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Abstract. Queueing Theory deals with problems where some restricted
resource should be shared between competitive flow of requests. In this
paper we use Queueing Theory methods to perform a quantitative analy-
sis of a single-level single-mediator multi-agent system. In the system,
several agents, coordinated by the mediator process user queries. We
adopt matrix analytic methods to compute performance characteristics
in terms of a queueing network of tree-like topology with cooperation of
the servers. Results can be used for the logical and technical design and
optimal resources sharing in multi-agent systems.

1 Introduction

Organizational structures is a popular research direction in the field of Multi-
Agent Systems (MASs), see e.g. [6, 8]. However, there are only few papers deal-
ing with quantitative analysis of such systems [1, 5]. Queueing theory (QT ) in-
vestigates situations when some restricted resource should be efficiently shared
between competitive flow of requests in an optimal way. So, definitely, it should
be useful in quantitative investigation and comparison of different organizational
structures of MASs. Possibility of QT applications for MAS was discussed, e.g.,
in [1],[2]. For instance, in [2] operation of MAS is described in terms of queueing
networks. In [1], the M/M/1 queueing system is used for utility prediction for a
range of possible MASs.

In particular, QT is an appropriate tool for qualitative analysis of single-level
single-mediator MASs [1]. In such class of systems the agent called mediator dis-



tributes queries4 among several agents. In this paper we perform a quantitative
analysis of single-level single-mediator MASs using QT . The results allow us to
calculate such performance characteristics as probability of query being rejected,
average query processing time, etc. and can be used for the logical and technical
design and optimal resources sharing in single-level single-mediator MASs.

The structure of the paper is the following: Section 2 describes the considered
class of MASs and provides a formalization in terms of QT . Conditions for the
existence of the stationary distribution of the queueing network that models
MASs are given in Section 3, while performance measures and the guidelines
for their calculation are listed in Section 4. Finally, we conclude the paper in
Section 5.

2 Mathematical Model

The class of MASs we consider in this paper is in a way similar to the models
considered by Zhang and Lesser in [4] and by Horling and Lesser in [1]. The
considered MAS is of the following structure: the single mediator serves as
dispatcher for n independent heterogeneous agents which handle user queries.
The queries are propagated just from the mediator to agents, therefore we are
dealing with a single-level system. If there are i free agents at the moment of
query arrival, then the query is assigned to min{i,m}, 1 ≤ m ≤ n, of agents that
process it independently. If all agents are busy at the moment of query arrival,
then the query is stored in a buffer and can be picked up later, according to
the First In - First Out (FIFO) discipline, when some agents become free. We
assume that an agent can also process queries coming from different sources, e.g.
from other MASs or from other agents that were not able to process query on
their own. The structure of the considered MAS system is given in Figure 1(a)
and the corresponding queueing network is represented in Figure 1(b).

The mediator takes care of queries arriving to the MAS and buffers queries
in the case of agents’ unavailability. The service (query processing) in the MAS
is performed by agents. Each agent has a finite buffer where queries assigned by
the mediator can be stored while agent is busy with another query.

The motivation for the parallel processing of the query by m agents is as
follows: (1) agents in the MAS can be unreliable, i.e. there is no guarantee that
an agent will accomplish the task assigned to him, or an autonomous agent can
decline to process the query. Also, the agent can reject the query from media-
tor just because the capacity of his buffer is exhausted; (2) the results of the
query processing by different agents can vary greatly in terms of quality and
performance because of the differences in the capabilities of agents, available
resources, etc.; (3) in noisy domains the results can be distorted while passing
from the agent to the mediator, so it is necessary to wait for results from several
agents and to analyze them. In such situation, parallel sending of query to all

4 We use the term query to refer to a generic kind of task or service request that comes
from outside of the system and requires processing by agents.



(a) The structure of the MAS system

(b) Queueing network model for the operation of the considered MAS system

Fig. 1. The mathematical model of MAS

currently available agents increases chance of an arbitrary query to be success-
fully processes in the MAS. Besides this reliability aspect, parallel handling of
query by several agents can decrease response time because the response time
in this case is the minimum of durations of handling the query by all involved
agents. The results from the field of Queueing Systems [7] have shown that this
kind of assumptions is reasonable and allows for achieving a higher performance
(comparing with standard one query-one agent systems) in case the arrival rate
of the queries is not very high.

As an example of the described MAS we can consider a multi-agent informa-
tion retrieval system, where agents have heterogeneous datasources and therefore
process queries in different ways with different performance. Another example is
a university network where computers can be used for distributed computations.
In such a network, we cannot make an a priori estimation of the time required
for the query processing by a single computer, because at each moment a user



can start utilizing the computer therefore making assigned computations slower
or, even, canceling them.

The queueing network corresponding to the MAS consists of two interacting
parts (Figure 1(b)). In the sequel, the left part of the network (mediator part)
will be referred to as the queueing system number 0. It consists of one buffer
with an infinite capacity and n possibly heterogeneous servers (links to agents).
We refer to these servers as server number 1, . . . , server number n. The right
part (autonomous agents part) consists of n independent service systems (agents)
referred below to as the queueing system number 1∗, . . . , system number n∗. Each
of these systems has a finite buffer and a single server (agent). The capacity of
the buffer of the system number k∗ is equal to Nk∗ − 1, so the maximal number
of queries in this system is equal to Nk∗ , k = 1, n, where Nk∗ = 1 corresponds
to the case when agent can process only one query at a time.

We assume that queries arrive to the queueing system number 0 according
to the stationary Poisson process with intensity λ0. If i of servers 1, . . . , n are
idle at the arrival epoch, the query starts the service in min{i,m} of these
servers simultaneously. The discipline of choosing concrete servers, e.g. the fastest
available, random, etc. should be specified additionally. Here we consider an
arbitrary discipline. We assume that service times in the servers are mutually
independent random variables having exponential distribution with parameter
µk for the server number k, k = 1, n. If all servers 1, . . . , n are busy at the arrival
epoch, the query goes to the buffer of the queueing system number 0. We assume
that this buffer has an infinite capacity. The queries are picked up from the buffer
when any of servers 1, . . . , n completes the service of previous queries according
to the FIFO discipline.

After the service in the server k, the query moves for the service in the
queueing system number k∗, k = 1, n. If the server of that system (agent of
MAS) is idle at the arrival epoch, it starts processing of the arriving query
with probability q

(1)
k or declines the offer to serve this query with probability

1 − q
(1)
k . Service times of successive queries in the server k∗ are independent

random variables distributed exponentially with parameter ηk, k = 1, n. After
the service, query leaves the system number k∗ and the network.

If the server k∗ is busy at a query arrival epoch from the queueing system
number 0, the arriving query with probability 1 − q

(2)
k is rejected and with

supplementary probability it should be placed into the buffer of capacity Nk∗ −
1, k = 1, n. If the buffer is already full at arrival epoch, the query is lost in the
queueing system number k∗.

Besides processing the queries from the queueing system number 0, the server
of the system number k∗ can also process other queries. These queries arrive to
server k∗ according to the stationary Poisson process with intensity λk, k = 1, n.
Service times of these queries are distributed exponentially with parameter ηk.
In the case the buffer is full at the arrival epoch, the query is lost. No priority
for any kind of queries is assigned.

Thus, operation of the queueing network presented in Figure 1(b) is com-
pletely described. Our purpose is to perform the stationary analysis of distri-



bution of the number of queries in the nodes of this queueing network and
computing its main performance measures.

3 Stationary state distribution of the network

Behavior of the queueing network under study can be described by the multi-
dimensional continuous time Markov chain

ξt = {jt, i
(1)
t , . . . , i

(k)
t }, t ≥ 0, i

(k)
t = 0, Nk, k = 1, n,

where the component i
(k)
t is equal to the number of queries in queueing system

k∗, k = 1, n, at the moment t, t ≥ 0. It includes the queries in the corresponding
buffer, if any, and the query in the server. Component jt describes the state of
the n-server queueing system number 0. The state j, j ≥ 1, of the component
jt corresponds to the state of the queueing system number 0 when there are j
query in a buffer (sure, all the servers of this system are busy).

If the queue in this system is absent, the state of the component jt is described
by the group of n numbers {l1, . . . , ln} where the entry lk has value 0 if the kth
server is idle and value 1 if the kth server is busy at epoch t, t ≥ 0. We denote
the set of all such states by L. It is evident that it consists of 2n states.

Aiming to simplify denotations and use benefits of the matrix analytic meth-
ods, we enumerate the components of the process ξt = {jt, i

(1)
t , . . . i

(n)
t }, t ≥ 0, in

the lexicographic order. Then, we refer to the whole set of states {j, i(1)t , . . . , i
(n)
t },

i
(k)
t = 0, Nk, k = 1, n, as to the state j of the process ξt, t ≥ 0,

j = {0, . . . , 0︸ ︷︷ ︸
n

}, {0, . . . , 0, 1︸ ︷︷ ︸
n

}, . . . , {1, . . . , 1︸ ︷︷ ︸
n

}, 1, 2, 3 . . . .

For use in the sequel, we introduce the following notation. µ =
n∑

k=1

µk; I is

identity matrix of dimension K =
n∏

k=1

(Nk +1); Ik is identity matrix of dimension

Nk + 1, k = 1, n; O is zero square matrix of dimension K; Ol,m is zero matrix
of dimension Kl ×Km; ⊗ is the symbol of Kronecker product of the matrices;
⊕ is the symbol of Kronecker sum of the matrices; T denotes transposition of
a matrix or vector; ek is the column vector of dimension Nk + 1 consisting
of all 1’s; eK is the column vector of dimension K consisting of all 1’s; 0k is
the row vector of dimension Nk + 1 consisting of all 0’s; k = 1, n; 0K is the
row vector of dimension K consisting of all 0’s; f (i)

k is the column vector of
dimension Nk + 1 having the form (0, . . . , 0︸ ︷︷ ︸

i

, 1, 0, . . . , 0)T , i = 0, Nk, k = 1, n;

ẽ(i)
k , i = 0, Nk, is the column vector of dimension K defined by formula ẽ(i)

k =
e1 ⊗ . . .⊗ ek−1 ⊗ f (i)

k ⊗ ek+1 ⊗ . . .⊗ en; Ĩk,Ĩk,I+
k ,I−k , I0

k are the square matrices



of dimension Nk + 1, k = 1, n, having the following structure:

Ĩk =




1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
...

0 0 . . . 1 0
0 0 . . . 0 0




, Îk =




0 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
...

0 0 . . . 1 0
0 0 . . . 0 1




, I+
k =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
0 0 0 . . . 0




.

Here Ĩk is obtained from an identity matrix by replacing the entry in the last
row and column with 0; Îk is obtained from an identity matrix by replacing the
entry in the first row and column with 0; I+

k is the matrix having 1’s in the first
over-diagonal and all all other entries equal to 0, I−k = (I+

k )T , I0
k = Ik − Îk;

Jk = q
(1)
k I0

kI+
k + (1 − q

(1)
k )I0

kIk + q
(2)
k ÎkI+

k + (1 − q
(2)
k )ÎkIk, Ak = λk Ĩk + ηk Îk;

A =
n⊕

k=1

Ak = A1 ⊕ . . . ⊕ An; Bk = λkI+
k + ηkI−k ; B =

n⊕
k=1

Bk; H = B − A;

Ck = I1 ⊗ . . . ⊗ Ik−1 ⊗ µkJk ⊗ Ik+1 ⊗ . . . ⊗ In; C =
n∑

k=1

Ck; Mk = I1 ⊗ . . . ⊗

Ik−1 ⊗ µkIk ⊗ Ik+1 ⊗ . . .⊗ In; E =
n∑

k=1

Mk;

D0 = λ0I, D1 = −λ0I − E +H, D2 = C;

Q1,0 =
(
O1,2n−1 D2

)
, Q0,1 =

(
O2n−1,1

D0

)
.

Let Q0,0 be the blocking matrix consisting of matrices

Q{l1,...,ln},{l′1,...,l′n}, {l1, . . . , ln}, {l′1, . . . , l′n} ∈ L,

which are defined via introduced matrices H, Ck, Mk depending on the disci-
pline adopted to choose agents for the query processing. The matrix Q0,0 can be
decomposed as

Q0,0 =
(

Q̃0,0 D̃0

V D0

)

Denote by Q the block matrix which is the generator of the Markov chain
ξt, t ≥ 0.

Lemma: The generator Q has the following block structure:

Q =




Q0,0 Q0,1 O2n,1 O2n,1 O2n,1 O2n,1 . . .
Q1,0 D1 D0 O O O . . .
O1,2n D2 D1 D0 O O . . .
O1,2n O D2 D1 D0 O . . .
O1,2n O O D2 D1 D0 . . .

...
...

...
...

...
...

...




.

Theorem 1. Stationary distribution of the Markov chain ξt, t ≥ 0, exists if

and only if the following inequality holds true: λ0 <
n∑

k=1

µk.



Let us denote the stationary probabilities of the states of the Markov chain
ξt, t ≥ 0, by

p(j, i1, . . . , in) = lim
t→∞

P{jt = j, i
(1)
t = i1, . . . , i

(k)
t = ik},

j = {l1, . . . , ln} ∈ L, 1, 2, . . . ; ik = 0, Nk, k = 1, n.

According to the lexicographic enumeration of the components of the Markov
chain ξt, t ≥ 0, which was already exploited above, we combine probabili-
ties p(j, i1, . . . , in), ik = 0, Nk, k = 1, n, into probability row vectors pj , j =
{l1, . . . , ln} ∈ L, 1, 2, . . . and the macro-vector p = (p{0},p1,p2, . . .) where
p{0} = (p{0,...,0},p{0,...,0,1}, . . . ,p{1,...,1}).

Theorem 2. Stationary probability vectors p{l1,...,ln}, {l1, . . . , ln} ∈ L, p1,p2, . . .
are calculated in the following way:

• the vector p{l1,...,ln} is computed as the block number
n∑

k=1

lk2n+1−k + 1 in

the block vector p{1,...,1}F1, {l1, . . . , ln} ∈ L, {l1, . . . , ln} 6= {1, . . . , 1} ;
• the vectors pj , j ≥ 1, are computed by pi = p{1,...,1}Ri, i ≥ 1, where F1 =
−V (Q̃0,0)−1, F = D1 + F1D̃0;

• the matrix R is a minimal non-negative solution to the matrix equation

R2D2 + RD1 +D0 = O;

• the vector p{1,...,1} is the unique solution to the following system of linear
algebraic equations

p{1,...,1}[F + RD2] = 0K , p{1,...,1}[F1 + (I −R)−1]eK = 1.

This theorem gives a straightforward easily-implementable algorithmic way
for the calculation of the stationary probability vector p.

4 Calculation of the Network Performance Measures

Having the stationary probability vectors been computed, we can calculate dif-
ferent performance measures of the queueing network. Formulae for calculation
of some of them are given below.

Stationary distribution of the number of queries in the system k∗ is given by
the vector θ(k) having components

θ
(k)
i = p{1,...,1}[F1 + (I −R)−1]ẽ(i)

k , i = 0, Nk, k = 1, n.

Average number of queries Lk in the system k∗, average number of queries L0

in the system number 0 and average total number of queries L in the network
are calculated by

L0 =
∑

({l1,...,ln})∈L

n∑

j=1

ljp{l1,...,ln}eK + p{1,...,1}((n + 1)I − nR)R(I −R)−2eK.



Lk =
Nk∑

i=1

iθ
(k)
i , k = 1, n, L =

n∑

k=0

Lk.

Probabilities P
(k)
loss that an arbitrary query arriving to the system k∗ will be

rejected due to desire of agent or because the buffer is full and is calculated by
the following formula:

P
(k)
loss = θ

(k)
Nk

+ (1− q
(k)
1 )θ(k)

0 + (1− q
(k)
2 )(1− θ

(k)
0 − θ

(k)
Nk

), k = 1, n.

Probability Ploss that an arbitrary query arriving to the MAS will not get service
by any agent is computed by formula

Ploss = p{1,...,1}(I + R(I −R)−1)eK

n∑

k=1

µk

µ
P

(k)
loss+

+
∑

{l1,...,ln}∈L,(k1,...,km̂)

p{l1,...,ln}eKBk1,...,km̂

{l1,...,ln}(1−
m̂∏

r=1

(1− P
(kr)
loss )),

where m̂ = min{m,n − l1 − . . . − ln}, Bk1,...,km̂

{l1,...,ln} is probability of assigning the
agents number k1, . . . , km̂ for service providing to an arbitrary query which
arrives when the states of servers are defined by the set {l1, . . . , ln}. This prob-
ability is easily computed when strategy of agents assigning is fixed.

Average sojourn time W̃
(0)
1 in the system number 0 and sojourn time ˜̄W

(k)

1 for
queries that are not rejected in the system number k∗ are calculated as follows:

W̃
(0)
1 = λ−1

0 L̃0, W̃
(k)
1 =

Nk−1∑

i=0

i + 1
ηk

θ
(k)
i , ˜̄W

(k)

1 =
W̃

(k)
1

1− P
(k)
loss

, k = 1, n.

Average sojourn time V of a query in the queueing network is computed by

V = W̃
(0)
1 + p{1,...,1}(I + R(I −R)−1)eK

n∑

k=1

µk

µ
˜̄W

(k)

1 +

+
∑

({l1,...,ln})∈L
p{l1,...,ln}eKBk1,...,km̂

{l1,...,ln}W (k1, . . . , km̂),

W (k1, . . . , km̂) is expectation of minimum of sojourn times in systems number
k1, . . . , km̂.

5 Conclusion

We have analyzed the process of user query processing in a particular class of
MASs in terms of the queueing network. Tree-like structure of the network
topology allows to get the steady state-distribution of the network states in the



exact analytic form. Main performance measures of the network are calculated
and can be used for the quantitative analysis of a particular MAS. For instance,
having specified the system parameters, it is possible to calculate the average
time of query processing in the system, or the probability of query being rejected,
etc. The results are extendable to the cases where the input and service processes
have more complicated nature. Modifications to the considered MAS, where the
results of query processing are unreliable because of errors or because the agents
are subject to breakdowns and recovering be can investigated analogously.
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