
A SAT–based algorithm for context matching

P. Bouquet1,2, B. Magnini2, L. Serafini2, and S. Zanobini1

1Department of Information and Communication Technologies – University of Trento
Via Inama, 5 – 38100 Trento (Italy)

2ITC-IRST – Istituto per la Ricerca Scientifica e Tecnologica
Via Sommarive, 14 – 38050 Trento (Italy)

bouquet@dit.unitn.it magnini@itc.it serafini@itc.it

zanobini@dit.unitn.it

Abstract. The development of more and more complex distributed
applications over large networks of computers has raised the problem
of semantic interoperability across applications based on local and au-
tonomous semantic schemas (e.g., concept hierarchies, taxonomies, on-
tologies). In this paper we propose to view each semantic schema as
a context (in the sense defined in [1]), and propose an algorithm for
automatically discovering relations across contexts (where relations are
defined in the sense of [8]). The main feature of the algorithm is that
the problem of finding relationships between contexts is encoded as a
problem of logical satisfiability, and so the discovered mappings have a
well–defined semantic. The algorithm we describe has been implemented
as part of a peer-to-peer system for Distributed Knowledge Management,
and tested on significant cases.

1 Introduction

The development of more and more complex distributed applications over large
networks of computers has created a whole new class of conceptual, technical,
and organizational problems. Among them, one of the most challenging one is
the problem of semantic interoperability, namely the problem of allowing the
exchange meaningful information/knowledge across applications which (i) use
autonomously developed conceptualizations of their domain, and (ii) need to
collaborate to achieve their users’ goals.

Two are the main approaches proposed for solving the problem of semantic
interoperability. The first is based on the availability of shared semantic struc-
tures (e.g., ontologies, global schemas) onto which local representations can be
totally or partially mapped. The second is based on the creation of a global rep-
resentation which integrates local representations. Both approaches do not seem
suitable in scenarios where: (i) local representations are updated and changed
very frequently, (ii) each local representation is managed in full autonomy w.r.t.
the other ones, (iii) local representations may appear and disappear at any time,
(iv) the discovery of semantic relation across different representations can be



driven by a user’s query, and thus cannot be computed beforehand (runtime
discovery) nor take advantage of human intervention (automatic discovery).

In this paper we propose an approach in which local schemas are viewed as
contexts, namely as partial and approximate representations of the world from
an individual’s or a group’s perspective [1] (two simple examples of schemas are
the two directory structures from Google and Yahoo in Figure 1). This approach,
which is motivated by the work on Distributed Knowledge Management (DKM)
[4, 3], is based on the assumption that a successful knowledge–based application
should not “force” people to change their way of looking at things (encoded, for
example, in a database schema or in the classification of a document management
system), as the imposed schema would be perceived “either as oppressive or
irrelevant” [14]. Thus, from our perspective, local schemas play the role of a lens
through which people look at the world and make sense of it. In a word, a schema
is the context in which facts are taken as true, decisions are made, objects are
classified, relations among things are asserted and understood.

The problem of such a vision is that communication across different local
schemas (contexts) becomes difficult. The algorithm we present in this paper is
precisely a first solution to the problem of runtime and automatic discovery of
semantic relations across autonomous contexts. More specifically, we start from
a broad family of schemas (called concept hierarchies), and present a method for
discovering the type of relation existing between two nodes (each representing
a concept) belonging to different schemas. The main feature of the algorithm is
that the problem of finding relations between concepts in different contexts is
encoded as a problem of logical satisfiability of a set of formulae. This allows
us to assign a precise semantic to each discovered mapping. In particular, we
claim that the correct semantic for a mapping between concepts of different
contexts is in terms of a compatibility relation (as defined in [8]), namely as a
constraint on the local interpretations of the two contexts that are compatible
with each others. In this sense, the algorithm we present is a first attempt to
discover (rather than assume) relations over local models of two or more contexts
(which, from a proof–theoretical point of view, corresponds to discover “bridge
rules” [9] across contexts).

The paper goes as follows. First, we characterize the scenarios that motivate
our approach, and explain why we use the theory of context as a theoretical
background of the algorithm. Then, we describe the macro–blocks of the algo-
rithm, namely semantic explicitation and context mapping via SAT. Finally, we
describe the results of our preliminary tests and briefly compare our algorithm
with some other proposals in the literature.

2 Motivating scenarios

The work on the algorithm was originally motivated by a research on Distributed
Knowledge Management [4], namely a distributed approach to managing corpo-
rate knowledge in which users (or groups of users, e.g. communities) are allowed
to organize their knowledge using autonomously developed schemas (e.g., di-
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Fig. 1. Examples of concept hierarchies (source: Google and Yahoo)

rectories, taxonomies, corporate ontologies), and are then supported in finding
relevant knowledge in other local schemas available in the corporate network.

In this scenario, the algorithm we present aims at solving the following prob-
lem. Let s (the source schema) and t (the target schema) be two autonomous
schemas that different users (or groups) use to organize and access a local body
of data. Given a concept ks in s, and a concept kt in t, what is the semantic
relations between ks and kt? For example, are the two concepts equivalent? Or
one is more (less) general than the other one? In addressing this problem, it is
assumed that the basic elements of each schema are described using words and
phrases from natural language (e.g., English, Italian); this reflects the intuition
that schemas encode a lot of implicit knowledge, which can be made explicit
only if one has access to the meaning of the words that people use to denote
concepts in the schema.

Scenarios with similar features can be found in other important application
domains, such as the semantic web (where each site can have a semantic de-
scription of its contents and services), marketplaces (where every participating
company may have a different catalog, and every marketplace may adopt a dif-
ferent standard for cataloging products); search engines (some of them , e.g.
the Google and the Yahoo, provide heterogeneous classifications of web pages in
web directories); the file system on the PCs of different users (where each user
stores documents in different directory structures). So the class of applications
in which our algorithm can be applied is quite broad.

3 Local schemas as contexts

In many interesting applications, schemas are directed graphs, whose nodes and
edges are labeled with terms or phrases from natural language. A typical example
is depicted in Figure 1, whose structures are taken from the Google and Yahoo



directories. In this section, we briefly argue why we interpret these schemas as
contexts in the sense of [1] (see [8] for a formalization).

In schemas like the ones in the figure, the meaning of a label depends not
only on its linguistic meaning (what a dictionary or thesaurus would say about
that word or phrase), but also on the context in which it occurs: first, it depends
on the position in the schema (e.g., the documents we as humans expect to
find under the concept labeled Baroque in the two structures in Figure 1 are
quite different, even if the label is the same, and is used in the same linguistic
sense); second, it depends on background knowledge about the schema itself
(e.g., that there are chat and forums about literature helps in understanding the
implicit relation between these two concepts in the left hand side schema). These
contextual aspects of meaning are distinct (though related) to purely linguistic
meaning, and we want to take them into account in our algorithm.

To this end, the algorithm we present in this paper is applied to contexts
rather than to schemas directly. In [1], a context is viewed as a box, whose
content is an explicit (partial, approximate) representation of some domain, and
whose boundaries are defined by a collection of assumptions which hold about
the explicit representation. The notion of context we use in this paper is an
special case of the notion above. A context is defined as a pair c = 〈Rc, Ac〉,
where:

1. Rc is a graph, whose nodes and edges can be labeled with expressions from
natural language;

2. Ac is a collection of explicit assumptions, namely attributes (parameter/value
pairs) that provide meta-information about the content of the context.

In the current version of the algorithm, we restrict ourselves to the case in
which Rc is a concept hierarchy (see Def. 1), and the explicit assumptions Ac

are only three: the id of the natural language in which labels are expressed (e.g.,
English, Italian), the reference structure Rc of the explicit representation (the
only accepted value, at the moment, is “concept hierarchy”, but in general other
values will be allowed, e.g., taxonomy, ontology, semantic network, frame), and
the domain theory (see below for an explanation of this parameter). Their role
will become apparent in the description of the algorithm.

A concept hierarchy is defined as follows:

Definition 1 (Concept hierarchy). A concept hierarchy is a triple H =
〈K,E, l〉 where K is a finite set of nodes, E is a set of arcs on K, such that
〈K,E〉 is a rooted tree, and l is a function from K ∪ E to a set L of strings.

Definition 2 (Hierarchical classification). A hierarchical classification of a
set of documents D in a concept hierarchy H = 〈K,E, l〉 is a function µ : K →
2D.



µ satisfies the following specificity principle: a user classifies a document d
under a concept k, if d is about k (according to the user) and there isn’t a more
specific concept k′ under which δ could be classified1.

Mappings between contexts are defined as follows:

Definition 3 (Mapping function). A mapping function M from H = 〈K,E, l〉
to H ′ = 〈K ′, E′, l′〉 is a function M : K ×K ′ → rel, where rel is set of symbols,
called the possible mappings.

The set rel of possible mappings we consider in this paper contains the

following: ks
⊇
−→ kt, for ks is more general than kt; ks

⊆
−→ kt for ks is less general

than kt; ks
∗

−→ kt for ks is compatible with kt; ks
⊥
−→ kt for ks is disjoint from

kt; ks
≡
−→ kt for ks is equivalent to kt. The formal semantics of these expressions

is given in terms of compatibility between document classifications of Hs and
Ht:

Definition 4. A mapping function M from Hs to Ht is extensionally correct
with respect to two hierarchical classifications µs and µt of the same set of doc-
uments D in Hs and Ht, respectively, if the following conditions hold for any
ks ∈ Ks and kt ∈ Kt:

ks
⊇
−→ kt ⇒ µs(ks↓) ⊇ µt(kt↓)

ks
⊆
−→ kt ⇒ µs(ks↓) ⊆ µt(kt↓)

ks
⊥
−→ kt ⇒ µs(ks↓) ∩ µt(kt↓) = ∅

ks
≡
−→ kt ⇒ µs(ks↓) = µt(kt↓)

ks
∗

−→ kt ⇒ µs(ks↓) ∩ µt(kt↓) 6= ∅

where µ(c↓) is the union of µ(d) for any d in the subtree rooted at c.

The semantics introduced in Definition 4 can be viewed as an instance of the
compatibility relation between contexts as defined in Local Models Semantics [8,
5]. Indeed, suppose we take a set of documents D as the domain of interpreta-
tion of the local models of two contexts c1 and c2, and each concept as a unary
predicate. If we see the documents associated to a concept as the interpretation
of a predicate in a local model, then the relation we discover between concepts of
different contexts can be viewed as a compatibility constraint between the local
models of the two concepts. For example, if the algorithm returns an equivalence
between the concepts k1 and k2 in the contexts c1 and c2, then it can be inter-
preted as the following constraint: if a local model of c1 associates a document d
to k1, then any compatible model of c2 must associate d to k2 (and vice versa);
analogously for the other relations.

1 See Yahoo instruction for “Finding an appropriate Category” at
http://docs.yahoo.com/info/suggest/appropriate.html.



4 The Matching Algorithm

The algorithm has two main phases:

Semantic explicitation In the schema level, a lot of information is implicit
in the labels, and in the structure. The objective of this first phase is to
make it as explicit as possible by associating to each node (and edge) k a
logical formula w(k) that encodes this information. Intuitively, w(k) is an
approximation of the human interpretation.

Semantic comparison We encode the problem of finding mappings between
two concepts k and k′, whose explicit meaning is w(k) and w(k′), into a
problem of satisfiability, which is then solved by a SAT solver in a logic W
(i.e., the logic in which w(c) and w(c′) are expressed). Domain knowledge is
also encoded as a set of formulas of W .

Since here we are mainly focussed on the second phase, we only provide a
short description of semantic explicitation (details can be found in [11]), and
then move to the SAT encoding.

4.1 Semantic explicitation

The goal of the first phase is to make explicit all the semantic information
which can be fruitfully used to define the SAT problem in a rich way. The main
intuition is that any schema is interpreted (by its users) using two main sources of
information: lexical information, which tells us that a word (or a phrase) can have
multiple senses, synonyms, and so on; and a background theory, which provides
extra-linguistic information about the concepts in the schema, and about their
relations. For example, lexical information about the word “Arizona” tells us
that it can mean “a state in southwestern United States” or a “glossy snake”.
The fact that snakes are animals (reptiles), that snakes are poisonous, and so
can be very dangerous, and so on, are part of a background theory which one
has in mind when using the word “Arizona” to mean a snake2. In the version of
the algorithm we present here, we use WordNet as a source both of lexical and
background information about the labels in the schema. However, we’d like to
stress the fact that the algorithm does not depend on the choice of any particular
dictionary or theory (i.e., does not depend on WordNet). Moreover, we do not
assume that the same dictionary and background theory are used to explicit the
semantic of the two contexts to be matched.

Semantic explicitation is made in two main steps: linguistic interpretation
and contextualization.

2 We are not saying here that there is only one background theory. On the contrary,
theories tend to differ a lot from individual to individual, and this is part of the
reason why communication can fail. What we are saying is that, to understand what
“Arizona” means in a schema (such as the concept hierarchy in the left hand side of
Figure 1), one must have a theory in mind.



Linguistic interpretation Let H = 〈K,E, l〉 be a concept hierarchy and LH

the set of labels associated to the nodes and edges of a hierarchy H by the
function l. In this phase we associate to each label s ∈ LH a logical formula
representing the interpretation of that label w.r.t. the background theory we
use.

Definition 5 (Label interpretation). Given a logic W , a label interpretation
in W is a function I : LH → wff(W ), where wff(W ) is the set of well formed
formulas of W .

The choice of W depends on the external assumptions of the context con-
taining H. For concept hierarchies, we adopted a description logic W with t, u
and ¬, whose primitive concepts are the synsets of WordNet that we associate
to each label (with a suitable interpretation of conjunctions, disjunctions, multi-
words, punctuation, and parenthesis). For example, WordNet provides 2 senses
for the label Arizona in Figure 1, denoted by #1 and #2; in this case, the output
of the linguistic analysis is the following formula in W : Arizona#1t Arizona#2

Contextualization Linguistic analysis of labels is definitely not enough. The
phase of contextualization aims at pruning or enriching the synsets associated to
a label in the previous phase by using the context in which this label occurs. In
particular, we introduce the concept of focus of a concept k, namely the smallest
subset of H which we need to consider to determine the meaning of k. What is
in the focus of a concept depends on the structure of the explicit representation.
For concept hierarchies, we use the following definition:

Definition 6 (Focus). The focus of a concept k ∈ K in a concept hierarchy
H = 〈K,E, l〉, is a finite concept hierarchy f(k,H) = 〈K ′, E′, l′〉 such that:
K ′ ⊆ K contains k, its ancestors, and their direct descendants; E ′ ⊆ E is the
set of edges between the concepts of K ′; l′ is the restriction of l on K ′.

The contextualization of the interpretation of concept k of a context c is formula
w(k), called contextualized interpretation of k, which is computed by combining
the linguistic interpretations associated to each concept h in the focus of k. The
two main operations performed to compute w(k) are sense filtering and sense
composition.

Sense filtering uses NL techniques to discard synsets that are not likely to be
correct for a label in a given focus. For example, the sense of Arizona as a snake
can be discarded as it does not bear any explicit relation with the synsets of the
other labels in the focus (e.g., with the synsets of United States), whereas it bears
a part-of relation with United States#1 (analogously, we can remove synsets
of United States).

Sense composition enriches the meaning of a concept in a context by com-
bining in linguistic interpretation with structural information and background
theory. For concept hierarchies, we adopted the default rule that the contextual
meaning of a concept k is formalized as the conjunction of the senses associated



to all its ancestors. Furthermore, some interesting exceptions are handled. An ex-
ample: in the Yahoo Directory, Visual arts and Photography are sibling nodes under
Arts & Humanities; since in WordNet photography is in a is–a relationship with
visual art, the node Visual arts is re-interpreted as visual arts minus photography,
and is then formalized in description logic as: visual art#1t¬ photography#1

4.2 Computing relations between concepts via SAT

In the second phase of the algorithm, the problem of discovering the relationship
between a concept k in a context c and a concept k′ in a context c′ is reduced to
the problem of checking, via SAT, a set of logical relations between the formulas
w(k) and w(k′) associated to k and k′. The SAT problem is built in two steps.
First, we select the portion T of the background theory relevant to the con-
textualized interpretation w(k) and w(k′), then we compute the logical relation
between w(k) and w(k′) which are implied by T .

Definition 7. Let φ = w(k) and ψ = w(k′) be the contextualized interpretation
of two concepts k and k′ of two contexts c and c′, respectively. Let B be a theory
(= logically closed set of axioms) in the logic where φ and ψ are expressed. The
portion of B relevant to φ and ψ, is a subset T of B such that T contains all
the axioms of B containing some concept occurring in φ or ψ.

Clearly different contexts can be associated to different background theo-
ries, which encodes general and domain specific information. This information is
stored in the context external assumptions under the field “domain”. Further-
more, when we determine the mapping between two contexts cs and ct we can
take the perspective (i.e., the background theory) of the source or that of the
target. The two perspectives indeed might not coincide. This justify the intro-

duction of directionality in the mapping. I.e. cs
⊆
−→ ct means that cs is more

general than ct according to the target perspective; while the relation ct
⊇
−→ cs

represent the fact that cs is more general that ct according to the source per-
spective.

In the first version of our matching algorithm we consider one a background
theory B determined by transforming the WordNet relations in a set of axioms
in description logic, as shown in Table 1. In this table we introduce the notation
≡w, ≤w, ≥w, and ⊥w to represent the following relation between senses stored
in WordNet.

1. s#k ≡w t#h: s#k and t#h are synonyms (i.e., they are in the same synset);
2. s#k ≤w t#h: s#k is either a hyponym or a meronym of t#h;
3. s#k ≥w t#h: s#k is either a hypernym or a holonym of t#h;
4. s#k⊥wt#h: s#k belongs to the set of opposite meanings of t#h (if s#k and t#h

are adjectives) or, in case of nouns, that s#k and t#h are different hyponyms
of the same synset.

In the extraction of the theory B from WordNet we adopt a certain heuristic
which turns out to perform satisfactory (see section on experimentation and



WordNet relation Domain axiom

t#k =w s#h t#k ≡ s#h

t#k ≤w s#h t#k v s#h

t#k ≥w s#h t#k w s#h

t#k⊥ws#h ¬t#k v s#h

Table 1. Encoding WordNet relations in T-Box axioms

evaluation). However, different sources as, specific domain ontologies, domain
taxonomies, etc. and different heuristics can be used to build the theory B, from
which T is extracted.

Going back to how we build the theory B, suppose, for example, that we
want to discover the relation between Chat and Forum in the Google directory
and Chat and Forum in the Yahoo directory in Figure 1. From WordNet we can
extract the following relevant axioms:

art#1 v humanities#1

(the sense 1 of ‘art’ is an hyponym of the sense 1 of ‘humanities’), and

humanities#1 w literature#2

(the sense 1 of ‘humanities’ is an hyperonym of the sense 2 of ‘literature’).
The axioms extracted from WordNet can now be used to check what map-

ping (if any) exists between k and k′ looking at their contextualized interpre-
tation. But which are the logical relations of w(k) and w(k′) that encodes a
mapping function between k and k′ as given in Definition 3? Again, the en-
coding of the mapping into a logical relation is a matter of heuristics. Here we
propose the translation described in Table 2. In this table Tt is the portion of the
background theory of ct relevant to ks and kt. The idea under this translation is
to see WordNet senses (contained in w(k) and w(k′)) as sets of documents. For
instance the concept art#i, corresponding to the first WordNet sense of art,
is though as the set of documents speaking about art in the first sense. Using
the set theoretic interpretation of mapping given in definition 4, we have that
mapping can be translated in terms of subsumption of w(k) and w(k ′). Indeed
subsumption relation semantically corresponds to the subset relation.

So, the problem of checking whether Chat and Forum in Google is, say, less
general than Chat and Forum in Yahoo amounts to a problem of satisfiability on
the following formula:

art#1 v humanities#1 (1)

humanities#1 w literature#2 (2)

(art#1 u literature#2 u
(chat#1 t forum#1))

(3)

(art#1 t humanities#1) u
humanities#1 u (chat#1 t
forum#1)

(4)



relation SAT Problem

ks

⊇
−→ k

′
t Tt |= w(kt) v w(ks)

ks

⊆
−→ kt Tt |= w(ks) v w(kt)

ks

⊥
−→ kt Tt |= w(ks) u w(kt) v ⊥

ks

≡
−→ kt Tt |= w(kt) v w(ks) and Tt |= w(ks) v w(kt)

ks

∗
−→ kt w(ks) u w(kt) is consistent in Tt

Table 2. Verifying relations as a SAT problem

It is easy to see that from the above axioms we can infer (3) v (4).

To each relation it is possible to associate also a quantitative measure. For
instance the relation “c is compatible with d” can be associated with a degree,
representing the percentage of models that satisfy φuψ on the models that satisfy
φtψ. Another example is the measure that can be associated to the relation “c
is more general than d” which is the percentage of the models of that satisfy φ
on the models that satisfy ψ. This measure give a first estimation on how much
ψ is a generalization of φ, the lower percentage, the higher generalization.

5 Testing the algorithm

In this section we briefly report from [12] the results of the first tests of the
algorithm. We observe that the tests are performed on real schemas (i.e., pre-
existing schemas that we found in real applications), and not on schemas created
ad hoc.

5.1 Experiment 1: Generating Google’s Links

The first test uses the Google web directory. It can be viewed as a concept
hierarchy in which some paths in the hierarchical structure are linked to other
paths (links are marked by the @-sign in the Google web page), a mechanism
that allows “jumping” from a path to another in the hierarchy (a sort of symbolic
link in a Unix file system). Our hypothesis is that these links can be viewed as
human-defined relations between concepts, and thus can be used to validate the
results of running our algorithm between concepts of the Google directory as if
they were concepts of different contexts.

Since the Google directory is very large, the test was performed on the News
sub–hierarchy, as it is relatively small and well covered by WordNet. The result
of computing 17402 (about 3,000,000) mappings are summarized and compared
with Google’s mappings in the following table:



Description link %
non
link

%

Google links 151 100% 0 0%
Equivalence 7 5% 4 1%
More + less general 3+81 56% 688 99%
Links not found 60 39% 0 0%
Non links found 0 0% 692 100%

An interesting observation is that in the four cases the algorithm found
an equivalence between concepts that were not linked in Google; we manu-
ally checked these cases, and concluded that the results of the algorithm were
extremely plausible, and that the two concepts could be correctly linked in
Google. For example, the algorithm found that the concept News/Media/Media

Producers/Television is equivalent to News/Media/Media Producers/Video, based on
the fact that one of the senses of television in WordNet has video among its
synonyms. The algorithm was not very accurate for the other two relations (pre-
cision = 11%), even though a manual verification of the “false positives” led us
to conclude that in most cases they could be valuable suggestions for new Google
links.

5.2 Experiment 2: Matching Google with Yahoo!

The aim of this experiment was to evaluate the CtxMatch algorithm over pairs
of overlapping structures from Google and Yahoo!. The test was performed on
two pairs, those with root ‘Architecture’ and ‘Medicine’. The results, expressed
in terms of precision and recall, are reported in the following table:

Architecture Medicine
Relations Pre. Rec. Pre. Rec.

equivalence
≡
−→ .71 .10 .78 .13

less general than
⊆
−→ .85 .49 .88 .46

more general than
⊇
−→ .51 .91 .60 .78

We observe that a content–based interpretation of contextual knowledge al-
lows the discovery of non trivial mappings. For example, an inclusion mapping
was computed between Architecture/History/Periods and Styles/Gothic/Gargoyles and
Architecture/History/Medieval as a consequence of the relation between Medieval and
Gothic that can be found in WordNet.

5.3 Experiment 3: Product Re-classification

The third test was in the domain of e–commerce. In the framework of a collab-
oration with a worldwide telecommunication company, the matching algorithm



was applied to re-classify into unspsc
3 (version 5.0.2) the catalog of the office

equipment and accessories used to classify company suppliers. The validity of
the relations found by the algorithm, shown in the following table, were double-
checked manually.

automatic after manual
classification4 revision5

Total items 324 100% 324 100%
Rightly classified 197 60% 245 76%
Wrongly classified 67 21% 17 5%
Non classified 60 19% 61 19%

6 Related work

Rahm and Bernstein [13] suggest that there are three general strategies for
matching schemas: instance based (using similarity between the objects (e.g.,
documents) associated to the schema to infer the relationship between the con-
cepts); schema–based (determining the relationships between concepts analyzing
the structure of a hierarchy and the meanings of the labels); and hybrid (a com-
bination of the two strategies above). Our algorithm falls in the second group.
In this section, we briefly compare our method with some of the most promising
schema–based methods recently proposed, namely MOMIS [2] a schema based
semi automatic matcher, CUPID [10, 6] a schema based automatic matcher and
GLUE [7] an instance based automatich matcher.

The MOMIS (Mediator envirOnment for Multiple Information Sources) [2])
is a framework to perform information extraction and integration from both
structured and semistructured data sources. It takes a global–as–view approach
by defining a global integrated schema, starting from a set of sources schema.
In one of the first phases of the integration, MOMIS supports the discovery of
overlapping (relations) between the different source schema. This is done by ex-
ploiting the knowledge in a Common Thesaurus with a combination of clustering
techniques and Description Logics. Another difference between the matching al-
gorithm implemented in MOMIS and CtxMatch is that MOMIS includes an
interactive process as a step of the integration procedure, and thus does not
support a fully automatic and run-time generation of mappings.

More similar to CtxMatch is the algorithm proposed in [10], called CUPID.
This is an algorithm for generic schema matching, based on a weighted combina-
tion of names, data types, constraints and structural matching. This algorithm

3
unspsc (Universal Standard Products and Services Classification) is an open global
coding system that classifies products and services. unspsc is extensively used
around the world for electronic catalogs, search engines, e–procurement applications
and accounting systems.

4 Manually verified by ourselves.
5 Manually verified by Alessandro Cederle Managing Director of Kompass Italia



uses a limited amount of linguistic knowledge, as it associates a thesaurus to
each schema. However, unlike CtxMatch, it does not exploit the whole power
of a linguistic resource like WordNet. Another difference between CUPID and
CtxMatch is that CUPID discovers relations between two schemas S and T

only when S and the embedding of S in T are structurally isomorphic. As a
consequence, CUPID cannot deal with concepts that are intuitively equivalent,
but are represented as non isomorphic schemas.

A different approach to ontology matching has been proposed in [7]. Al-
thought the aim of the work (i.e. establishing mappings among concepts of over-
lapping ontologies) is in many respects similar to ours, the methodologies are
significantly different. A major difference is that the GLUE system builds map-
pings taking advantage of information contained in instances, while the current
version of the CtxMatch algorithm completely ignores them. This makes Ctx-

Match more appealing, since most ontologies currently available in the Seman-
tic Web do not contain a significant collection of instances. A second difference
concerns the use of domain-dependent constraints, which, in case of the GLUE
system, need to be provided manually by domain experts, while in CtxMatch

they are automatically extracted from an already existing resource (i.e. Word-
Net). Finally, CtxMatch provides a qualitative characterization of mappings
in terms of the relation between two concepts, a feature which is not considered
in GLUE. Even though a comparison with the results reported in [7] is rather
difficult, the accuracy achieved by CtxMatch can be roughly compared with
the accuracy of the GLUE module which uses less information (i.e., the “name
learner”).

7 Conclusions

In the paper, we presented a first version of an algorithm for matching semantic
schemas – viewed as contexts – via SAT.

We believe that this work can have a significant impact from a theoretical
point of view. Indeed, the scientific challenge behind the algorithm is to deter-
mine what is the minimal common ground to enable communication between
entities that do not share common meanings (at least, not in the sense of the
approaches that assume the necessity of a shared ontology to enable communi-
cation). As a consequence, the relations discovered by the algorithm are always
directional (from a concept in a context to concept in another context, but not
vice versa), and this reflects the idea that what is a good mapping from the
point of view encoded in a context might not be acceptable from the point of
view encoded in the other context.

Of course, a lot of work remains to be done, and in particular: generalizing
the types of structures we can match (beyond concept hierarchies); taking into
account a larger collection of explicit assumptions; going beyond WordNet as
a source of linguistic and domain knowledge.
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12. B. M. Magnini, L. Serafini, A. Doná, L. Gatti, C. Girardi, and M. Speranza. Large–
scale evaluation of context matching. Technical Report 0301–07, ITC–IRST, Jan-
uary 2003.

13. Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic
schema matching. VLDB Journal: Very Large Data Bases, 10(4):334–350, 2001.

14. S. L. Star. Working together: Symbolic interactionism, activity theory, and ifor-
mation systems. In Communication and Cognition at Work, pages 296–318. Cam-
bridge University Press, 1997.


