
Coordinating Semantic Peers

P. Bouquet1, L. Serafini2, S. Zanobini1

1 Department of Information and Communication Technology – University of Trento
Via Sommarive, 10 – 38050 Trento (Italy)

2ITC – IRST
Via Sommarive, 15 – 38050 Trento (Italy)

{bouquet,zanobini}@dit.unitn.it, serafini@itc.it

Abstract. The problem of finding an agreement on the meaning of heteroge-
neous schemas is one of the key issues in the development of the Semantic Web.
In this paper, we propose a new algorithm for discovering semantic mappings
across hierarchical classifications based on a new approach to semantic coordina-
tion. This approach shifts the problem of semantic coordination from the problem
of computing linguistic or structural similarities (what most other proposed ap-
proaches do) to the problem of deducing relations between sets of logical formu-
las that represent the meaning of nodes belonging to different schemas. We show
how to apply the approach and the algorithm to an interesting family of schemas,
namely hierarchical classifications. Finally, we argue why this is a significant im-
provement on previous approaches.
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1 Introduction and approach

One of the key challenges in the development of open distributed systems is enabling
the exchange of meaningful information across applications which (i) may use au-
tonomously developed schemas for organizing locally available data, and (ii) need to
discover mappings between schema elements to achieve their users’ goals. Typical ex-
amples are databases using different schemas, and document repositories using different
classification structures. In restricted environments, like a small corporate Intranet, this
problem is typically addressed by introducing shared models (e.g., ontologies) through-
out the entire organization. However, in open environments (like the Web), this ap-
proach can’t work for several reasons, including the difficulty of ‘negotiating’ a shared
model of data that suits the needs of all parties involved, and the practical impossibility
of maintaining such a shared model in a highly dynamic environment. In this kind of
scenarios, a more dynamic and flexible method is needed, where no shared model can
be assumed to exist, and mappings between elements belonging to different schemas
must be discovered on-the-fly.

The method we propose assumes that we deal with a network of semantic peers,
namely physically connected entities which can autonomously decide how to organize
locally available data (in a sense, are semantically autonomous agents). Each peer or-
ganizes its data using one or more abstract schemas (e.g., database schemas, directories
in a file system, classification schemas, taxonomies, and so on). Different peers may
use different schemas to organize the same data collection, and conversely the same
schemas can be used to organize different data collections. We assume to deal with
schemas with meaningful labels, where ‘meaningful’ means that their interpretation
is not arbitrary, but is constrained by the conventions of some community of speak-
ers/users1. We also assume that semantic peers need to compute mappings between its
local schema and other peers’ schemas in order to exchange data.

The first idea behind our approach is that mappings must express semantic relations,
namely relations with a well-defined model-theoretic interpretation2. For example, we
want to state that the two elements of the schema are equivalent, or that one is more/less
general, or that they are mutually exclusive. As we will argue, this gives us many advan-
tages, essentially related to the consequences we can infer from the discovery of such a
relation.

The second idea is that, to discover such semantic relations, one must make explicit
the meaning implicit in each element of a schema. Our claim is that addressing the
problem of discovering semantic relations across schemas, where meaningful labels are
used, as a problem of matching abstract graphs is conceptually wrong.

1 In the following we show how this problem is extremely different from the problem of deter-
mining the similarity across different graphs.

2 This is an important difference with respect to approaches based on matching techniques,
where a mapping is a measure of (linguistic, structural, . . . ) similarity between schemas (e.g., a
real number between 0 and 1). The main problem with such techniques is that the interpretation
of their results is an open problem: should we interpret a 0.9 similarity as the fact that one
concept is slightly more general or slightly less general than the other one, or that their meaning
90% overlaps? See [1] for a more detailed discussion.
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Fig. 1. Mapping abstract structures

To illustrate this point, consider the difference between the problem of mapping
abstract schemas (like those in Figure 1) and the problem of mapping schemas with
meaningful labels (like those in Figure 2). Nodes in abstract schemas do not have an
implicit meaning, and therefore, whatever technique we use to map them, we will find
that there is some relation between the two nodes D in the two schemas which depends
only on the abstract form of the two schemas. The situation is completely different
for schemas with meaningful labels. Intuitively, the semantic relations between the two
nodes MOUNTAIN and the two nodes FLORENCE of structures in Figure 2 are different,
despite the fact that the two pairs of schemas are structurally equivalent between them,
and both are structurally isomorphic with the pair of abstract schemas in Figure 13.
This why we can make explicit a lot of information that we have about the terms which
appear in the graph, and their relations (e.g., that Tuscany is part of Italy, that Florence
is in Tuscany, and so on).
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Fig. 2. Mapping schemas with meaningful labels

Using such an information, human reasoners (i) understand the meanings expressed
by nodes: e.g., ‘images of Tuscan mountains’ (say P1), ‘images of Italian mountains’
(say P2), ‘images of Florence in Tuscany’ (say P3) and ‘images of Florence in Italy’
(say P4); and finally (ii) determine the semantic relations between nodes comparing the
meanings, namely that P1 ⊂ P2 and P3 ≡ P4.

In [2], we claim that, for extracting such meanings and for comparing them, we
need at least of three kinds of informations:

3 Indeed, for the first pair of nodes, the set of documents we would classify under the node
MOUNTAIN on the left hand side is a subset of the documents we would classify under the
node MOUNTAIN on the right; whereas the set of documents which we would classify under
the node FLORENCE in the left schema is exactly the same as the set of documents we would
classify under the node FLORENCE on the right hand side.



Lexical knowledge: knowledge about the words used in the labels. For example, the
fact that the word ‘Florence’ can be used to indicate ‘a city in Italy’ or ‘a city in the
South Carolina’, and, conversely, to handle the synonymy;
World knowledge: knowledge about the relation between the concepts expressed by
words. For example, the fact that Tuscany is part of Italy, or that Florence is in Italy;
Structural knowledge: knowledge deriving from how labeled nodes are arranged in
a given schema. For example, the fact that the node labeled MOUNTAIN is below a
node IMAGES tells us that it classifies images of mountains, and not, say, books about
mountains.

Summarizing, the process of discovering semantic relations across meaningful la-
beled schemas can take advantage of exploiting the complex degree of semantic co-
ordination implicit in the way a community uses the language from which the labels
are taken4. The method is based on a procedure for explicitating the meaning associ-
ated to each node in a schema (notice that schemas such as the two classifications in
Figure 2 are not semantic models themselves, as they do not have the purpose of defin-
ing the meaning of terms they contain; however, they presuppose a semantic model,
and indeed that’s the only reason why we humans can read them quite easily) and for
comparing them. As we clearly show in the next section, this approach shifts the prob-
lem of semantic coordination from the problem of computing linguistic or structural
similarities (what most other proposed approaches do) to the problem of deducing rela-
tions between sets of logical formulas representing the meaning of nodes belonging to
different schemas.

2 The algorithm: CTXMATCH

In this section we show how to apply the general approach described in the previous
section to the problem of coordinating Hierarchical Classifications (hereafter HCs),
namely concept hierarchies [3] used for grouping documents in categories5.

In our approach, we assume the presence of a network of semantic peers, where
each peer is defined as a triple 〈D,S , 〈L,O〉〉, where: D is a set of documents; S repre-
sents the set of schemas used by the peer for organizing its data; and 〈L,O〉 is defined
as a pair composed by a lexicon L and a world knowledge representationO. The struc-
ture of the semantic peer reflects the three levels of knowledge we showed before: S
represents structural knowledge, L contains lexical knowledge, and O is world knowl-
edge. Formally, L is a repository of pairs 〈w,C〉, where w is a word and C is a set of
concepts. Each pair 〈w,C〉 represents the set of concepts C denoted by a word w. For
example, a possible entry for a lexicon should express that the word ‘fish’ can denote

4 Notice that the status of this linguistic coordination at a given time is already ‘codified’ in
artifacts (e.g., dictionaries, but today also ontologies and other formalized models), which
provide senses for words and more complex expressions, relations between senses, and other
important knowledge about them. Our aim is to exploit these artifacts as an essential source of
constraints on possible/acceptable mappings across structures.

5 Some well-known examples of HCs are web directories (see e.g. the GoogleTM Directory or
the Yahoo!TMDirectory), file systems and document databases in content/knowledge manage-
ment systems.



at least two concepts: ‘an aquatic vertebrate’ and ‘the twelfth sign of zodiac’. An im-
portant example of this kind of repository is represented by WORDNET [4]. A world
knowledgeO expresses the set of relations holding between different concepts. For ex-
ample, a world knowledge O should express that the concept ‘an aquatic vertebrate’
denoted by the word ‘fish’ stays in a IsA relation with the concept of ‘animal’ (‘fish is
an animal’) and that the concept ‘the twelfth sign of zodiac’ denoted by the same word
‘fish’ stays in a IsA relations with a geometrical shape (‘fish is a geometrical shape’).
Formally, world knowledge is a logical theory written is a specific language, as for
example Prolog clauses, RDF triples, DAML/OIL, OWL.

Our method is designed for the following scenario: a peer A (called the seeker)
needs to find new documents relative to some category in one of its HCs, S. Imagine that
peerA knew that peerB (the provider) owns interesting documents, and imagine thatB
classify its documents by means of a HC S ′. This problem can be solved in a standard
way coordinating the two HCs. Formally, we define the problem of coordinating S and
S′ as the problem of discovering a mapping M = {〈m,n,R〉 | m ∈ S, n ∈ S ′}, where
R is a semantic relation between m and n. Five relations are allowed between nodes of
different HCs: m ⊃ n (m is more general than n); m ⊂ n (m is less general than n);
m ≡ n (m is equivalent to n); m ∩ n (m is compatible with n); m⊥n (m is disjoint
from n).

Algorithm 1.1 CTXMATCH(S ,S ′L,O)
. Hierarchical classifications S,S′

. Lexicon L

. World knowledge O

VarDeclaration:
contextualized concept 〈φ,Θ〉 , 〈ψ, Υ 〉
relation R
mapping M

1 for each pair of nodes m,n, m ∈ S and n ∈ S′ do
2 〈φ,Θ〉← SEMANTIC–EXPLICITATION(m,S, L,O);
3 〈ψ, Υ 〉← SEMANTIC–EXPLICITATION(n,S′, L, O);
4 R← SEMANTIC–COMPARISON(〈φ,Θ〉 , 〈ψ, Υ 〉 , O);
5 M ←M ∪ 〈m,n,R〉;
6 return M ;

The algorithm CTXMATCH takes as inputs the HC S of the seeker and the HC S ′,
the lexicon L and the world knowledgeO of the provider6. As we will show in the fol-
lowing, the lexicon L and the world knowledgeO play a major part in determining the
mapping between schemas. But, from the definition of semantic peer follows that each
peer has its own lexicon and world knowledge. A consequence of this consideration is
that the mapping returned by the algorithm expresses the point of view (regarding the
mapping) of the provider, and, consequently, is directional: the seeker, mutata mutandis,
can find a different mapping.

6 In the version of the algorithm presented here, we use WORDNET as a source of both lexical
and world knowledge. However, WORDNET could be replaced by another combination of a
linguistic resource and a world knowledge resource.



The output of the algorithm will be a set M of triples 〈m,n,R〉, where R is the
semantic relation holding between the nodes m and n.

The algorithm has essentially the following two main macro steps.
Steps 2–3: in this phase, called Semantic explicitation, the algorithm tries to interpret
pair of nodes m,n in the respective HCs S and S ′ by means of the lexicon L and the
world knowledge O. The idea is trying to generate a formula approximating the mean-
ing expressed by a node in a structure (φ), and a set of axioms formalizing the suitable
world knowledge (Θ). Consider, for example, the node FLORENCE in left lower HC
of Figure 2: steps 2–3 will generate a formula approximating the statement ‘Images
of Florence in Tuscany’ (φ) and an axiom approximating the statement ‘Florence is in
Tuscany’ (Θ). The pair 〈φ,Θ〉, called contextualized concept, expresses, in our opinion,
the meaning of a node in a structure.
Step 4: in this phase, called Semantic comparison, the problem of finding the semantic
relation between two nodes m and n is encoded as the problem of finding the semantic
relation holding between two contextualized concepts, 〈φ,Θ〉 and 〈ψ, Υ 〉.

Finally, step 5 generates the mapping simply by reiteration of the same process over
all the possible pair of nodes m ∈ S n ∈ S ′ and step 6 returns the mapping.

The two following sections describe in detail these two top-level operations, imple-
mented by the functions SEMANTIC–EXPLICITATION and SEMANTIC–COMPARISON.

2.1 Semantic explicitation

In this phase we make explicit in a logical formula7 the meaning of a node into a
structure, by means of a lexical and a world knowledge. In steps 1 and 2, the func-
tion EXTRACT–CANDIDATE–CONCEPTS uses lexical knowledge to associate to each
word occurring in the nodes of an HC all the possible concepts denoted by the word
itself. Consider the lower left structure of Figure 2. The label ‘Florence’ is associated
with two concepts, provided by the lexicon (WORDNET), corresponding to ‘a city in
central Italy on the Arno’ (florence#1) or a ‘a town in northeast South Carolina’
(florence#2). In order to maximize the possibility of finding an entry into the Lexi-
con, we use both a postagger and a lemmatizator over the labels.

In the step 3, the function EXTRACT–LOCAL–AXIOMS tries to define the ontologi-
cal relations existing between the concepts in a structure. Consider again the left lower
structure of Figure 2. Imagine that the concept ‘a region in central Italy’ (tuscany#1)
has been associated to the node TUSCANY. The function EXTRACT–LOCAL–AXIOMS

has the aim to discover if it exists some kind of relation between the concepts tuscany#1,
florence#1 and florence#2 (associated to node FLORENCE). Exploiting world
knowledge resource we can discover, for example, that ‘florence#1 PartOftuscany#1’,
i.e. that exists a ‘part of’ relation between the first sense of ‘Florence’ and the first sense
of Tuscany.

7 The choice of the logics depends on how expressive one wants to be in the approximation of
the meaning of nodes, and on the complexity of the NLP techniques used to process labels.
In our first implementation we adopted propositional logic, where each propositional letter
corresponds to a concept (synset) provided by WORDNET.



Algorithm 1.2 SEMANTIC–EXPLICITATION(t, S, L,O)
. t is a node in S

. structure S

. lexicon L

. world knowledge O

VarDeclaration:
single concept con[][]
set of formulas Σ
formula δ

1 for each node n in S do
2 con[n]← EXTRACT–CANDIDATE–CONCEPTS(n,L);
3 Σ← EXTRACT–LOCAL-AXIOMS(t,S, con[], O);
4 con[]← FILTER–CONCEPTS(S,Σ, con[]);
5 δ← BUILD–COMPLEX–CONCEPT(t,S, con[]);
6 return 〈δ,Σ〉;

World knowledge relations are translated into logical axioms, according to Table 1.
So, the relation ‘florence#1 PartOf tuscany#1’ is encoded as ‘florence#1→
tuscany#1’8.

WORDNET relation axiom

s#k synonym t#h s#k ≡ t#h
s#k { hyponym | PartOf }t#h s#k→ t#h
s#k { hypernym | HasPart }t#h t#h→ s#k

s#k contradiction t#h ¬(t#k ∧ s#h)
Table 1. WORDNET relations and their axioms.

Step 4 has the goal of filtering out unlikely senses associated to each node. Going
back to the previous example, we try to discard one of the senses associated to node
FLORENCE. Intuitively, the sense 2 of ‘Florence’, as ‘a town in northeast South Car-
olina’ (florence#2), can be discarded, because the node FLORENCE refers clearly
to the city in Tuscany. We reach this result by analyzing the extracted local axioms: the
presence of an axiom such as ‘florence#1 PartOf tuscany#1’ is used to make the
conjecture that the contextually relevant sense of Florence is the city in Tuscany, and
not the city in USA. When ambiguity persists (axioms related to different senses or no
axioms at all), all the possible senses are left and encoded as a disjunction.

Step 5 has the objective of building a complex concept (i.e., the meaning of a node
label when it occurs in a specific position in a schema) for nodes in HCs. As described
in [2], node labels are singularly processed by means of NLP techniques and trans-
lated into a logical formula9. The result of this first process is that each node has

8 For heuristic reasons – see [2] – we consider only relations between concepts on the same path
of a HC and their siblings.

9 Although in this paper we present very simple examples, the NLP techniques exploited in this
phase allow us to handle labels containing complex expressions, as conjunctions, commas,
prepositions, expressions denoting exclusion, like ‘except’ or ‘but not’, multiwords and so on.



a preliminary interpretation, called simple concept, which doesn’t consider the posi-
tion of the node in the structure. For example, the simple concept associated to the
node FLORENCE of the lower left hand structure of Figure 2 is trivially the atom
florence#1 (i.e. one of the two senses provided by WORDNET and not discarded
by the filtering). Then, these results are combined for generating a formula approxi-
mating the meaning expressed by a node into a structure. In this version of the algo-
rithm, we choose to express the meaning of a node n as the conjunction of the sim-
ple concepts associated to the nodes lying in the path from root to n. So, the formula
approximating the meaning expressed by the same node FLORENCE into the HC is
(image#1 ∨ . . . ∨ image#8) ∧ tuscany#1∧ florence#1.

Step 6 returns the formula expressing the meaning of the node and the set of local
axioms founded by step 3.

2.2 Semantic comparison

This phase has the goal of finding the semantic relation holding between two contextu-
alized concepts (associated to two nodes in different HCs).

Algorithm 1.3 SEM–COMP(〈φ,Θ〉,〈ψ, Υ 〉,O)
. contextualized concept 〈φ,Θ〉, 〈ψ, Υ 〉

. world knowledge O

VarDeclaration:
set of formulas Γ
semantic relation R

1 Γ ← EXTRACT–RELATIONAL–AXIOMS(φ,ψ, O);
2 if Θ, Υ, Γ |= ¬(φ ∧ ψ) then R←⊥;
3 else if Θ, Υ, Γ |= (φ ≡ ψ) then R←≡;
4 else if Θ, Υ, Γ |= (φ→ ψ) then R←⊂;
5 else if Θ, Υ, Γ |= (ψ → φ) then R←⊃;
6 else R←∩;
7 return R;

In Step 1, the function EXTRACT–RELATIONAL–AXIOMS tries to find axioms which
connect concepts belonging to different HCs. The process is the same as that of func-
tion EXTRACT–LOCAL–AXIOMS, described above. Consider, for example, the senses
italy#1 and tuscany#1 associated respectively to nodes ITALY and TUSCANY
of Figure 2: the relational axioms express the fact that, for example, ‘Tuscany PartOf
Italy’ (tuscany#1→ italy#1).

In steps 2–6, the problem of finding the semantic relation between two nodes n and
m (line 2) is encoded into a satisfiability problem involving both the contextualized con-
cepts associated to the nodes and the relational axioms extracted in the previous phases.
So, to prove whether the two nodes labeled FLORENCE in Figure 2 are equivalent, we
check the logical equivalence between the formulas approximating the meaning of the
two nodes, given the local and the relational axioms. Formally, we have the following
satisfiability problem:



Θ florence#1→ tuscany#1
φ (image#1 ∨ . . . ∨ image#8) ∧ tuscany#1∧ florence#1
∆ florence#1→ italy#1
ψ (image#1 ∨ . . . ∨ image#8) ∧ italy#1 ∧ florence#1
Γ tuscany#1→ italy#1

It is simple to see that the returned relation is ‘≡’. Note that the satisfiability prob-
lem for finding the semantic relation between the nodes MOUNTAIN of Figure 2 is the
following:

Θ ∅
φ (image#1 ∨ . . . ∨ image#8) ∧ tuscany#1∧ mountain#1
∆ ∅
ψ (image#1 ∨ . . . ∨ image#8) ∧ italy#1 ∧ mountain#1
Γ tuscany#1→ italy#1

The returned relation is ‘⊂’.

3 Conclusions and related work

In this paper we presented a new approach to semantic coordination in open and dis-
tributed environments, and an algorithm that implements this method for hierarchical
classifications. The algorithm, already used in a peer-to-peer application for distributed
knowledge management (the application is described in [5]), has been tested on real
HCs (i.e., pre-existing classifications used in real applications) and the results are de-
scribed in [6].

CTXMATCH faces the problem of semantic coordination deducing semantic rela-
tions between sets of logical formulas. Under this respect, to the best of our knowledge,
there are no other works to which we can compare ours. However, there are three other
families of approaches that we want to compare to: graph matching, automatic schema
matching and semi-automatic schema matching. For each of them, we will discuss the
proposal that, in our opinion, is more significant. The comparison is based on the fol-
lowing dimensions: (i) if and how structural, lexical and world knowledges are used;
(ii) the type of returned relation. The general results of our comparison are reported in
Table 2.

graph matching CUPID MOMIS CTXMATCH

Struct. knowl. • • • •

Lex. knowl. • • •

Dom. knowl. •

Relation
returned

id of nodes Value in [0, 1] Value in [0, 1]
Semantic
relation

Table 2. Comparing CTXMATCH with other methods



In graph matching techniques, a concept hierarchy is viewed as a labeled tree, but
the semantic information associated to labels is substantially ignored. Matching two
graphsG andG′ means finding an isomorphic sub-graph ofG′ w.r.t.G. Some examples
of this approach are described in [7, 8]. CUPID [9] is a completely automatic algorithm
for schema matching. Lexical knowledge is exploited for discovering linguistic simi-
larity between labels (e.g., using synonyms), while the schema structure is used as a
matching constraint. That is, the more the structure of the subtree of a node s is similar
to the structure of a subtree of a node t, the more s is similar to t. In case of equiva-
lent concepts occurring in completely different structures, and completely independent
concepts that belong to isomorphic structures, the match fails. MOMIS [10] is a set
of semi–automatic tools for information integration of (semi-)structured data sources,
whose main objective is to define a global schema that allows an uniform and trans-
parent access to the data stored in a set of semantically heterogeneous sources. This
integration is performed by exploiting knowledge in a Common Thesaurus together
with a combination of clustering techniques and Description Logics. The approach is
very similar to CUPID and presents the same drawbacks in matching hierarchical clas-
sifications.
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