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Abstract

The problem of context has a long tradition in different areas of artificial intelligence (AI).
However, formalizing context has been widely discussed only since the late 80s, when J. McCarthy
argued that formalizing context was a crucial step toward the solution of the problem of generality.
Since then, two main formalizations have been proposed in AI: Propositional Logic of Context (PLC)
and Local Models Semantics/MultiContext Systems (LMS/MCS). In this paper, we propose the first
in depth comparison between these two formalizations, both from a technical and a conceptual
point of view. The main technical result of this paper is the formal proof of the following facts:
(i) that PLC can be embedded into a particular class of MCS, called MPLC; (ii) that MCS/LMS
cannot be embedded in PLC using only lifting axioms to encode bridge rules, and (iii) that, under
some important restrictions (including the hypothesis that each context has finite and homogeneous
propositional languages), MCS/LMS can be embedded in PLC with generic axioms. The last part
of the paper contains a comparison of the epistemological adequacy of PLC and MCS/LMS for the
representation of the most important issues about contexts.
 2003 Published by Elsevier B.V.

Keywords: Context; Contextual reasoning; Logic of context; Local models semantics; MultiContext systems;
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1. Introduction

The study of a formal notion of context has a long history in different areas of artificial
intelligence1 (AI). Perhaps the first reference can be traced back to R. Weyhrauch and his

* Corresponding author.
E-mail address: serafini@itc.it (L. Serafini).

1 The interest in context is not limited to AI, though. On the contrary, it is discussed and used in various
disciplines that are concerned with a theory of representation. In philosophy of language, the notion of pragmatic
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work on mechanizing logical theories in an interactive theorem prover called FOL [30].
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However, it became a widely discussed issue only in the late 1980s, when J. McCarthy
proposed the formalization of context as a crucial step toward the solution of the problem
of generality: “When we take the logic approach to AI, lack of generality shows up in
that the axioms we devise to express common sense knowledge are too restricted in their
applicability for a general common sense database [. . . ] Whenever we write an axiom, a
critic can say that the axiom is true only in a certain context. With a little ingenuity the
critic can usually devise a more general context in which the precise form of the axiom
doesn’t hold” [22]. This way, McCarthy raised the issue that no formal theory of common
sense can get by without some formalization of context, as the representation of common
sense axioms seems to crucially depend on the context in which they are asserted.

McCarthy elaborated his position in his notes on formalizing context [23]. In that
paper, several important concepts (such as the notion of contexts as first class objects, the
formula ist(c,p)—intuitively, that the formula p is true in the context c—the operations
of entering and exiting contexts) were introduced. At around the same time, D. Lenat
and R. Guha introduced an explicit mechanism of contexts in CYC, the biggest and
perhaps most ambitious common sense knowledge base ever built. In his Ph.D. dissertation,
Guha—under McCarthy’s supervision—proposed a first formalization of context along
the lines suggested in [23]. In particular, Guha introduced a formal semantics for the
formula ist(c,p), and discussed several important concepts, such as the notion of context
structure and vocabulary, the distinction between grammaticality (expressions that are
well-formed in a sort of universal language) and meaningfulness (expressions that have
a meaning in given context), and the notion of lifting axioms (namely, axioms relating the
truth of formulas in different contexts); in addition, he discussed several applications and
techniques of context-based problem-solving techniques (e.g., lift-and-solve). McCarthy
and Guha’s work was the starting point of Buvač and Mason’s Propositional Logic of
Context (PLC) [10]. PLC explicitly aimed at formalizing McCarthy’s intuitions on context,
while giving a more traditional, modal flavor to Guha’s semantics. A particular relevance
is given to the idea that contexts must be formalized as first class objects (i.e., the logical
language must contain terms for contexts, and the interpretation domain contains objects
for contexts), and to the mechanisms of entering and exiting a context, which are identified
as the two main mechanisms of contextual reasoning. [9] is a generalization of PLC to
first-order languages.

Following a different line of thought, in the early 90s F. Giunchiglia proposed a different
approach to the problem of context and an original formalization. In his 1993 paper on

context has been used to provide a semantics to indexical (demonstrative) languages at least since Y. Bar-Hillel’s
seminal paper on indexical expressions [3]. Almost twenty years later, D. Kaplan published in the Journal of
Philosophical Logic his well-known formalisation of a logic of demonstratives [21]. A broader philosophical
approach to context was proposed and developed by J. Perry in his papers on indexicals and demonstratives,
see [26]. Another approach, based on situation semantics, was pursued by J. Barwise and others [4,28]. Recently,
R. Thomason has started working on a type-theoretic foundation of context [29]. In cognitive science, many
authors have proposed theories of mental representation where mental contents are thought of as partitioned into
multiple contexts (also called spaces [13], mental spaces [14], etc.). We only need to mention here that the notion
of context is very important for other disciplines such as pragmatics, linguistics, formal ontology (see [1,5,7] for
two recent collections of interdisciplinary papers on context).
U
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Contextual Reasoning [16], the formalization of context was motivated by the so-called
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problem of locality, namely the problem of modeling reasoning which uses only a subset
of what reasoners know about the world. The idea is that, while solving a problem on
a given occasion, people do not use all their knowledge, but construct a “local theory”
(which corresponds to Giunchiglia’s intuitive notion of context) and use it as if it contained
all relevant facts about the problem at hand; while reasoning, people can switch from one
context to another, for example when the original context is not adequate to solve the
problem. In this approach, the emphasis is more on formalizing contextual reasoning than
on formalizing contexts as first class objects. In [18], Giunchiglia and Serafini proposed
MultiContext Systems (MCS) as a proof-theoretic framework for contextual reasoning; this
paper introduces the notion of bridge rule, namely a special kind of inference rule whose
premises and conclusion hold in different contexts. Recently, Ghidini and Giunchiglia
proposed Local Models Semantics (LMS) as a model-theoretic framework for contextual
reasoning, and used MCS to axiomatize many important classes of LMS [15]. From a
conceptual point of view, Ghidini and Giunchiglia argued that contextual reasoning can
be analyzed as the result of the interaction of two very general principles: the principle of
locality (reasoning always happens in a context); and the principle of compatibility (there
can be relationships between reasoning processes in different contexts). In other words,
contextual reasoning is the result of the (constrained) interaction between distinct local
structures.

PLC and LMS/MCS2 are perhaps the most mature and well-known formalizations of
context in AI.3 Even though PLC and LMS/MCS are based on very different conceptual
assumptions, and provide solutions which are technically very different, both aim at
proposing a general solution to the problem of formalizing context, and at solving the
fundamental issue of context in common sense reasoning. Quite surprisingly, however, so
far the comparison between the two frameworks has been limited to a few lines of related
work in the two groups respective papers. This paper aims at filling this gap, as it is the
first in-depth investigation of the relationship between PLC and LMS/MCS, both from
a conceptual and a technical point of view. The main technical result of this paper is a
formal proof of the following facts: (i) that PLC can be embedded into a particular class
of MCS, called MPLC; (ii) that LMS/MCS cannot be embedded in PLC using only lifting
axioms to encode bridge rules, and (iii) that, under some important restrictions (including
the hypothesis that each context has finite and homogeneous propositional languages),
LMS/MCS can be embedded in PLC, but only if we allow also axioms which are not
lifting axioms. Conceptually, we argue that the restrictions needed to prove the theorem
have a significant impact on the fulfillment of the intuitive desiderata that were brought
forward to motivate the formalization of context in AI. In particular, we argue that these
restrictions are necessary because PLC fails to model a strong notion of contextual (local)
vocabulary, the general notion of context-dependent truth, and the more general notion of
contextual reasoning modeled by LMS/MCS.

2 We use the abbreviation LMS/MCS to refer to the general framework for contextual reasoning which
includes a model-theoretic (LMS) and a proof-theoretic (MCS) part.

3 We refer the reader to [2] for an excellent discussion of the work on formalizing context in AI.
U
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The paper goes as follows. In the first part, we introduce the two formalisms we want
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to compare; for each of them we describe the underlying intuitions and the way these
intuitions are modeled in the formal system. Then we present the technical comparison,
and in particular the theorems in which we show to what extent and how one system can be
embedded in the other. In the last part, we discuss the impact of the technical comparison
on the adequacy of the two systems to capture the general desiderata of a logic of context.

2. Theories of context

PLC and LMS/MCS are not simply two alternative formalizations of context. Most of
all, they are the outcome of two different conceptual views on what context and contextual
reasoning are, and this fact is reflected by the choices that were made at a technical level. In
this section we quickly review the two approaches, and prepare the ground for the technical
comparison between the two systems.4

2.1. Propositional logic of context

The intuitions motivating PLC, described in various papers by McCarthy and his group
(see, e.g., [9,10,20,22,23]), can be summarized as follows:

• contexts are first class objects, namely objects that belong to the domain of
interpretation of a formal language. This means that the formal language of a theory
of context should contain terms denoting contexts, and that it should allow one to
predicate properties about these objects and to express relations between contexts
(e.g., that a context is more general than another), or between contexts and other
objects (e.g., that the time of a context c is t);

• a formula is always stated in a context. However, the same context can be described
from different perspectives, i.e., the content of a particular context is itself context-
dependent. So, for instance, in the context of the 1950s, the context of car racing is
different than the context of car racing viewed from the today’s context. This property,
called non-flatness, is formalized by having each formula prefixed by a sequence
κ1 . . . κn of context labels5 (notationally, κ1 . . . κn :φ);

• a context is modeled as a set of truth assignments, each of which represents a possible
state of the world as described in the context. This resembles the intuition behind
possible world semantics. A formula φ is true (holds) in a context if the formula is
assigned to true by every assignment associated to the context;

• a context is always partial, namely only a subset of what can be said is given an
interpretation in each context. For instance in the context of the 1950s the sentence
“John has a mobile phone” is not interpreted. So, even if PLC uses a traditional (modal)

4 An exhaustive presentation of the two formalisms is beyond the scope of this paper; interested readers can
refer to the bibliography for more details.

5 Henceforth we will not stress the difference between context labels and contexts unless necessary to make
clear what we are talking about.
U
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definition of formal language, the notion of contextual vocabulary is introduced by
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allowing partial truth assignments for each context. This corresponds to the intuition
that there is a limited collection of facts that one can talk about in each context;

• statements about a context are stated in other contexts via so-called ist-formulas, i.e.,
formulas of the form ist(κ,φ). The formula ist(κ,φ) is read as “φ is true in the context
κ”. This formula, if asserted in a context κ ′, means that, viewed from κ ′, φ is true in κ .

• there is an intuitive relation between the assertions κ ′κ :φ and κ ′ : ist(κ,φ). Indeed,
the latter is true if the former is true, and vice versa. This is the main semantic
property formalized in PLC. This property is axiomatized via an inference rule called
CS (a contextual version of the modal rule of necessitation) that allows deriving
κ ′ : ist(κ,φ) from κ ′κ :φ. This is the main contextual reasoning pattern allowed in PLC.
Intuitively, it corresponds to McCarthy’s notion of exiting (or transcending) context κ .

• Other relations between contexts can be stated through the lifting axioms. Lifting
axioms are defined as “. . . axioms which relate the truth in one context to the truth
in another context. Lifting is the process of inferring what is true in one context based
on what is true in another context by the means of lifting axioms” [20,24]. Most of
the examples of lifting axioms one can find in the literature are Horn clauses of the
following form:

ist(κ1, φ1)∧ · · · ∧ ist(κn,φn)⊃ ist(κn+1, φn+1) (1)

In this paper we will use the term lifting axioms to denote lifting axioms in Horn form.
Like any other formula, lifting axioms are always stated in a context, called an outer
context.

• There is no outermost context. Indeed, for any context κ , there is an outer context κ ′
from which κ can be described.

In this paper, we use the version of PLC presented in [10]. Given a set K of labels,
intuitively denoting contexts, the language of PLC is a multi modal language on a set of
atomic propositions P with the modality ist(κ,φ) for each context (label) κ ∈ K. More
formally, the set of well-formed formulae W of PLC, based on P, is defined as:

W := P ∪ (¬W)∪ (W ⊃ W)∪ ist(K,W)

The other propositional connectives are defined as usual. If κ is a context, then the
formula ist(κ,φ) can be read as: φ is true in the context κ . PLC allows describing how
a context is viewed from another context. For this reason, PLC introduces the notion of
context sequence. Let K

∗ denote the set of finite context sequences and let κ̄ = κ1 . . . κn
denote any (possible empty) element of K∗. The context sequence κ1κ2 represents how
context κ2 is viewed from context κ1. Therefore, the intuitive meaning of the formula
ist(κ2, φ) in the context κ1 is that φ holds in the context κ2, from the point of view of κ1.
Similar interpretation can be given to formulae in context sequences longer than 2.

A model for PLC associates a set of partial truth assignments to each context sequence
and satisfiability is defined with respect to a context sequence.
U
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Definition 2.1. A model M of PLC is a partial function which maps each context sequence
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κ̄ ∈ K∗ into a set of partial truth assignments for P.

M ∈ (K∗ →p P(P →p {true, false}))
where A →p B denotes the set of partial functions from A to B and P(A) denotes the
powerset of A.

The intuition is that partial truth assignments can be used to model contexts with
different languages, i.e., sets of meaningful formulae. Intuitively, in a PLC-model M, a
formula φ is meaningful in a context sequence κ̄ (and therefore it belongs to κ̄’s language)
if M(κ̄) is defined and for every assignment in M(κ̄), it is always possible to determine the
truth of φ. In this way, a model M defines a vocabulary, denoted by Vocab(M). Vocab(M)

is the function that associates to each context sequence κ̄ a subset of P for which all
the assignments in M(κ̄) are defined. That is, 〈κ̄, p〉 ∈ Vocab(M) if and only if M(κ̄)

is defined and, for all ν ∈ M(κ̄), ν(p) is defined (where ν is a truth assignment to atomic
propositions).

Satisfiability and validity of formulae are defined only for those models that provides
enough vocabulary, i.e., the vocabulary which is necessary to evaluate a formula in a
context sequence. Each formula φ in a context sequence κ̄ implicitly defines its vocabulary,
denoted by Vocab(κ̄, φ), which intuitively consists of the minimal vocabulary necessary to
build the formula φ in the context sequence κ̄ . More formally, Vocab(κ̄, φ) is recursively
defined as follows:

Vocab(κ̄,p) = {〈κ̄, p〉}
Vocab(κ̄,¬φ) = Vocab(κ̄, φ)

Vocab(κ̄, φ ⊃ψ) = Vocab(κ̄, φ) ∪ Vocab(κ̄,ψ)

Vocab
(
κ̄, ist(κ,φ)

)= Vocab(κ̄κ,φ)

Definition 2.2 (Satisfiability and validity in PLC). Let φ and M be a formula and a model,
such that Vocab(κ̄, φ) ⊆ Vocab(M); φ is satisfied in M by an assignment ν ∈ M(κ̄)

(notationally M, ν |=κ̄ φ) according to the following clauses:

1. M, ν |=κ̄ p iff ν(p) = true;
2. M, ν |=κ̄ ¬φ iff not M, ν |=κ̄ φ;
3. M, ν |=κ̄ φ ⊃ψ iff not M, ν |=κ̄ φ or M, ν |=κ̄ ψ ;
4. M, ν |=κ̄ ist(κ,φ) iff for all ν′ ∈ M(κ̄κ), M, ν′ |=κ̄κ φ;
5. M |=κ̄ φ iff for all ν ∈ M(κ̄), M, ν |=κ̄ φ;
6. |=κ̄ φ iff for all PLC-model M, such that Vocab(κ̄, φ)⊆ Vocab(M), M |=κ̄ φ.

If the precondition Vocab(κ̄, φ) ⊆ Vocab(M), does not hold then, neither M, ν |=κ̄ φ nor
M, ν |=κ̄ ¬φ.

φ is valid in a context sequence κ̄ if |=κ̄ φ; φ is satisfiable in a context sequence κ̄ if
there is a PLC-model M such that M |=κ̄ φ. A set of formulae T is satisfiable at a context
sequence κ̄ if there is a model M such that M |=κ̄ φ for all φ ∈ T .
U
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(PL) �κ̄ φ if φ is an instance of a classical tautology
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(K) �κ̄ ist(κ,φ ⊃ ψ)⊃ ist(κ,φ)⊃ ist(κ,ψ)

(∆) �κ̄ ist(κ1, ist(κ2, φ)∨ψ)⊃ ist(κ1, ist(κ2, φ))∨ ist(κ1,ψ)

(MP)
�κ̄ φ �κ̄ φ ⊃ ψ

�κ̄ ψ

(CS)
�κ̄κ φ

�κ̄ ist(κ,φ)

Fig. 1. Axioms and inference rules for PLC.

The proposed sound and complete Hilbert-style axiomatization for validity in PLC is
reported in Fig. 1.

2.2. Local Models Semantics/MultiContext Systems

The intuitions underlying LMS/MCS are summarized in the following points.

• A context is primarily a subset of an individual global state, or—slightly more
formally—a partial and approximate theory of the world from some individual’s
perspective [16]. The most typical example is the collections of facts that an individual
uses to reason about a given problem. In [17], this idea is expressed by saying that
contexts are not thought of as part of the structure of the world (metaphysical context),
but rather as a way of structuring an individual’s representation of the world (cognitive
context).

• Reasoning mainly happens locally to a single context. The set of facts that an
individual takes in to consideration in order to draw a conclusion, via deductive
reasoning, is a small subset of his/her whole knowledge. This set contains those facts
which are relevant to the problem (s)he wants to solve, i.e., the one which are in the
context (s)he is currently using. In other words, problems must be reasoned about in
an appropriate problem-solving context (see for instance [8,19,23,25]).

• However, the interesting part of a theory of contextual reasoning is that there are
possible relations between local reasoning processes. This is because different contexts
are not simply unrelated representations, but different representations of the same
world. For example, two contexts may describe the same piece of world from the same
perspective but at different level of detail; or may describe the same piece of the world,
only from different perspectives. In LMS relations between different perspectives are
represented via a compatibility relation between local interpretation associated with
each context. The proof theoretic counterpart of compatibility relations are bridge
rules, i.e., inference rules with premises and consequences in different contexts.

• Finally, an important intuition is that not only each context is partial, but also that, in
general, the relationship between different contexts can be described only to a partial
extent. In other words, no matter how much we know about the relationship between
two contexts, in general we cannot fully “translate” one context into the other, as
each one may encode assumptions which are not fully explicit. Therefore, contexts
form a multiplicity of representations which are not reducible to a single, uniform
representation of the world.
U
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Fig. 2. The magic box.

Fig. 3. Mr.1 and Mr.2’s views.

In [15], these intuitions are synthesized into two general principles of contextual
reasoning. The first, called the principle of locality, is meant to capture the idea that
reasoning happens in partial, approximate, and perspectival representations of the world;
the second, called the principle of compatibility, says that there exist constraints between
reasoning processes in different contexts which guarantee their compatibility. In short,
contextual reasoning is a collection of reasoning mechanisms that exploit the relationships
among the local structures of different contexts.

A simple illustration of the intuitions discussed above can be given by introducing the
so-called “magic box” example, proposed in [15], and depicted in Fig. 2. Two agents, Mr.1
and Mr.2 look at the magic box from different viewpoints. The box is “magic” because the
observers cannot distinguish the depth inside it. Fig. 3 shows what Mr.1 and Mr.2 see in
the scenario depicted in Fig. 2.

The views of Mr.1 and Mr.2 can be thought of as two different contexts. Both observers
have a local representation of the box, which depends on their perspective. For example,
Mr.1 sees a box with two slots while Mr.2 sees a box with three slots, or Mr.1 can see a ball
in the left sector and one in the right, while Mr.2 sees only a single ball in the left sector.
The two contexts are not independent of one another so that, for instance, if the context of
Mr.1 contains the fact that there is a ball in the right slot, then the context of Mr.1 could
not contain the statement that the box is empty. The relationships between contexts (local
representations) lies at the heart of LMS/MCS, whose formalization we present next.

Let {Li}i∈I be a family of languages defined over a set of indexes I (in the following
we drop the index i ∈ I ). Intuitively, each Li is the (formal) language used to describe the
facts in the context i . In this paper, we assume that I is (at most) countable. Let Mi be the
class of all models (interpretations) of Li . Each m ∈ Mi is called a local model (of Li ).

A labeled formula of the kind i :φ is used to state that φ holds in i . As contexts have
distinct languages, it may perfectly well be the case that i :φ is a formula, while j :φ is
not (for some j �= i). Conversely, it should be clear that the “same” formula in two distinct
contexts is interpreted over different sets of local models, and therefore, in principle, have
independent meaning. The meaning of i :φ is kept distinct from the meaning of j :φ (for
i �= j ).
U
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Fig. 4. Compatibility relation for the magic box. Each line connects two models that belongs to the same chain.

In the magic box example, the propositions l and r in the context 1 represent Mr.1’s view
that “there is a ball in the left sector” and “there is a ball in the right sector”, respectively.
Analogously, the propositions l, c, and r in the context 2 represent Mr.2’s view that “there
is a ball in the left (center and right) sector”.

Definition 2.3 (Compatibility chain6). A compatibility chain c = {ci ⊆ Mi}i∈I is a family
of set of models of Li such that each ci is either empty or a singleton. ci is the ith element
of c. A compatibility chain is nonempty if at least one of its components is nonempty.

Definition 2.4 (Compatibility relation and LMS-model). A compatibility relation is a set
of compatibility chains. A LMS-model is a compatibility relation that contains at least one
nonempty compatibility chain.

A compatibility chain represents a set of “instantaneous snapshots of the world” each
of which is taken from the point of view of the associated context. Due to the fact that
contexts describe points of view of the same world, certain combinations of snapshots can
never happen. In the magic box, for instance, the fact that Mr.1 and Mr.2 look at the same
box, entails that if Mr.1 sees some ball, then Mr.2 sees some ball too. This relation is
captured by the compatibility relation shown in Fig. 4.

Definition 2.5 (Satisfiability and logical consequence). Let C be a compatibility relation,
c ∈ C be a chain, φ a formula of Li , and Γ a set of labelled formulas with labels different
from i .

1. c |= i :φ if φ is true in all m ∈ ci .7

2. C |= i :φ if for all c ∈ C, c |= i :φ.

6 For the sake of this paper, it is not necessary to introduce the more general definition of compatibility chain
presented in [15].

7 Notice that ci can contain at most one model.
U
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3. Γ |=C i :φ, if for all c ∈ C, either c �|= j :γ for some j :γ ∈ Γ , or c |= i :φ.
N
C

O
R

R
E

C
T
E

D
 P

R
O

O
F

4. For any class of compatibility relations C, Γ |=C i :φ, if, for all models C ∈ C, if for
any C ∈ C, Γ |=C i :φ.

We adopt the usual terminology of satisfiability and entailment for the statements about
the relation |=.

MultiContext Systems (MCS) [18] are a class of proof systems for LMS.8 The key
notion in an MCS is that of bridge rule.

Definition 2.6 (Bridge rule). A bridge rule br on a set of indices I is a schema of the form:

i1 :A1 . . . in :An

i :A
br

where i1, . . . , in, i ∈ I and A1, . . . ,An,A are schematic formulae. A bridge rule can
be associated with a restriction, namely a criterion which states the conditions of its
applicability.

Examples of bridge rules are:

i :A

j :A
i-to-j

O : Theorem(“A”)

M :A
Rdn.

t :P(c)

R :P(c, t)
Reif

The first bridge rule intuitively formalizes the fact that the context i is contained in (or is
copied into) the context j . The bridge rule Rdn. formalize the fact that, in the (meta)context
M , the predicate Theorem(x) is a sound formalization of the provability in the (object)
context O . Finally, the bridge rule “Reif” (for reification) reifies times in a reification
context R, and it allows inferring that c is P at the time t (i.e., P(c, t)) from the fact that
P(c) holds in the context associated to the time t .

Definition 2.7 (MultiContext System (MCS)). A MultiContext System (MCS) for a family of
languages {Li}, is a pair MS = 〈{Ci = 〈Li,Ωi,∆i〉},∆br 〉, where each Ci = 〈Li,Ωi,∆i〉
is a theory (on the language Li , with axioms Ωi and natural deduction inference rules ∆i ),
and ∆br is a set of bridge rules on I .

MCSs are a generalization of Natural Deduction (ND) systems [27]. The generalization
amounts to using formulae tagged with the language they belong to. This allows for
the effective use of the multiple languages. The deduction machinery of an MCS is the
composition of two kinds of inference rules: local rules, namely the inference rules in
each ∆i , and bridge rules. Local rules formalize reasoning within a context (i.e., are only
applied to formulae with the same index), while bridge rules formalize reasoning across
different contexts.

Deductions in a MCS are trees of formulae which are built starting from a finite set of
assumptions and axioms, possibly belonging to distinct languages, and by a finite number

8 In this paper, we present a definition of MC system which is suitable for our purposes. For a fully general
presentation, see [18].
U
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2 : l ∨ c
∨I

2 : l ∨ c ∨ r
∨I

1 : l ∨ r
∃•

2

1 :¬l [1 : l]
1 :⊥ ⊃ E

1 : r
⊥ [1 : r]

1 : r
∨E

Fig. 5. Deduction for 2 : l,1 :¬l �MBox 1 : r . The deduction starts from assuming the hypothesis 2 : l, in the
context C2. Then some local reasoning (two applications of ∨I rules) is performed, which allows us to draw
an “exportable” conclusions. Namely a formula that is a premise of a bridge rule. This formula is then exported
by means of the bridge rule ∃•

2, into the context C1, where, via local reasoning we reach the conclusion 1 : r .

of applications of local rules and bridge rules. A formula i :φ is derivable from a set of
formulae Γ in a MC system MS, in symbols, Γ �MS i :φ, if there is a deduction with
bottom formula i :φ whose un-discharged assumptions are in Γ . A formula i :φ is a
theorem in MS, in symbols �MS i :φ, if it is derivable from the empty set. The standard
notation for deductions can be obtained by drawing a tree of labelled formulae. An example
is shown in Fig. 5.

The MCS formalizing the magic box example (called MBox) is composed of two
contexts 1 and 2 for Mr.1 and Mr.2 respectively. L1 and L2 are the propositional languages
defined on the sets primitive propositions {l, r} and {l, c, r} respectively. The set of axioms
of 1 and 2 are empty, as there is no restriction on the configuration of the box. Finally, the
set of bridge rules between 1 and 2 are the following:

1 : l ∨ r

2 : l ∨ c ∨ r
∃•

1
2 : l ∨ c ∨ r

1 : l ∨ r
∃•

2
1 :¬(l ∨ r)

2 :¬(l ∨ c ∨ r)
not∃•

1
2 :¬(l ∨ c ∨ r)

1 :¬(l ∨ r)
not∃•

2

The bridge rule ∃•
1 formalizes the compatibility statement: “if Mr.1 sees a ball then Mr.2

sees a ball”. The intuitive interpretation of the other bridge rules is similar. In Fig. 5, we
propose an example of a deduction MBox proving that if Mr.2 sees a ball in the left sector
(2 : l) and Mr.1 does not sees any ball in the left sector (1 :¬l), then he sees one ball in the
right sector (1 : r).

3. Comparing PLC and LMS/MCS

PLC can be viewed as a multi-modal version of the Kripke’s system K , extended with
the axiom (∆) (see Fig. 1). In [18], a family of MCS, called MBK, was proved to be
equivalent to modal K; moreover, [15] presents the definition of a LMS for MBK (and the
corresponding completeness result). To prove that PLC can be represented in LMS/MCS,
we first show that vocabularies in PLC play no logical role. Then we extend MBK for
multi-modal K , and we define the MultiContext System MPLC, in which (∆) is a theorem.

Notice that the definition of satisfiability and validity in PLC given in [10] and reported
in Definition 2.2, refers also to the vocabulary of a model. We show that an equivalent
definition of satisfiability can be given in which such a parameter is dropped.

Let a complete vocabulary be a the vocabulary that associates to each context sequence
the entire set of formulae W.
U
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Theorem 3.1 (Reduction to complete vocabulary). A formula is valid in PLC if and only
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if it is satisfied by all the PLC-models with complete vocabulary. Similarly, a formula
is satisfiable in PLC if and only if there is a PLC-model with complete vocabulary that
satisfies it.

The proof of Theorem 3.1 follows by showing that each PLC-model that satisfies a
formula φ can be extended to a PLC-model with a complete vocabulary satisfying φ.
The complete proof (like most of the proofs of the other theorems of the paper) is in
Appendix A.

PLC-models with complete vocabulary are equivalent to normal Kripke models in
which: the set of worlds are the pair 〈ν, κ̄〉, the accessibility relation Rκ (for each κ ∈ K) is
defined as “〈ν, κ̄κ〉 is accessible via Rκ from 〈ν, κ̄〉”, and the truth assignment to 〈ν, κ〉 is
ν itself. Under this interpretation, Theorem 3.1 states that validity in PLC can be checked
by considering a set of normal Kripke structure, and therefore that PLC is a normal modal
logic.

3.1. Reconstructing PLC in LMS/MCS

To reconstruct PLC in MCS we start with the definition of the MCS corresponding to
multi-modal K and then we add a suitable constraint for (∆). For each (possibly empty)
sequence κ̄ ∈ K∗, the language Lκ̄ is the smallest propositional language that contains P

and the atomic formula ist(κ,φ) for any κ ∈ K and any formula φ ∈ Lκ̄κ . Notice that,
unlike in PLC, the formula ist(κ,φ) is an atomic formula of Lκ̄ , and not the application of
the modal operator ist(κ, . . .) to the formula φ.

Definition 3.1. An MBK(K)-model is a model for the family of languages {Lκ̄ }κ̄∈K∗ , such
that, for any c ∈C and κ̄κ ∈ K∗:

1. if c |= κ̄ : ist(κ,φ), then c |= κ̄κ :φ;
2. if c′ |= κ̄κ :φ for all c′ ∈ C with cκ̄ = c′̄

κ , then c |= κ̄ : ist(κ,φ).

Definition 3.2. MBK(K) is a MCS on the family of languages {Lκ̄}κ̄∈K, where, for each
κ̄ , Ωκ̄ is empty and ∆κ̄ is the set of propositional natural deduction inference rules, and
∆br is the following set of bridge rules:

κ̄ : ist(κ,φ)

κ̄κ :φ
Rdn.κ̄κ

κ̄κ :φ

κ̄ : ist(κ,φ)
Rup.κ̄κ

RESTRICTION Rup.κ̄κ is applicable only if κ̄κ :φ does not depend on any assumption with
index κ̄κ .

Soundness and completeness theorems for MBK(K) with respect to the class of
MBK(K) models are given in [15]:

Theorem 3.2 (Soundness and completeness). Γ |=MBK(K) κ̄ :φ if and only if Γ �MBK(K)

κ̄ :φ.
U
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Theorem 3.2 is proved in [15] for the special case with K singleton (see Theorems B.1
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and B.2 of [15]). The generalization for any K, can be obtained by uniformly adding the
indexes to such a proof.

Definition 3.3 (MPLC-model). An MPLC-model is an MBK(K)-model, that satisfies the
following additional condition:

3. if c |= κ̄κ : ist(κ ′, φ), then c |= κ̄ : ist(κ, ist(κ ′, φ)).

Condition 3 is the compatibility constraint that corresponds to the axiom (∆) in PLC.

Theorem 3.3. Any MBK(K)-model C is an MPLC-model if and only if C |= κ̄ : (∆), for
every κ̄ .

We modify MBK(K) in order to prove the axiom (∆).

Definition 3.4 (MPLC). MPLC is an MCS defined as MBK(K) where the restriction of
Rup.κ̄κ is applied only if the premise of Rup.κ̄κ , is not of the form κ̄κ : ist(κ ′,ψ).

Now, we need to prove that the extension of MBK(K) is the right one, namely that
MPLC is sound and complete w.r.t. the class of MPLC-models.

Theorem 3.4 (Soundness and completeness of MPLC). MPLC is sound and complete w.r.t.
the set CMPLC of MPLC-models. In symbols

Γ �MPLC κ̄ :φ if and only if Γ |=CMPLC κ̄ :φ

Finally, we need to state the equivalence between MPLC and PLC w.r.t. provability.

Theorem 3.5 (MPLC is equivalent to PLC). �κ̄ φ iff �MPLC κ̄ :φ.

3.2. Reconstructing LMS/MCS in PLC

Before we proceed to compare the two logical systems, we observe that such a
comparison is possible only of we introduce the following restrictions on MCS:

1. we must consider only MCSs with homogeneous languages in each context, as PLC
does not properly support different vocabularies (see Theorem 3.1);

2. we restrict the comparison to MCSs in which all contexts have the same inference
engine, which is contexts are all classical propositional theories;

3. for the sake of this comparison, we consider only ground bridge rules, i.e., bridge rules
formulated using formulas of the languages and not schemas.

The general strategy to encode an MCS into PLC is shown in Fig. 6. Given a MCS
with I contexts, we define a PLC with I contexts (one for each context in MCS) and an
U
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Fig. 6. From MCS to PLC.

additional meta-context ε. In ε, the content of each context and the compatibility relations
(bridge rules) between contexts are described via ist-formulas.

The representation of the content of the MCS contexts is quite straightforward: any
formula i :φ in MCS is translated into the formula ε : ist(i, φ) in PLC. For bridge rules, the
translation is not so straightforward. Indeed, the first natural idea is to translate each bridge
rule

i1 :φ1 . . . in :φn
i :φ

of an MCS into the lifting axiom ist(i1, φ1) ∧ · · · ∧ ist(in,φn) ⊃ ist(i, φ). However, this
encoding does not produce a PLC which is equivalent to the MCS. Below is a formal proof
of this fact.

Let BR be the set of bridge rules between a set I of contexts with language Li = Lj

(for i, j ∈ I ). Let LA ⊂ W be the set of lifting axioms among the contexts I expressed in
a new context ε not in I . The notation Γ �br i :φ stands for: i :φ is derivable from Γ in
the MCS with the set I of contexts, no axioms, and the set br of bridge rules.

Theorem 3.6. There is no transformation la(.) from bridge rules to finite sets (or
equivalently conjunctions) of lifting axioms such that, for any finite subset br ⊆ BR of
bridge rules:

i1 :φ1, . . . , in :φn �br i :φ

if and only if

�ε

∧
br∈br

la(br)⊃ (
ist(i1, φ1)∧ · · · ∧ ist(in,φn)⊃ ist(i, φ)

) (2)

Lifting axioms are not the only possible ist-formulas. There are ist-formulas, as for
instance ¬ist(i, φ) or ist(i, φ) ⊃ ist(j,ψ)∨ ist(k, θ), which are not lifting axioms in Horn
form but could be used to represent the compatibility relation formulated by bridge rules.
So the question arises of whether bridge rules can be encoded by generic ist-formulas in
some external context ε.
U
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Theorem 3.7. There is a transformation a(.) from finite sets br ∈ BR of bridge rules to
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ist-axioms, and a context ε such that:

i1 :φ1, . . . , in :φn �br i :φ

if and only if

�εa(br)⊃ ist(i1, φ1)∧ · · · ∧ ist(in,φn) ⊃ ist(i, φ)

(3)

In the above theorem we have shown that MCSs with a finite number of contexts and
with finite languages, can be represented via lifting axioms. However notice from the
formal proof given in Appendix A that in embedding LMS/MCS into PLC, bridge rules
are not directly translated into implications, as one could expect. For instance the bridge
rules

1 :p

2 :q
br12

2 :q

1 : r
br21 (4)

are not translated in the axioms of the form ist(1,p) ⊃ ist(2, q) and ist(2, q)⊃ ist(1,p) as
shown in the proof of Theorem 3.6. The proof of Theorem 3.7 given in Appendix A, shows
that the transformation a of the bridge rules (4) is not computed by a direct (syntactic)
translation of each single bridge rule. Indeed, a(br) is determined by enumerating all the
LMS-models of (4) and by axiomatizing them in a PLC-formula. This is not a problem of
our translation, indeed any alternative translation which is equivalent a(br) with more than
two contexts cannot be reduced to a set of horn lifting axioms.

4. Discussion of the formal results

In the previous sections, we proved some important theorems about PLC, LMS/MCS,
and their relationship. The results can be summarized as follows:

1. satisfiability in PLC with partial vocabularies is equivalent to satisfiability in PLC with
a complete vocabulary (Theorem 3.1);

2. PLC can be embedded into a particular class of MCS, called MPLC (Theorem 3.5);
3. LMS/MCS cannot be embedded in PLC using only lifting axioms for encoding bridge

rules (Theorem 3.6);
4. under some important restrictions (including the hypothesis that all contexts have finite

and homogeneous propositional languages), LMS/MCS can be embedded in PLC, but
only if we allow also axioms which are not lifting axioms (Theorem 3.7).

The aim of this section is to discuss the impact of these theorems on the conceptual
appropriateness of the two systems as formal theories of context and contextual reasoning.

4.1. Context-dependent vocabularies

One of the intuitions which is more generally accepted in the community of people
working on context is that it must be possible to associate one distinct vocabulary to
each context. Indeed, a vocabulary always presupposes an implicit ontology [20], and
U
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thus allowing context-dependent (partial, local) vocabularies is a way to fulfill the intuitive
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requirement that each context is a partial (its language can express facts only about some
portion of the world) and approximate (its language encodes some level of granularity)
representation of the world.

PLC and LMS/MCS provide different technical solutions to the idea of context-
dependent vocabularies:

• PLC starts from a global vocabulary and then model-theoretically defines a context
vocabulary via partial truth assignments: the vocabulary of a context κ is the
intersection of the domains of interpretation of truth assignments for κ ;

• LMS/MCS adopts a more radical approach, and assigns a distinct (formal) language
to each context: the vocabulary of a context κ is the set of well-formed formulae that
can be built from a distinct vocabulary.

At a first glance, the two approaches seem to be equivalent. However, there is an
important difference. In PLC, if φ is a well-formed formula in the context sequence
κ̄κ , then the formula ist(κ,φ) must be a well-formed formula in κ̄ . This means that the
vocabulary of the context κ̄ depends, at least partially, on the vocabulary of the context
κ̄κ . In many applications, this property seems undesirable. Consider, for example, the
application of PLC to distributed databases (this application was proposed, for example, in
[23]): it is not always the case that in a context (representing a database db1) one is aware of
all the objects and relations that can be expressed in another context (representing another
database db2), as the two databases may have only partially overlapping vocabularies (and
thus ontologies). Intuitively, this means that we don’t write a formula like ist(db1,R) in
db2 if R is not in the vocabulary of db2. Unfortunately, for the properties of ist in PLC,
such a step cannot be prevented.9

Unlike PLC, in LMS/MCS a distinct (and autonomous) language is associated to each
context. Thus, the fact that φ is a well-formed formula of Lκκ ′ does not necessarily entail
that ist(κ ′, φ) is a well-formed formula of the language Lκ (nor vice versa, in case one is
under the flatness hypothesis). This is so because ist(κ ′, φ) is a propositional formula of
Lκ , and its interpretation is defined with respect to the local models of Lκ (not to the local
models of the language Lκκ ′ ). The fact that ist(κ ′, φ) is not a formula of Lκκ ′ simply means
that one cannot impose any constraint on the interpretation of φ in κκ ′ and ist(κ ′, φ) in Lκ .

In short, we can conclude that vocabularies in PLC are not completely context-
dependent (and Theorem 3.1 is an illustration of this fact). This cannot be changed in PLC,
as this property is part of the logic itself (due to the properties of ist-formulae). On the
contrary, if this property is desirable in some application, it can be modeled in LMS/MCS
as an additional constraint on the definition of a LMS/MCS-model.

9 The situation is even worse under the so-called “flatness” hypothesis, namely the hypothesis that context
sequence κ̄κ coincides with the context κ . In this case, if in κ we state that φ is true (or false) in a context κ ′, then
φ is necessarily a well-formed formula of κκ ′. In other words, if in a context we state that φ is true (or false) in
some other context, we force φ to be expressible in the language of that context.
U
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4.2. Specifying facts that hold in a context
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Another crucial feature of a formal theory of context is the possibility of specifying that
a fact is true (holds) in a given context. Both PLC and LMS/MCS allow the specification
of facts that hold in a context in two ways: directly, by explicitly listing the facts that are
true at a given index (e.g., db2 :R); and compositionally, namely asserting new facts in a
context by exploiting the relationships with other facts that hold in different contexts.

Once again, PLC and LMS/MCS follow different approaches to formalize this property.
PLC formalizes the compositional specification via lifting axioms, namely formulae of the
form:

κext : ist(κ1, φ)⊃ ist(κ2, φ) (5)

Notice that lifting axioms are always asserted in some external context.
In LMS/MCS, the compositional specification is formalized (i) model-theoretically via

compatibility relations, and (ii) proof-theoretically via bridge rules. For example, the fact
that a formula φ is true in a context κ2 if it is true in a context κ1 corresponds to the
following compatibility relation:

for any c ∈C, if c |= κ1 :φ, then c |= κ2 :φ (6)

The corresponding bridge rule is:

κ1 :φ

κ2 :φ
br(6) (7)

With respect to the general desiderata of a theory of context, the solution in PLC has
two drawbacks. The first, which will be discussed in Section 4.5, is that lifting axioms
alone are not expressive enough to encode all the relations that can be expressed via bridge
rules (as we proved in Theorem 3.7). The second is a representational issue. As we said,
lifting axioms can only be stated in an external context, which must be expressive enough
to represent facts in both contexts (using ist-formulae); whereas, with bridge rules, one
does not need to define an external context. Of course, there are situations in which having
the external context may be an advantage (for example, it allows reasoning about lifting
axioms themselves, and thus one can discover that certain lifting axioms are redundant,
or lead to inconsistent contexts). However, in general, specifying an external context can
be very costly—especially when there are many interconnected contexts—as the external
context essentially duplicates all the information of each context. LMS/MCS allows both
solutions. Indeed, instead of using bridge rules to lift a fact φ from κ1 to κ2, one can define
a third context connected with κ1 and κ2 via bridge rules (see Definition 3.2) and explicitly
add an axiom like (5) to this new context.10

4.3. Context-dependent truth

Another important requirement of a logic of context is that truth is context-dependent,
namely the truth value of a fact must depend on the context in which it is asserted.

10 This approach was used, for example, in the solution to the qualification problem presented in [6].
U
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Technically, this corresponds to requiring that truth (validity) be defined exclusively in
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terms of the truth assignments (local models) associated with each context. However, in
PLC this is not precisely the case, as the satisfiability of ist-formulae does not depend on
the assignments of the contexts in which they occur.

A PLC-model associates with each context sequence a set of evaluations for primitive
propositions, which defines the truth of facts for that context. However, we can easily
observe that the truth of a formula ist(κ,φ) depends on the truth assignments of the
context κ . In fact, the following property holds:

for any pair of assignment ν, ν′ ∈ M(κ̄), M, ν |=κ̄ ist(κ,φ)

if and only if M, ν′ |=κ̄ ist(κ,φ) (8)

The property above shows that the truth value of ist(κ,φ) in κ̄ is defined by the
assignments of the context κ̄κ , and thus the assignments of the context κ̄ do not have
any effect on its truth value. In short, the truth value of ist(κ,φ) in κ̄ does not depend on
the assignments of the context κ̄ , which makes its truth dependent on conditions which are
independent from κ̄ .

4.4. Describing relations between contexts

The main feature of a formal theory of context, however, is the ability to formalize the
relations existing between different contexts. To achieve this goal, PLC and LMS/MCS
adopt two different strategies:

• PLC is based on a combination of lifting axioms plus the other axioms and rules for
exiting and entering contexts;

• LMS/MCS is based on the mechanism of bridge rules.

Our goal is to argue that the second approach is more general, and intuitively more
adequate, to model the desiderata of a theory of context. In particular, we stress that:

1. while lifting axioms can easily (and straightforwardly) be mapped onto bridge rules
(or lifting axioms plus reflections rules, as shown in Definition 3.2), the converse
is not true, which means that some relations formalized through bridge rule may
require a complex translation into PLC which requires more than just a collection
(any collection) of lifting axioms;

2. the properties of ist force PLC to embed in the logic a relation between contexts,
expressed by the axiom (∆), which seems hardly justifiable as a general relation
between contexts.

The first point is a direct consequence of Theorem 3.6, in which we proved that
the bridge rules (4) cannot be translated in axioms of the form ist(1,p) ⊃ ist(2, q)
and ist(2, q) ⊃ ist(1,p). Theorem 3.7 shows that the translation is possible, but the
needed axioms (A.12) are determined by enumerating all the LMS-models of (4) and
by axiomatizing them in a formula of PLC. This does not depend on our translation, as
U
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any alternative translation which is equivalent to the axiom (A.12) with more than two
N
C

O
R

R
E

C
T
E

D
 P

R
O

O
F

contexts cannot be reduced to a set of lifting axioms. From the considerations above,
we can conclude that in general LMS/MCS allows a simpler description of the relations
between contexts.

The second remark is about the axiom (∆), i.e., ist(κ1, ist(κ2, φ) ∨ψ) ⊃ ist(κ1, ist(κ2,

φ)) ∨ ist(κ1,ψ). Its validity is related to property (8). However, (∆) does not seem to
model a truly general relation between contexts, and therefore its status of logical axiom is
quite dubious. Consider for example the following instance of (∆):

ist
(
κ, ist(κ ′, φ)∨ ist(κ ′,ψ)

)⊃ ist
(
κ, ist(κ ′, φ)

)∨ ist
(
κ, ist(κ ′,ψ)

)
(9)

Intuitively, it says that it is never the case that a disjunctive fact about the truth in another
context can hold without one of the disjuncts holding in that context. This principle,
however, does not seem to hold in general. For example, it does not apply to belief contexts.
Suppose κ represents the beliefs of an agent a, and κκ ′, the beliefs that a ascribes to another
agent b. Suppose b flips a coin, but does not know whether it is head or tail. One would
expect that a can ascribe to b the belief that it is head or tail, but not the belief that it is
head nor the belief that it is tail. However, from the formula:

ist
(
a, ist(b,Head)∨ ist(b,Tail)

)
and the axiom (∆) we can always infer:

ist
(
a, ist(b,Head)

)∨ ist
(
a, ist(b,Tail)

)
which intuitively is very implausible.

In LMS, the satisfiability of a formula of the type ist(κ,φ) is local to the context
in which the formula is asserted (this is one of the distinguished properties of LMS in
general), and therefore such a problem can be avoided. In order to prove the equivalence
between MPLC and PLC, we had to impose a very strong compatibility relation such as
condition 3 of Definition 3.3. However, it can be easily relaxed, as it is not part of the
underlying logic.

4.5. Formalizing reasoning across contexts

In a formalization of context, it is very important to be able to represent logical
consequence across different contexts, in order to adequately formalize reasoning across
contexts. Indeed, logical consequence across different contexts formalizes the fact that a
formula in a context is true as a consequence of the fact that other formulas are true in other
contexts. This was one of the first requirements that McCarthy stated in his seminal paper
on generality in AI [22], when he proposed contextual reasoning as an extension to natural
deduction calculi, in which assumptions can be made in a context, the consequences can be
derived in another context, and finally the conclusion can be derived in the original context.

An adequate calculus for a logic of context should not only formalize truth in contexts,
but also allow assumption-based contextual truth. In other words a calculus should allow
to infer that a formula is true in a context when other formulas (called assumptions) are
true in other contexts.
U
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Let us see, for instance, how PLC and MCS/LMS represent the fact that ψ in κ is a
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logical consequence of φ in κ ′. In PLC one needs a third (“top”) context where logical
consequence is represented by the formula ist(κ,φ) ⊃ ist(κ ′,ψ). Instead in MCS this is
directly represented by the fact that κ ′ :ψ is derivable via bridge rules from the assumption
κ :φ, i.e., that κ :φ �MCS κ ′ :ψ .

If we generalize the previous example, we can see that in PLC logical consequence
across a set I of contexts is represented via lifting axioms in an external context. This
formalization, however, is not completely satisfactory for two main reasons:

• from a model-theoretic point of view, the truth condition for ist(κ,φ) (item 4 of
Definition 2.2) formally interprets ist(κ,φ) as “φ is true in all the possible models
(evaluations) of κ”, i.e., φ is valid in κ , and not as φ is true in the current model
(evaluation) of κ . Therefore, the lifting axiom

ist(κ̄1, φ1)∧ · · · ∧ ist(κ̄n, φn)⊃ ist(κ̄, φ) (10)

is interpreted as “if φh is valid in κ̄h, for each 1 � h � n, then φ is valid in κ̄” which
formally differs from “if φh is true in κ̄h, for each 1 � h � n, then φ is true in κ̄”;

• from a proof-theoretic point of view, in PLC, to infer the formula (10) one does not
assert each φh in κ̄h and infer the consequence φ in κ̄ , by navigating across contexts.
Indeed, the reasoning pattern followed for proving (10) in PLC is: first lift up properties
from each context κ̄h and κ̄ to ε, and then reason propositionally in ε.

In LMS/MCS, logical consequence is explicitly defined (item 7 of Definition 2.5). The
fact that κ̄ :ψ is a logical consequence of κ̄ ′ :φ, w.r.t. a class of LMS-models C, is explicitly
formalized as:

κ̄ :φ |=C κ̄ ′ :ψ (11)

The MCS associated with the class of LMS-models C, provides an axiomatization of
|=C, based on Natural Deduction, which allows us to derive the formula κ̄ ′ :ψ starting
from the assumption κ̄ :φ, whenever κ̄ :φ |=C κ̄ ′ :ψ .

5. Conclusions

This paper is the first attempt to provide a technical and conceptual comparison between
PLC and LMS/MCS. Even though these two formalisms are perhaps the most significant
attempts to provide a logic of context in AI, so far the comparison between them was
limited to cross-references and a few lines of related works. We believe that the results
presented in this paper will help clarify the technical and conceptual differences between
the two approaches.

We stressed the fact that the two formalisms do not provide equivalent solutions, even
if they share some of the intuitive motivations for having a formal theory of context in AI.
The main results of the technical comparison are that (i) that PLC can be embedded into
a particular class of MCS, called MPLC; (ii) that MCS cannot be embedded in PLC using
only lifting axioms to encode bridge rules, and (iii) that, under some important restrictions
U
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(including the hypothesis that each context has finite and homogeneous propositional
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languages), MCS can be embedded in PLC, but only if we allow also axioms which are
not lifting axioms. However, we argued that the restrictions needed to prove the second
theorem have a significant impact on the appropriateness of PLC to capture the intuitive
desiderata of a logic of context in AI.

Appendix A. Proof of theorems

Proof of Theorem 3.1. We prove the theorem by showing that each PLC-model M can
extended to a PLC-model Mc with a complete vocabulary with the following property:

For any formula φ and context sequence κ̄ , such that Vocab(φ, κ̄) ∈ Vocab(M),

M |=κ̄ φ iff Mc |=κ̄ φ (A.1)

The completion of a PLC-model M is the PLC-model Mc defined as follows. For any
κ̄ ∈ K∗:

• if M(κ̄) is undefined, then Mc(κ̄) contains all the possible total assignments to P.
• if M(κ̄) is defined, then Mc(κ̄) is the following set of assignments:{

νc : P → {true, false} | νc is a completion of some assignment ν ∈ M(κ̄)
}

where νc is a completion of ν if and only if νc agree with ν on the domain of ν.

Clearly Mc is a PLC-model. To prove property (A.1) we show by induction on the
complexity of φ, that for any assignment ν ∈ M(κ̄), and for any completion νc of ν in
Mc:

M, ν |=κ̄ φ iff Mc, νc |=κ̄ φ

Base case. M, ν |=κ̄ p iff ν(p) = true, and since any extension of νc agrees with ν on
its domain, νc(p) = true.

Step case. M, ν |=κ̄ ¬φ iff not M, ν |=κ̄ φ, iff, by induction, not Mc, νc |=κ̄ φ, iff
Mc, νc |=κ̄ ¬φ. The case of φ ⊃ψ is similar. Let us consider the case of ist(κ,φ). M, ν |=κ̄

ist(κ,φ) iff for all ν′ ∈ M(κ̄κ), M, ν′ |=κ̄κ φ, iff, by induction, for all ν′
c ∈ Mc(κ̄κ),

Mc, ν
′
c |=κ̄κ φ, iff M, νc |=κ̄ ist(κ,φ). ✷

Proof of Theorem 3.3. Suppose that c |= κ̄ : ist(κ, ist(κ ′, φ) ∨ ψ). If for all c′, with
cκ̄ = c′̄

κ , we have that c′ |= κ̄κ :ψ , then by condition 3 of Definition 3.2 of MBK(K)-
model, we have that c |= κ̄ : ist(κ,ψ) and therefore that c |= κ̄ : ist(κ, ist(κ ′, φ))∨ ist(κ,ψ).
If there is such a c′, such that c′ �|= κ̄κ :ψ , from the fact that, by condition 2 of Definition 3.2
of MBK(K)-model c′ |= κ̄κ : ist(κ ′, φ)∨ψ , we have that c′ |= κ̄κ : ist(κ ′, φ). By condition
4 of Definition 3.3 of MPLC-model, we have that c′ |= κ̄ : ist(κ, ist(κ ′, φ)). Since cκ̄ = c′̄

κ ,
then c |= κ̄ : ist(κ, ist(κ ′, φ)), and therefore c |= κ̄ : ist(κ, ist(κ ′, φ))∨ ist(κ,ψ).
U
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κ̄ : Prem(∆)
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κ̄κ : ist(κ ′, φ)∨ψ
Rdn.κ̄κ

κ̄κ :¬ψ

κ̄κ : ist(κ ′, φ)
κ̄ : ist(κ, ist(κ ′, φ))

Rup.κ̄κ

κ̄ : Cons(∆)
∨Iκ̄

κ̄ :¬Cons(∆)

κ̄ :⊥
κ̄ : ist(κ,⊥)

⊥
κ̄κ :⊥ Rdn.κ̄κ

κ̄κ :ψ
⊥

κ̄ : ist(κ,ψ)
Rup.κ̄κ

κ̄ : Cons(∆)
∨Iκ̄

κ̄ :¬Cons(∆)

κ̄ :⊥ ⊃ Eκ̄

κ̄ : Cons(∆)

κ̄ : Prem(∆)⊃ Cons(∆)
⊃ I

⊥

⊃ Eκ̄

Fig. A.1. A proof of ∆ in MPLC.

Vice versa, suppose that C |= κ̄ : (∆) and let us prove condition 4 of Definition 3.3.
Since the formula κ̄ : ist(κ, ist(κ ′, φ)∨¬ist(κ ′, φ)) ⊃ ist(κ, ist(κ ′, φ))∨ ist(κ,¬ist(κ ′, φ)),
is an instance of (∆), and since c |= κ̄ : ist(κ, ist(κ ′, φ)∨ ¬ist(κ ′, φ)),

c |= κ̄ : ist
(
κ, ist(κ ′, φ)

)∨ ist
(
κ,¬ist(κ ′, φ)

)
(A.2)

Suppose that c |= κ̄κ : ist(κ ′, φ), then c �|= κ̄κ :¬ist(κ ′, φ), and by condition 2 of
Definition 3.2, c �|= κ̄ : ist(κ,¬ist(κ ′, φ)). By property (A.2), and by the fact that |cκ̄ | � 1,
we have that c |= κ̄ : ist(κ, ist(κ ′, φ)). ✷
Proof of Theorem 3.4. To prove soundness it is enough to prove that the unrestricted
version of Rup., is sound w.r.t. logical consequence in MPLC-models. Namely that:

κ̄κ : ist(κ ′, φ) |=MPLC κ̄ : ist
(
κ, ist(κ ′, φ)

)
This is a trivial consequence of condition 4 of the definition of MPLC-model. Complete-
ness of MPLC can be proved in an indirect way. We have indeed that MBK(K) is complete
w.r.t. the class of MBK(K)-models. Furthermore, from Theorem 3.3, we have that, the
class of MPLC-models, is the class of MBK(K)-models that satisfy κ̄ : (∆). Complete-
ness can be therefore proved by showing that (∆) can be proved in MPLC. In Fig. A.1,
we show a proof of (∆). Notationally, Prem(∆) and Cons(∆) denote the premise and the
consequence of (∆) respectively. ✷
Proof of Theorem 3.5. Provability in PLC can be defined as provability in multi-modal
K (denoted by �K ) plus the axiom (∆). For any subset H of K∗, the notation ist(H, φ)

denotes the set of formulae:

ist(H, φ)= {
ist
(
k1, ist(k2, . . . ist(kn,φ))

) | κ1κ2 . . . κn ∈ H
}

U
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For any finite set of formulae Γ = {γ1, . . . , γn}, ∧Γ denotes the formula γ1 ∧ · · · ∧ γn. If
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�κ̄ φ, then there is a finite set H ⊆ K∗, such that

�K

∧
ist
(
H, (∆)

)⊃ φ

From the equivalence between multi-modal K and MBK(K) we have that

�MBK(K) κ̄ :
∧

ist
(
H, (∆)

)⊃ φ

Since any formula in κ̄ : ist(H, (∆)) is provable in MPLC, then we can conclude that

�MPLC κ̄ :φ

If ��κ̄ φ, then we have that ��ε φ, (where ε is the empty sequence). This implies that there
is a model M, such that M �|=ε φ. We define the MPLC-model CM, that contains all the
sequences c such that cκ̄ ∈ M(κ̄), and cκ̄ is empty if M is not defined for some κ̄ ′, such
that κ̄ = κ̄ ′κ̄ ′′. It can be easily show that CM is a MPLC-model, and that CM �|= ε :φ. ✷
Proof of Theorem 3.6. The theorem is proved by counterexample. Consider the two
bridge rules in (4)

1 :p

2 :q
br12

2 :q

1 : r
br21 (4)

where p, q , and r are three distinct propositional letters. Let br12 and br21 be both
unrestricted (i.e., always applicable). Considering br12 or br21 separately, they do not affect
theoremhood in either context 1 and 2. Formally, for i = 1,2, �br12 i :φ if and only if φ
is a propositional tautology, and analogously �br21 i :φ if and only if φ is a tautology (see
[11,12] for a proof of a similar fact). However, combining br12 and br21 in the same MCS,
new theorems, which are not tautologies, can be proved. An example of such a theorem is
1 :p ⊃ r , and its proof is the following:

1 :p(∗)
2 :q

br12

1 : r
br21

1 :p ⊃ r
⊃ I (Discharging the assumption (∗))

Let la(br12) and la(br21) be the following general conjunctions of lifting axioms:

la(br12)=
M∧

m=1

(
Km∧
k=1

ist(imk,φmk)⊃ ist(jm,ψm)

)
(A.3)

la(br21)=
N∧

n=M+1

(
Kn∧
k=1

ist(ink, φnk)⊃ ist(jn,ψn)

)
(A.4)

where imk , ink , and jn are either 1 or 2. Posing br = {br12,br21}, we have that
∧

br∈br la(br)
is equivalent to the following formula:

N∧
n=1

(
Kn∧
k=1

ist(ink, φnk)⊃ ist(jn,ψn)

)

U
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Suppose, by contradiction, that equivalence (2) holds. Since 1 :p ⊃ r is derivable via br12
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and br21, we have that

�ε

∧
br∈br

la(br)⊃ ist(i,p ⊃ r) (A.5)

Consider the PLC-model M with M(1) equal to all the assignments for L1 and M(2)
equal to all the assignments for L2. Since p ⊃ r is not valid, there is an assignment ν such
ν �|= p ⊃ r . By construction, M(1) contains all the assignments to L1. As a consequence
M �|=ε ist(1,p ⊃ r). Soundness of PLC and (A.5) entail that M �|=ε

∧
br∈br la(br), and

therefore, that there is an n � N such that

M |=ε

Kn∧
k=1

ist(ink, φnk) and M �|=ε ist(jn,ψn) (A.6)

The left part of (A.6) states that each φnk (with 1 � k � Kn) is a tautology, as it must be
true in all the assignments in M(ink). As a consequence we have that

�ε

Kn∧
k=1

ist(ink, φnk) (A.7)

The right part of (A.6) states that there is an assignment ν ∈ M(jn) such that ν �|=ψn, i.e.,
ψn is not a tautology. Let us consider two cases n � M , and n >M . In the first case, due
to the definition of la(br12), we have that

�ε la(br12) ⊃
(

Kn∧
k=1

ist(ink, φnk)⊃ ist(jn,ψn)

)
(A.8)

while, in the second one we have:

�ε la(br21)⊃
(

Kn∧
k=1

ist(ink, φnk)⊃ ist(jn,ψn)

)
(A.9)

By applying Modus Ponens to (A.8) and (A.7), or to (A.9) and (A.7), we obtain one of the
following two consequences:

�ε la(br12)⊃ ist(jn,ψn) or �ε la(br21)⊃ ist(jn,ψn)

If the equivalence holds we would have that, either �br12 jn :ψn or �br21 jn :ψn, while ψn

is not a tautology. But this is a contradiction. ✷
Proof of Theorem 3.7. The proof is constructive, i.e., we define the transformation a(.)

for each set of bridge rules. The definition of a(br) passes through a syntactic encoding of
the LMS-models for br.

Let C be a LMS-model (i.e., a set of chains), the set of PLC-models MC corresponding
to C is defined as follows:

MC =
{
MC ′ | C′ is a subset of C such that for any i ∈ I, M(i)=

⋃
c∈C ′

ci

}
(A.10)
U
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Let C be the set of LMS-models for br. The set MC is defined as
⋃

C∈C MC . Let us prove
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that the logical consequence defined by C can be represented by valid formulas in the set
of models MC, i.e., that:

i1 :φ1, . . . , in :φn |=C i :φ

if and only if for all M ∈ MC

M |=ε ist(i1, φ1)∧ · · · ∧ ist(in,φn) ⊃ ist(i, φ)

(A.11)

Suppose that i1 :φ1, . . . , in :φn |=C i :φ. Let MC ′ ∈ MC, with C′ ⊆ C ∈ C. Suppose that
MC ′ |=ε ist(ik, φk) for any 1 � k � n. This implies that for all c ∈ C′, cik |= φk . From the
hypothesis we have that ci |= φ, and therefore that MC ′ |=ε ist(i, φ,).

Vice versa, let us prove that M |=ε ist(i1, φ1) ∧ · · · ∧ ist(in,φn) ⊃ ist(i, φ) for all
M ∈ MC implies that for any model C of br and for any chain c ∈ C, if cik |= φk for
1 � k � n, then ci |= φ. Notice that, for any c ∈ C ∈ C we have that M{c} ∈ MC. By
definition (see Eq. (A.10)), M{c} is such that M(i) = ci . By hypothesis we have that
M{c} |= ist(i1, φ1) ∧ · · · ∧ ist(in,φn) ⊃ ist(i, φ), which implies that if cik |= φk for all
1 � k � n, then ci |= φ.

To define a(br) we proceed as follows: for any PLC-model M ∈ MC we find a formula
φM, that axiomatizes exactly M. Then the axiomatization of MC can be obtained by the
disjunction of all the axiomatization φM associated to each single PLC-model M of MC
(this definition is possible because MC is finite).

Let M ∈ MC, and let φM be the following formula∧
i∈I

(
ist

(
i,

∨
ν∈M(i)

φν

)
∧

∧
ν∈M(i)

¬ist(i,¬φν)

)
(A.12)

where φν is the conjunction of all the literals verified by the assignment ν. (A.12) is a finite
formula, for the set I of context is finite and the set of literals in each context is finite too.
By adding (A.12) as axioms in the context ε we obtain an PLC that is satisfied only by the
model M. Let

a(br)=
∨

M∈MC

φM

Let us now prove the equivalence (3). By soundness and completeness of br, i1 :φ1, . . . ,

in :φn �br i :φ holds if and only if

i1 :φ1, . . . , in :φn |=C i :φ (A.13)

By (A.11), we have that (A.13) holds if and only if for all M ∈ MC,

M |=ε ist(i1, φ1)∧ · · · ∧ ist(in,φn) ⊃ ist(i, φ) (A.14)

By construction of a(br), M |=ε a(br), if and only if M ∈ MC. This implies that (A.14)
holds if and only if

|=ε a(br)⊃ ist(i1, φ1)∧ · · · ∧ ist(in,φn) ⊃ ist(i, φ) (A.15)

Finally, soundness and completeness of PLC implies that (A.15) holds if and only if
�ε a(br)⊃ ist(i1, φ1)∧ · · · ∧ ist(in,φn) ⊃ ist(i, φ), which concludes our proof. ✷
U
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