Both
approaches differ from M-RASH where the B-LWR model
is used to suggest new starting points for the local search
technique.

Conclusion
The framework of the M-RASH technique has been pre-
sented with some preliminary results. M-RASH, which is an
integration of the B-LWR and RASH techniques, results in
faster convergence and better average optimum values com-
pared to Repeated-RASH. There are a number of critical pa-
rameters in the B-LWR and RASH techniques which include
the kernel width, the kernel function (Moore, Schneider, &
Deng 1997), prior assumptions on coefficient distribution,
the initial number of sample points, the termination condi-
tions of the local search procedures and the initial search re-
gionR in RASH algorithm. Current work and future efforts
will consider the detailed effect of these parameters on the
effectiveness of the technique, also considering automated
self-tuning techniques.

References
Atkeson, C. G.; Schaal, S. A.; and Moore, A. 1997. Locally
weighted learning.AI Review11:11–73.

Atkeson, C. G. 1990. Using local models to control move-
ment. InAdvances in neural information processing sys-
tems 2, 316–323. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc.

Battiti, R., and Brunato, M. 2006. Reactive search:
Machine learning for memory-based heuristics.Teofilo
F. Gonzalez (Ed.), Approximation Algorithms and Meta-
heuristics, Taylor & Francis Books (CRC Press), to appear.

Battiti, R., and Protasi, M. 1997. Reactive
search, a history-sensitive heuristic for max-sat.
ACM Journal of Experimental Algorithmics2:2.
http://doi.acm.org/10.1145/264216.264220.

Battiti, R. 2002. Partially persistent dynamic sets for
history-sensitive heuristics. In Johnson, D. S.; Goldwasser,
M. H.; and McGeoch, C., eds.,Data Structures, Near

Neighbor Searches, and Methodology: Fifth and Sixth
DIMACS Challenges, volume 59 ofDIMACS Series in
Discrete Mathematics and Theoretical Computer Science.
American Mathematical Society. 1–21.

Boyan, J., and Moore, A. W. 2001. Learning evaluation
functions to improve optimization by local search.Journal
of Machine Learning Research1:77–112.

Brunato, M., and Battiti, R. 2006. The reactive affine
shaker: a building block for minimizing functions of con-
tinuous variables. Technical Report DIT-06-012, Univer-
sità di Trento.

Buche, D.; Koumoutsakos, P.; and Schraudolph, N. 2005.
Accelerating evolutionary algorithms with Gaussian pro-
cess fitness function models.IEEE Transactions on Sys-
tems, Man and Cybernetics35:183–194.

Cleveland, W. S., and Devlin, S. J. 1988. Locally-weighted
regression: An approach to regression analysis by local
fitting. Journal of the American Statistical Association
83: 596–610.

Cohn, D. A.; Ghahramani, Z.; and Jordan, M. I. 1996.
Active learning with statistical models.Journal of Artificial
Intelligence Research4:129–145.

Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence14(3):318–334.

Donald R. Jones, M. S., and Welch, W. J. 1998. Effi-
cient global optimization of expensive black-box functions.
Journal of Global Optimization13:455–492.

Dubrawski, A., and Schneider, J. 1997. Memory based
stochastic optimization for validation and tuning of func-
tion approximators. Conference on AI and Statistics.
http://citeseer.ist.psu.edu/30334.html.

Hoos, H. H., and Stuetzle, T. 2005.Stochastic local search:
Foundations and applications. Morgan Kaufmann.

Jacquet, W.; Truyen, B.; de Groen, P.; Lemahieu, I.; and
Cornelis, J. 2005. Global optimization in inverse prob-
lems: A comparison of Kriging and radial basis functions.
http://arxiv.org/abs/math/0506440.

Korf, R. E., and Felner, A. 2002. Disjoint pattern database
heuristics.Artif. Intell. 134(1-2):9–22.

Liang, K.-H.; Yao, X.; and Newton, C. 2000. Evolution-
ary search of approximated n-dimensional landscapes.In-
ternational Journal of Knowledge-Based Intelligent Engi-
neering Systems4(3):172–183.

Moore, A., and Schneider, J. 1996. Memory-based
stochastic optimization. In Touretzky, D.; Mozer, M.; and
Hasselm, M., eds.,Neural Information Processing Systems
8, volume 8, 1066–1072. MIT Press.

Moore, A.; Schneider, J.; and Deng, K. 1997. Effi-
cient locally weighted polynomial regression predictions.
In Fisher, D., ed.,Proceedings of the Fourteenth Interna-
tional Conference on Machine Learning, 236–244. 340
Pine Street, 6th Fl., San Francisco, CA 94104: Morgan
Kaufmann.

Moore, A. 1992. Fast, robust adaptive control by learning
only forward models. In Moody, J. E.; Hanson, S. J.; and

L, R. P., eds.,Advances in Neural Information Processing
Systems. Morgan Kaufmann.
Solis, F. J., and Wets, R. J.-B. 1981. Minimization by
random search techniques.Mathematics of Operations Re-
search6(1):19–30.
Wolpert, D. H., and Macready, W. G. 1997. No free lunch
theorems for optimization.IEEE Transactions on Evolu-
tionary Computation1(1):67–82.

