QOM - Quick Ontology Mapping

Marc Ehrig and Steffen Staab

Institute AIFB, University of Karlsruhe

Abstract. (Semi-)automatic mapping — also called (semi-)automatic alignment
— of ontologies is a core task to achieve interoperability when two agents or
services use different ontologies. In the existing literature, the focsisbdar
been on improving the quality of mapping results. We here consider QQ@iMkQ
Ontology Mapping, as a way to trade off between effectiveness (i@itgu

and efficiency of the mapping generation algorithms. We show that QGM ha
lower run-time complexity than existing prominent approaches. Thershow

in experiments that this theoretical investigation translates into practicditsene
While QOM gives up some of the possibilities for producing high-qualityltesu

in favor of efficiency, our experiments show that this loss of quality isgnat.

1 Introduction

Semantic mappinigbetween ontologies is a necessary precondition to edtaiblisr-
operability between agents or services using differerplogtes.

The problem of finding adequate alignments is a hard onectnifas hard with re-
gard to several dimensions, two of which we focus on in thispal. Effectiveness: We
demand high-quality alignments for ontology schemas arntddaga. 2. Efficiency: The
size of ontologies tends to grow and ontologies with sewli@isand entities become
commonplace. Even finding a proposal for an alignment oflogtosubsets becomes
a problem of practical tractability.

In recent years we have seen a range of research work on rsgthaubsing such
mappings [AS01,NMO03,DDHO03]. The focus of the previous wdrawever, has been
laid exclusively on improving theffectivenesef the approach (i.e. the quality of pro-
posed mappings such as evaluated against some human juttggives either a pos-
teriori or a priori). When we tried to apply these methods tmemf the real-world
scenarios we address in other research contributions [E#88H we found that exist-
ing mapping methods were not suitable for the ontology irategn task at hand, as
they all neglecteafficiency

To illustrate our requirements: We have been working inmsalvhere light-weight
ontologies are applied such as the ACM Topic hierarchy with(* concepts or folder
structures of individual computers, which correspondeitato 10° concepts. Finally,
we are working with Wordnet exploiting it€)® concepts (cf. [HSS03]) dr0” concepts
in UMLS. When mapping between such light-weight ontologiks,trade-off that one
has to face is between effectiveness and efficiency. Foanast consider the knowl-
edge management platform built on a Semantic Web And Pegedo basis in SWAP

! Frequently also called alignment.

[EHVHT03]. It is not sufficient to provide its user with the best pbsmapping, it is
also necessary to answer his queries within a few secondser-Etwo peers use two
different ontologies and have never encountered each béfere.

In this paper we present an approach that considers bothutidéygof mapping
results as well as the run-time complexity. Our hypothesihat mapping algorithms
may be streamlined such that the loss of quality (comparedsiandard baseline) is
marginal, but the improvement of efficiency is so tremenditag it allows for the
ad-hoc mapping of large-size, light-weight ontologies.stibstantiate the hypothesis,
we outline a comparison of the worst-case run-time behggiwen in full detail in
[ESO4a]) and we report on a number of practical experimértis. approaches used
for our comparison represent different classes of algmstor ontology mapping.
Comparing to these approaches we can observe that our neigrgffapproach QOM
achieves good quality. The complexity of QOM is@fn - log(n)) (measuring with,
being the number of the entities in the ontologies) against?) for approaches that
have similar effective outcomes.

The remainder of the paper starts with a clarification of tealegy (Section 2). To
compare the worst-case run-time behavior of different apgines, we first describe a
canonical process for ontology mapping that subsumes ffexatit approaches com-
pared in this paper (Section 3). The process is a core bgilliock for later deriving
the run-time complexity of the different mapping algorithr$ection 4 further presents
basic tools for these algorithms. In Section 5, differermirapches for proposing map-
pings are described and aligned to the canonical processwal to derive their run-
time complexity is outlined in Section 6. Experimental les(Section 7) complement
the run-time considerations of the comparison.

2 Terminology

As a first step we want to present the basic definitions we redor our mapping
process and algorithms.

2.1 Ontology

The underlying data models in our process are ontologiefadititate the further de-
scription, we briefly summarize their major primitives amtféduce some shorthand
notations. In the understanding of this paper it consistsotifi schema and metadata.
As we currently focus on light-weight ontologies, we builil RDF/S to represent on-
tologies. To facilitate the further description, we briedlymmarize its major primitives
and introduce some shorthand notations. In the understgrdithis paper it consists
of both schema and metadata. An RDF model is described byd settements, each
consisting of a subject, a predicate and an object.

0 := (C7H07RC7HR7[7R17A)

2 http:/lwww.w3.0rg/RDFS/

An ontology O is defined by its set of Concept$ (instances of “rdfs:Class”)
with a corresponding subsumption hierarcHy: (a binary relation corresponding to
“rdfs:subClassOf”). RelationR (instances of “rdf:Property”) exist between single con-
cepts. Relations are arranged alike in a hieradhy(“rdfs:subPropertyOf”). An entity

i € 7 may be an instance of a classc C (“rdf:type”). An instancei € 7 may have
one; or many role fillers fron¥ for a relationr from R. We also call this type of triple
(¢,7,7) a property instance. Additionally one can define axiofnahich can be used
to infer knowledge from already existing one. An extendefihiteon of ontologies can
be found in [Gru93] and [SEHO3].

<r df : RDF>
<rdfs:d ass rdf:|D="Vehicle"/>
<rdfs:C assrdf: | D="Car">

<rdfs:subC assOf rdf:resource="#Vehicle"/>
</rdfs:C ass>
<rdf: Property rdf:|D="hasSpeed">

<rdfs: domai n rdf:resource="#Car"/>

<rdf s: range rdf:resource="#Speed"/ >
</rdf: Property>
<exanpl e: Speed rdf:1D="250 km h"/>
<exanpl e: Car rdf:|D="Porsche KA-123">

<exanpl e: hasSpeed rdf:resource="#250 knl h">
</ exmapl e: Car >
</ rdf : RDF>

Example 1.An ontology describing a specific car.

OWL3 is another language offering more complex modelling piirag.

2.2 Mapping

Goal of the process is to provide correct mappings. Due tavile range of expres-
sions used in this area (merging, alignment, integratior),eve want to describe our
understanding of the term “mapping”: Given two ontologi#sandO,, mapping one
ontology onto another means that for each entity (con€gptelation R, or instance
I) in ontology O, we try to find a corresponding entity, which has the samenied
meaning, in ontology),. [Su02] set a pointer to this definition.

Definition 1. We define an ontology mapping functiamp, based on the vocabulary,
g, of all termse € £ and based on the set of possible ontologi€s,as a partial
function:

map:EXOxO0 =&,

with Ve € O1(3f € Oz : map(e, 0O1,02) = f Vmap(e,O1,02) = 1).

A terme interpreted in an ontologg is either a concept, a relation or an instance,
i.e.ejp € CURUZ. We usually writee instead ofe|o when the ontology) is clear
from the context of the writing. We writewap,,, o, (e) for map(e, O1, Oz2). We derive

8 http:/www.w3.0rg/OWL/

arelationmapy, o, by definingmap, o, (e, f) < mapg, o,(e) = f. We leave out
01, Oz when they are evident from the context and writep(e) = f andmap(e, f),
respectively. Once a (partial) mappingap, between two ontologie®; and Os is
established, we also sagtititye is mapped onto entity” iff map(e, f). An entity can
either be mapped to at most one other entity. A pair of estilie f) that is not yet
in map and for which appropriate mapping criteria still need to éstdd is called a
candidate mapping

It is the purpose of this paper to define effective and effiale@chanisms to define
map, o,- However, we do not consider its further use, e.g. for quesnering over
different ontologies and the different ways that this cardbee, such as immediate
translation of data (cf. [MMSV02]) or theory approximatiof. [Stu02]).

2.3 Example

The following example illustrates a mapping. Two ontolagis andO- describing the
domain of car retailing are given (Figure 1). A reasonabl@mpireg between the two
ontologies is given in Table 1 as well as by the dashed linésdriigure.

has Propel Motor1 23456 ./

’—

4
]
s
e
I'd
- Porsche KA-123 250 knth
Marc

hasOwner N hasSpeed
~

Fig. 1. Example Ontologies and their Mappings

Apart from one-to-one mappings as investigated in this pape entity often has
to be mapped to a complex composite such as a concatenattenraf (first and last
name) or an entity with restrictions (a sports-car is a cangyéaster than 250 km/h).
[DR02,DLD™04] propose approaches for this. We do not deal with suclesssficom-
plete ontology mappings here.

3

| OntologyO; | OntologyOs |

Object Thing
Car Automobile
Porsche KA-128Vlarc’s Porsche
Speed Characteristig
250 km/h fast

Table 1. Mapping Table for Relatiomap,,, o, (e, f)

Process

We briefly introduce a canonical process that subsumeseathtipping approaches we
are aware of. Figure 2 illustrates its six main steps. It is started witlo twntologies,
which are going to be mapped onto one another, as its input:

1.

Feature Engineeringransforms the initial representation of ontologies intom=

mat digestible for the similarity calculations. For instanthe subsequent mapping

process may only work on a subset of RDFS primitives. This stay also involve

complex transformations, e.g. it may require the learnihgassifiers as input to
the next steps.

. Selection of Next Search Stefifie derivation of ontology mappings takes place
in a search space of candidate mappings. This step may ¢hoosempute the
similarity of a restricted subset of candidate conceptsspdk, f)le € Oy, f €
0O, } and to ignore others.

. Similarity Computatiordetermines similarity values between candidate mappings
(e, f) based on their definitions i, andO-, respectively.

. Similarity Aggregationln general, there may be several similarity values for a can-
didate pair of entitieg, f from two ontologiesD;, O,, e.g. one for the similarity
of their labels and one for the similarity of their relatibifsto other terms. These
different similarity values for one candidate pair must ggragated into a single
aggregated similarity value.

. Interpretationuses the individual or aggregated similarity values towdemap-
pings between entities from; andO,. Some mechanisms here are, to use thresh-
olds for similarity mappings [NMO03], to perform relaxatitabelling [DDHO3], or
to combine structural and similarity criteria.

. Iteration. Several algorithms perform an iteration over the whole gssan order

to bootstrap the amount of structural knowledge. Iterati@y stop when no new

mappings are proposed.

Note that in a subsequent iteration one or several of stepgoligh 5 may be

skipped, because all features might already be availalileeimppropriate format

or because some similarity computation might only be rexgliin the first round.

Eventually, the output returned is a mapping table reptesgprthe relation

Irla,pO1 09"

4 The process is inspired by CRISP-DM, http://www.crisp-dm.org/, thes8Rudustry Standard

Process for Data Mining [She00].

Iteration (& \
2 — 3 — 4 S Output
Search Step Similarity Similarity Inter -
Selection Computation Aggergation pretation

Fig. 2. Mapping Process

Input
@ P Feature
@ Engineering

In the next sections we will further describe the conceptheflifferent steps. After
that we model some of the best-known mapping algorithmsrdoupto this process in
order to compare them against our own proposal QOM with cegaeffectiveness as
well as efficiency.

4 A Toolbox of Data Structures and Methods

The principal idea of this section is to provide a toolbox afaistructures and methods
common to many approaches that determine mappings. Thés g a least common
denominator based on which concrete approaches instagttat process depicted in
Figure 2 can be compared more easily. The following Sectiatil3hen describe how
existing mechanisms use this toolbox.

4.1 Features of Ontological Entities

To compare two entities from two different ontologies, ooagsiders their character-
istics, i.e. their features. We will now emphasize thoseuies which can give hints
on whether two entities are actually the same. Basicallyagsumption is that entities
with the same features are identical. The features may hefisgfer a mapping gener-
ation algorithm, in any case the features of ontologicaitiest(of concepts, relations,
instances) need to be extracted from extensional and inteaiontology definitions.

These features have to be determined by an expert undergiahed encoded knowl-
edge in ontologies. See also [ES04b] and [EV03] for an oeanof possible features
and a classification of them. Possible characteristicsiifel

— Identifiers i.e. strings with dedicated formats, such as unified remidentifiers
(URIs) or RDF labels.

— RDF/S Primitivessuch as properties or subclass relations

— Derived Featureswhich constrain or extend simple RDFS primitives (ermpst-
specific-class-of-instance)

— Aggregated Features.e. aggregating more than one simple RDFS primitive, &.g.
sibling is every instance-of the parent-concept of an ima

— OWL Primitives such as an entity being tlsameAs another entity

— Domain Specific Featureare features which only apply to a certain domain with
a predefined shared ontology. For instance, in an applicatlwere files are repre-
sented as instances and the relatiashcode-of-file is defined, we use this feature
to compare representations of concrete files.

Three are now exemplarily explained to illustrate the usafgieatures for map-
ping: Labelsare human identifiers (names) for entities, normally shased commu-
nity speaking a common language. We can therefore infeiftladoels are the same, the
entities are probably also the same. Concepts are arrangethkonomy. A resulting
rule would be: ifsub-conceptare the same, the actual concepts are also the same. The
closer the common sub-concepts are to the compared contepisore information
about similarity can be inferredMMSV02]. Whereas the forreo similarity hints
were based on intensional features of ontologies, it is pdssible to use extensional
knowledge. Concepts are generalizationiefancesTherefore, if two concepts con-
sist of the same instances they are the same.

Example We again refer to the example in Figure 1. The actual featumsists of a jux-
taposition of relation name and entity name. T concept of ontology 1 is character-
ized through itsl@bel, Car), the concept which itis linked to througbubclassOf, Ve-
hicle), its (concept siblinghoat), and the (direct properthhasSpeed). Car is also de-
scribed by its instances through (instanéersche KA-123). The relatiorhasSpeed

on the other hand is described through the (dom@im;) and the (rangeSpeed).
An instance would b&orsche KA-123, which is characterized through the instanti-
ated (property instanceh@sOwner, Marc)) and (property instanceh&sSpeed, 250
km/h)).

4.2 Similarity Computation

Definition 2. We define a similarity measure for comparison of ontologitieatas a
function as follows (cf. [Bis95]):

sim: ExEx O xO—[0,1]

sim(e, f) =1 < e = f: two objects are assumed to be identical.

sim(e, f) = 0 & e # f:two objects are assumed to be different and have no
common characteristics.

sim(e, e) = 1: similarity is reflexive.

sim(e, f) = sim(f, e): similarity is symmetric.

Similarity and distance are inverse to each other.

Different similarity measuresimy (e, f, O, O3) are indexed through a labkl Further,
we leave ouy, O, when they are evident from the context and wsite (e, f). The
paper focuses on the similarity of pairs of single entitiesrf different ontologies. At
the current stage we do not compare whole ontologies or [aagisr than one entity.

Similarity Measures The following similarity measures are needed to compare the
features of ontological entities at iteration

5 We assume symmetry in this paper, although we are aware that it is cersiadly discussed
[MwWO1].

— Object Equalityis based on existing logical assertions — especially desert
from previous iterations:

1 map,_1(a) = b,
0 otherwise

simep;(a, b) := {

— Explicit Equalitychecks whether a logical assertion already forces twoiestio

be equal:
1 3statement(a, “sameAs” b),
0 otherwise

siMegp(a, b) := {

— String Equalityis a strict measure to compare strings. All charactelia«(x) at
positionz) of the two strings have to be identical.

1 c.char(i) = d.char(i)Vi € [0, |c|[Jwith|c| = |d|
0 otherwise

Simstrequ(cv d) = {

— String Similaritymeasures the similarity of two strings on a scale from 0 tof1 (c
[MS02]) based on Levenshtein’s edit distane#[Lev66].

man(|c|, |d|) — ed(c, d)
min(|cl, |d])
— Dice Coefficientompares two sets of entities [CAFP93].

SiMggrsim (¢, d) := maxz(0,

)

e (ENF)

i iC€E7F = T
simaice (B, F) = 1 F U)|

— SimSetFor many features we have to determine to what extent tveoa$entities
are similar. As the individual entities have various andygifferent features, it is
difficult to create a vector representing a whole sets ofviddials. To remedy the
problem, we use a technique known from statistics as moidsional scaling
[CC94]. We describe each entity through a vector represgiitie similarity to any
other entity contained in the two sets. Multidimensionalisig assumes that if
they have very similar distances to all other entities, thexgt be very similar. This
is easily achieved, as we rely on other measures which aldiddhe computation
of similarity values|0..1] between single entities. For both sets a representative
vector is now created by determining an average vector dviedaviduals. Finally
we determine the cosine between the two set vectors thrdwggbctlar product as
the similarity value.

ZeEEe . Z:fEFf
|E| |F|

simger(E, F) =

with e = (sim(e, e1), sim(e, e2), .. .,sim(e, f1),sim(e, f2),...), f analogously.

This list is by no means complete, but together with the festalready allows to
create very complex mapping measures, which are suffi@etggcribe most ontology
mapping tools.

4.3 Similarity Aggregation

These measures are all input to the similarity aggregaSamilarities are aggregated
by:

St (e, f) = Zk=1---n§i_-ladj<simk<e,)

with wy, being the weight for each individual similarity measured ardj being a func-
tion to transform the original similarity valued; : [0, 1] — [0, 1]), which yields better
results.

One of the following measures is each applied with an ontofegture as described
in the beginning of this section. Some features requireasyitt comparisons, some
object comparisons, and yet some others set comparisoisdistttould be continued,
in general, but is sufficient for our subsequent analysis.

4.4 Interpretation

From the similarity values we derive the actual mapping® Basic idea is that each
entity may only participate in one mapping and that we asgigppings based on a
threshold: and a greedy strategy that starts with the largest simjlaaltues first. Ties
are broken arbitrarily byirgimaz ,), but with a deterministic strategy.

P(L,LLEU{L},FU{Ll}).

P(g,h,U\{e}, V\{f}) < P(e, f,U,V) Asim(g, h) > t

A(g, h) = arginax g, p)ecu (e }XV\{f}SlHIagg().
map(e,f) — E|X1,X2 (f, X17X2) () (J_)

5 Approaches to Determine Mappings

In the following we now use the toolbox, and extend it, tomider to define a range of
different mapping generation approaches. In the courski®fection we present our
novel Quick Ontology Mapping approach — QOM.

5.1 NOM - Naive Ontology Mapping

Our Naive Ontology Mapping (NOM)[ES04b] constitutes a iginé forward baseline

for later comparisons. It is defined by the steps of the psoezdel as follows.

1. Feature EngineeringFirstly, the ontologies for the NOM approach have to be in a
format equivalent to the RDFS format. We use features asmsio®ection 4.1.

2. Search Step Selectioifhe selection of data for the comparison process is straight
forward. All entities of the first ontology are compared with entities of the second
ontology. Any pair is treated as a candidate mapping.

3. Similarity Computation The similarity computation between an entity @f and

an entity of O, is done by using a wide range of similarity functions. Eachilgirity

| ComparindNo.| Feature | Similarity Measure |

1 (label X1) string similarity (X, X2)

2 (URI) string equalityU RI;, U RI2)

3 (X1,sameAsX,) relation explicit equality(X;, X3)

4 (direct propertied;;) SimSett1, Y2)

5 | all (inherited propertie;) SimSetl:, Y2)
Concepts | ¢ all (super-concept¥;) SimSet1, Ya)

7 all (sub-concept3;) SimSetf7, Y2)

8 (concept siblingd;) SimSetl, Y2)

9 (direct instance¥;) SimSett1, Ya)

10 (instances/;) SimSetf, Y2)

1 (label X1) string similarity(X1, X»)

2 (URL) string equalityl RI,, U RI>)

3 (X1,sameAsX>) relation explicit equality(X;, X5)
Relations 4 |(domainX,1) and (rangeX..1)|object equalityX 41, Xa2), (Xr1, Xr2)

5 all (super-propertie;) SimSetf1, Y2)

6 all (sub-propertied;) SimSett1, Y2)

7 (property siblingsys) SimSet{, Y2)

8 (property instances;) SimSet{1, Y2)

1 (label X1) string similarity (X, X2)

2 (URIL) string equalityU RI;, U RI2)
Instances | 3 (X1,sameAsX,) relation explicit equality(X1, X>)

4 all (parent-concept®;) SimSett, Y2)

5 (property instance¥;) SimSett, Y2)
Property- | 1 |(domainX 1) and (rangeX,1)|object equalityi 41, Xa2), (Xr1, Xr2)
Instances | 2 (parent property;) SimSet1, Y2)

Table 2. Features and Similarity Measures for Different Entity Ty@&ontributing to
Aggregated Similarity in NOM. The corresponding ontologyindicated through an
index.

10

function is based on a feature (Section 4.1) of both ontegnd a respective similar-
ity measure (Section 4.2). For NOM they are shown in TableaZzhEcombination is
assigned a number so we can refer to it in later sections.

4. Similarity Aggregation In our approachwe do not just aggregate the single simi-
larity results linearly (weighted). NOM emphasizes higtiudual similarities and de-
emphasizes low individual similarities by weighting inidiwal similarity results with a
sigmoid function first and summing the modified values theprbduce an aggregated
similarity (cf. Section 4.2) NOM applies

. 1
W) = e
Weightsw,, are assigned by manually maximizing the f-measure on dviea@hing
data from different test ontologies.

5. Interpretation NOM interpretes similarity results by two means. First,pphes a
threshold to discard spurious evidence of similarity. e general threshold NOM
also uses a maximized f-measure of training data. Seconty] Bi@dorces bijectivity of
the mapping by ignoring candidate mappings that would téothis constraint and by
favoring candidate mappings with highest aggregated aiityilscores. As there may
only be onebestmapping, every other match is a potential mistake, whiclitisately
dropped.

6. Iteration The first round uses only the basic comparison method baskdbels and
string similarity to compute the similarity between emtiti By doing the computation
in several rounds one can access the already computed pdissa more sophisticated
structural similarity measures. Therefore, in the secanthd and thereafter NOM re-
lies on all the similarity functions listed in Table 2.

5.2 PROMPT

PROMPT is a semi-automatic tool described in [NMO03]. TogetWwith its predeces-
sor ONION [MWKOO] it was one of the first tools for ontology mérg. For this pa-
per we concentrate on the actions performed to identifyiptessapping candidates
aka. merging candidates.

For this PROMPT does not require all of the steps of the psoesiel.
1. Feature EngineeringAs a plug-in to Protege, PROMPT uses RDFS with features as
in the previous approach.
2. Search Step Selectiohike NOM, PROMPT relies on a complete comparison. Each
pair of entities from ontology one and two is checked forttisénilarities.

3. Similarity Computation The system determines the similarities based on whether
entities have similar labels. Specifically, PROMPT checkddentical labels. This is a
further restriction compared to our string similarity, whialso allows small deviations

in the spelling.

4. Similarity Aggregation As PROMPT uses only one similarity measure, aggregation
is not necessary.

11

5. Interpretation PROMPT presents the pairs with a similarity above a definesbti
old. For these pairs chances are high that they are mergdaehyser. The user selects
the ones he deems to be correct, which are then merged in PROMP

6. Iteration Iteration is done in PROMPT to allow manual refinement. Atiteruser has
acknowledged the proposition, the system recalculatesdhesponding similarities
and comes up with new merging suggestions.

| Comparing [No| Feature| Similarity Measure |
[Entity [1 [(label,X1)]explicit equality(X 1, Xa|
TalsienBaPROMPT: Features and Measures for Similarity

5.3 Anchor-PROMPT

Anchor-PROMPT represents an advanced version of PROMPThwhtcludes simi-
larity measures based on ontology structures. Only thdagiityi computation (step 3)
changes.

3. Similarity Computation Anchor-PROMPT traverses paths between anchor points
(entity pairs already identified as equal). Along these paidw mapping candidates
are suggested. Specifically, paths are traversed alongrtiées as well as along other
relations. This corresponds to our similarity functionsédxhon sub- and super-concepts
no. 6 and 7 and direct properties no. 4.

| Comparing [No|| Feature | Similarity Measure |
1 (label X4) explicit equality (X, X»
gi?rr]litl:aer?tty 4 |all (direct propertied)) Set(1,Y2)
6 | all (super-concepts;) Set({7,Y2)
7 | all (sub-concept’}) Set(1,Y2)
Other Entity 1 (label X1) explicit equality (X, X»
Similarity
Table 4. Anchor-PROMPT: Features and Measures for Similarity

5.4 GLUE

GLUE [DDHO03] uses machine learning techniques to determiappings.
1. Feature Engineeringln a first step the Distribution Estimator uses a multi-gtyat
machine learning approach based on a sample mapping setriisl a strategy to

identify equal instances and concepts. Naturally a big arthofi example instances
is needed for this learning step.

12

2. Search Step SelectioAs in the previous approaches GLUE checks every candidate
mapping.

3. Similarity Computation, 4. Similarity Aggregation, 5. Interpretation In GLUE,
steps 3, 4, and 5 are very tightly interconnected, which ésrdmson why they are
presented as one step here. The Similarity Estimator detesnthe similarity of two
instances based on the learnt rules. From this also the m@appconcepts is derived.
Concepts and relations are further compared using Retexbtibelling. The intuition
of Relaxation Labelling is that the label of a node (in ounteglogy: mapping as-
signed to an entity) is typically influenced by the featurethe node’s neighborhood
in the graph. The authors explicitly mention subsumptigagéiency, and “nearby”
nodes.A local optimal mapping for each entity is determingidg the similarity results
of neighboring entity pairs from a previous round. The imdlial constraint similarities
are summarized for the final mapping probability.

Normally one would have to check all possible labelling cgmfations, which includes
the mappings of all other entities. The developers are wedra of the problem aris-
ing in complexity, so they set up sensible partitions i.beling sets with the same
features are grouped and processed only once. The prdiesbitr the partitions are
determined. One assumption is that features are indepgndeich the authors admit
will not necessarily hold true. Through multiplication btprobabilities we finally re-
ceive the probability of a label fitting the node i.e. onertieing mapped onto another
one.

From the previous step we receive the probabilities of twiities mapping onto each
other. The maximum probable pair is the final mapping result.

6. Iteration To gain meaningful results only the relaxation labellingpsand its inter-
pretation have to be repeated several times. The otheratefsst carried out once.

5.5 QOM — Quick Ontology Mapping

The goal of this paper is to present an efficient mapping étguar For this purpose, we
optimize the effective, but inefficient NOM approach towsariir goal. The outcome
is QOM — Quick Ontology Mapping. Efficiency and complexitydescribed in Sec-
tion 6. Here we solely present the algorithm. We would alke tb point out that the
efficiency gaining steps can be applied to other mappingegubres as well.

1. Feature EngineeringLike NOM, QOM exploits RDF triples.

2. Search Step Selectio major ingredient of run-time complexity is the number of
candidate mapping pairs which have to be compared to agfiradl the best mappings.
Therefore, we use heuristics to lower the number of candiaiatppings. Fortunately we
can make use of ontological structures to classify the cmtedimappings into promis-
ing and less promising pairs.

In particular we use a dynamic programming approach [Bad®@ilfhis approach
we have two main data structures. First, we have candidappimgs which ought to
be investigated. Second, an agenda orders the candidaf@ngspdiscarding some
of them entirely to gain efficiency. After the completion bktsimilarity analysis and
their interpretation new decisions have to be taken. Thiesybkas to determine which

13

candidate mappings to add to the agenda for the next itarathe behavior of initiative
and ordering constitutes a search strategy.

We suggest the subsequent strategies to propose new dandidppings for in-
spection:

Random A simple approach is to limit the number of candidate mappimgselecting
either a fixed number or percentage from all possible maping

Label This restricts candidate mappings to entity pairs whosel$éafire near to each
other in a sorted list. Every entity is compared to its “ldbedighbors.

Area Already after the first rounds some mappings have been faghtiFor subse-
guent rounds we concentrate our efforts on areas borderitigetmappings in the
graph e.qg. if instances have been identified to be equal, eekdor their parent-
concepts in the round after. In our example in the beginnfribis paper (figure 1)
this corresponds to: having found tt280 km/hmaps ontdast we would then try
to mapspeedandcharacteristic We expect to find more mapping partners within
the two close ranges.

Change Propagation QOM further compares only entities for which adjacent @it
were assigned new mappings in a previous iteration. Thisotévated by the fact
that every time a new mapping has been found, we can expelgadiad similar
entities adjacent to these found mappings. Further, toeptexery large numbers
of comparisons, the number of pairs is restricted.

Hierarchy We start comparisons at a high level of the concept and piyptsonomy.
Only the top level entities are compared in the beginning.thiés subsequently
descend the taxonomy. Again referring to our example: we stenparingobject
andthing, subsequently we continue wittehicleor car andautomobile

Combination The combined approach used in QOM follows different optatiom
strategies: it uses a label subagenda, a randomness sdhagen a mapping
change propagation subagenda. In the first iteration thed $alfhagenda is pursued.
Afterwards we focus on mapping change propagation. Fivedl\shift to the ran-
domness subagenda, if the other strategies do not idenfffgisntly many correct
mapping candidates.

With these multiple agenda strategies we only have to chéigkéand restricted num-
ber of mapping candidates for each original erftiBlease note that the creation of the
presented agendas does require processing resources itsel

3. Similarity Computation QOM, just like NOM, is based on a wide range of ontology
feature and heuristic combinations. To keep up the highityuafi mapping results we
retain using as many ontology features as possible. Butdierdo optimize QOM, we
have restricted the range of costly features as specifiedhbife®. In particular, QOM
avoids the complete pair-wise comparison of trees in fafafmincomplete) top-down
strategy. The marked comparisons in the table were chamgedféatures which point
to complete inferred sets to features only retrieving kdisize direct sets.

5 We have also explored a number of other strategies or combinationsitigiers with simple
data sets but they did not outperform results of QOM presented here.

14

|Comparing No. | Feature Similarity Measure |
1 (label X1) string similarity(X;, X>)
2 (URIL) string equalityU RI1, U RI2)
3 (X1,sameAsX>,) relation explicit equality (X1, X2)
4 (direct propertied)1) SimSett, Y2)
Concepts —ba|(properties of direct super-concept§) SimSet{, Y2)
—6a (direct super-concepty¥}) SimSett, Y2)
—7a (direct sub-conceptd;;) SimSetfs, Y2)
8 (concept siblingd;1) SimSet{, Y2)
9 (direct instancey;) SimSet{, Y2)
—104 (instances of direct sub-concepts) SimSett, Y2)
1 (label X1) string similarity (X, X>)
2 (URL) string equalityl RI,,U RI>)
3 (X1,sameAsX>) relation explicit equality(X;, X2)
Relations 4 (domainX ;1) and (rangeX..1) object equality& 41, Xa2),(Xr1, Xr2)
—ba (direct super-propertied;) SimSett, Y2)
—6a (direct sub-properties;) SimSet{7, Y2)
7 (property siblingsy7) SimSet{, Y2)
8 (property instances;) SimSet{, Y2)
1 (label,X1) string similarity(X, X2)
2 (URL) string equalitylU RI,,U RI>)
Instances 3 (X1,sameAsX5) relation explicit equality(X1, X2)
—4a (direct parent-concept¥;) SimSett, Y2)
5 (property instances;) SimSet{, Y2)
Property- 1 (domainX,1) and (rangeX..1) object equality 41, Xa2),(Xr1, X72)
Instances 2 (parent property;;) SimSett, Y2)

Table 5. Features and Similarity Measures for Different Entity Tyggontributing to

Aggregated Similarity in QOM. Features with a lower caselfave been modified for
efficiency considerations.

15

4. Similarity Aggregation The aggregation of single methods is only performed once
per candidate mapping and is therefore not critical for trexall efficiency. Therefore,
QOM works like NOM in this step.

5. Interpretation Also the interpretation step of QOM is the same as in NOM. Bije
tivity is enforced.

6. Iteration QOM iterates to find mappings based on lexical knowledgedindtbased
on knowledge structures later.

In all our tests we have found that after ten rounds hardlyfarifier changes occur
in the mapping table. This is independent from the actualaizhe involved ontologies.
QOM therefore restricts the number of runs.

Assuming that ontologies have a fixed percentage of entitits similar lexical
labels, we will easily find their correct mappings in the fitstation. These are further
evenly distributed over the two ontologies, i.e. the distato the furthest not directly
found mapping is constant. Through the change propagagjenda we pass on to the
next adjacent mapping candidates with every iteration. sSkp number of required
iterations remains constant; it is independent from the sfZzhe ontologies.

We expect that especially the restrictions imposed on &efearch Step Selection
and 3. Similarity Computation limit the calculational efféor mappings.

6 Comparing Run-time Complexity

We determine the worst-case run-time complexity of the ritigms to propose map-
pings as a function of the size of the two given ontologieréhy, we wanted to base
our analysis on realistic ontologies and not on artifacts.Wénted to avoid the con-
sideration of large ontologies withleaf concepts but a depth of the concept hierarchy
Hc of n — 1. [TV03] have examined the structure of a large number oflogies and
found, that concept hierarchies on average have a branfdgtay of around® and that
the concept hierarchies are neither extremely shallow xiwemely deep. The actual
branching factor can be described by a power law distributitence, in the following
we base our results on their findings.

Proof Sketch 1 The different algorithmic steps contributing to complgxte aligned
to the canonical process of Section 3.

For each of the algorithms, one may then determine the cdstach step. First,
one determines the cost for feature engineerifegf. The second step is the search
step i.e. candidate mappings selectigrl§. For each of the selected candidate map-
pings comp we need to compute different similarity functionsim, and aggregate
them @gg. The number of entities involved and the complexity of dspective simi-
larity measure affect the run-time performance. Subsetfyuthre interpretation of the
similarity values with respect to mapping requires a rumei complexity ofnter. Fi-
nally we have to iterate over the previous steps multiplesiigter).

Then, the worst case run-time complexity is defined for gif@aches by:

c = (feat + sele + comp - (3, simy + agg) + inter) - iter

16

Depending on the concrete values that show up in the indaigocess steps the dif-
ferent run-time complexities are derived in detail in [EGD4

In this paper we assume that the retrieval of a statement afnapslogy entity
from a database can be done in constant access time, indeperidhe ontology size,
e.g. based on sufficient memory and a hash function.

In the following sections we will reference to this definitiand mention the corre-
sponding complexity for each action in the process.

6.1 Background Assumptions on Ontology Complexity

As background information for this section we rely on [TVD&ho have examined the
structure of a large number of ontologies. Ontologies ibrdave a branching factér
of around2. [TVO03] have also shown that the tree-like structures afthaeextremely
shallow nor extremely deep. All of the subsequent consiaera are based on these
assumptions.

We recapitulate the complexity levels which occur when daiomparisons of en-
tity sets.n is the number of entities in the ontology. Retrieving singhities or fixed
sets of entities is independent of the size of the ontologgnFthe constant size of
all sets we say straight forward that complexityiél). Other methods require access
to a whole subtree of an ontology. The depth of an even tregsle&ma complexity
of O(log(n)). Yet even other methods need access to the whole ontologitingsin
O(n).

6.2 Similarity Complexity

Another issue of complexity is due to specific similarity ma@s. Some of the mea-
sures are considerably costly.

Object Equality requires a fixed runtime complexiy(1). Comparing two individual
objects (i.e. their URIs) through an equality operator dejpendent of the structure
they are taken from.

Explicit Equality Checking the ontology whether one entity has a specificioglas
also ofO(1).

String Equality complexity is dependent of the string si@€length). But, if we as-
sume that the length is limited by a fixed bound, complexispasO(1).

Syntactic String Similarity complexity of strings has the same considerations of fixed
bounds, as for string equality)(1)).

Dice For Dice one has to check for every element of the two compsetsl (union)
whether it is also part of the intersection. This results toaplexity of O(|E| -
log(|E|) + | F| - log(|F|) + (|E| + |FI).

SimSet has to compute the similarity vector for every entity witreswother entity
(O(JE + F|*) = O(setSize?)). Creating the average and normalizing does not
change this complexity.

17

6.3 NOM - Naive Ontology Mapping

In this baseline approach we compute complex similarityhogs for each possible
entity pair. These are then aggregated and cleaned reguairfinal result.

— feat: No explicit feature engineering is dongeat = 0

— sele: As we check all possible mapping partners the step of chgdbkie mapping
partners is not performedhoice = 0

— comp: All pairs of entities of the whole ontologies times thenveslare processed:
(O(n?)).

— simyg: The complexity of the similarity methods is determinedtigh the number
of entities which have to be explicitly accessed for a certaethod. These are
either single entities@(1)), a fixed set of entities((1)), or in the worst case
whole subtrees®(log(n))). These have to be applied to the similarity measures.
Table 6 shows the complexity corresponding to each rulgic@lifor our case is
the highest complexity i.e)(log?(n)).

— agyg is done once for every entity and therefore resul®{n).

— inter: We have to traverse the whole mapping table once raxre) for transfor-
mation of results and cleansing of duplicates (to ensueetijity) .

— iter: Several iteration roundsare required, which itself is ab(1).

We eventually receive:

c=(04+0+0(1n?) -k-O(log*(n)) + O(n) + O(n)) - r = O(n? - log*(n))

6.4 PROMPT

PROMPT compares all entity pairs based on their labels. lostppocessing step an
acknowledgement of the user becomes necessary.

— comp: Using an ideal implementation which sorts the labels firstraceiveO(n -
log(n)). The tool itself require® (n?).

— simyg: The complexity of the similarity method is restricted toeosingle entity
access for labelg}(1)).

— inter: The acknowledgement in the postprocessing step is done foncvery
entity: inter = O(n)

— dteration: PROMPT performs multiple rounds O(1).

The total complexity is also calculated very easily.
c=(0(m-log(n))-O(1)+0O(n))-r=0(n-log(n))

The complexity for this approach is lower than for NOM, buttbe other hand only
minimal features of ontologies are used for mapping comjmutal he consequence are
results with a lower quality.

18

[No | Rule | Complexity |

1 labels singleO(1)

2 URIs singleO(1)

3 sameAs relation singleO(1)

4 direct properties | fixed set + SimSeD(1?)
Concepts 5 |all inherited propertiesubtree+SimSed (log?(n))
Similarity 6 | all super-concepts|subtree+SimSed (log®(n))

7 all sub-concepts |subtree+SimSeD(log?(n))

8 concept siblings | fixed set + SimSe®(1?)

9 direct instances | fixed set + SimSeD(1?)

10 instances subtree+SimSed (log*(n))

1 labels singleO(1)

2 URIs singleO(1)

3 sameAs relation singleO(1)
Relation 4 | domain and range| fixed set + SimSeD(1?)
Similarity 5 | all super-properties/subtree+SimSed (log”(n))

6 | all sub-properties |subtree+SimSed(log?(n))

7 property siblings | fixed set + SimSeD(1?)

8 | property instances| fixed set + SimSeD(1?)

1 labels singleO(1)
Instance 2 URIs . s?ngIeO(l)
Similarity 3 sameAs relation singleO(1)

4 | all parent-concepts|subtree+SimSed(log®(n))

5 | property instances| fixed set + SimSeD(1?)
Property- 1 [domainand range]| fixed set+ SimSeD(1?)
Instances 2 parent property singleO(1)
Similarity

Table 6. NOM: Rules and Complexity

19

6.5 Anchor-PROMPT

PROMPT is enhanced by structural elements. Only the coritplek the similarity
function changes.

— simy: This time we have to compare sub-, super-classes, anibrefzths which
equals subtree€?(log?(n)).

The runtime complexity changes in comparison to the origfROMPT approach to:
¢ = (0(n?) - O(log*(n)) + O(n)) - = O(n? - log*(n))
The complexity corresponds to the complexity of the NOM apph.

6.6 GLUE

GLUE has three major steps. Preprocessing to build a ckssife similarity determi-
nation, and the relaxation labelling.

— feat: The authors use machine learning techniques for the lligion estimator.
An optimistic assumption could be that we use a fixed sizé#®training examples
with a complexity ofO(1).

— comp: For every entity pair (label assignment) the probabilié ho be computed
(O(n?)).

— simy: If we assume a fixed size of the partitions such as being baséioe num-
ber of featureg:, we can assume that computing the probability for one ladzgll
configuration is done constant tinig1).

— agg,inter: Aggregation and interpretation are part of the similadgmputation
and do not provide an own complexity.

— iter: We process several rounds, but this doesn’t aff¥(dt). Please note that only
steps 3, 4, and 5 are repeated. The feature engineeringakaing of the relaxation
labeller is processed just once.

Based on the described assumptions we estimate the ovenghlexity as follows:

c=0(1)+0(n?) -0(1)-r=0(n?

6.7 QOM - Quick Ontology Mapping

QOM implements different changes in comparison to the bpgsach NOM. We now
show how this affects the outcome of complexity.

— feat: No transformations are requirefkat = 0.

— sele: For creating the best agenda each entity is checked anddsstet®f potential
comparison partners is determined. In the worst case QOMoaags labels and
sorts themsele = O(n - log(n))

— comp: The major efficiency leap is won through the pair reductids.one entity
only has a limited numbeérof other entities connected to it, only these are added to
the agenda. Our complexity for this part is therefore reduoc®(n)-O(l) = O(n).

20

— simyg: The reduced complexity of the rules is shown in table 7. &dki we have
omitted the highest level of complexity - the complete seds: We only allow fixed
setsO(1).

— agg: Aggregation stays the same from NOM i.e. one action for eetty: O(n).

— inter: Again we use the same as for NOM: transformation and clegrice per
entity: O(n).

— dter: A constant number of roundsis done - in our case 10. Complexity is again
of O(1).

| |Changé Rule | Complexity |

5a properties of super-conceffiged set + SimSeD(1?)
Concept 6a direct super-concepts |fixed set + SimSeD(1?)
Similarity 7a direct sub-concepts [fixed set + SimSeD(1?)

10a instances of sub-conceptéixed set + SimSeD(1?)
Relation 5a direct super-properties [fixed set + SimSe©(17)
Similarity 6a direct sub-properties |fixed set + SimSeD(1?)
Instance 4a direct parent-concepts [fixed set + SimSeD(1?)
Similarity

Table 7.QOM: Changed Rules and Complexity

Setting the variables according to the new methods and guoes returns:

¢=(O(n-log(n)) +0(n) - k- O(1) + O(n) + O(n)) - 7 = O(n - log(n))
One can see that the theoretical complexity of this appréantuch lower than in any
other presented approach.
6.8 Discussion

The worst case run-time behaviors of NOM, PROMPT, Ancho®RRT, GLUE and
QOM are given by the following table:

NOM O(n? - log®(n))
PROMPT O(n -log(n))
Anchor-PROMPT | O(n? - log?(n))
GLUE O(n?)

QOM O(n -log(n))

We have shown that many approaches to discover mappingsdlogies pay a high
calculational price for their results: NOK?(n? - log?(n)), PROMPTO(n - log(n)),
Anchor-PROMPTO(n? - log?(n)), and GLUE at leasb(n?). Regardless they are very
elaborated considering the quality of mapping results. &ubne can easily see this

21

complexity is manageable neither for a real world applaratvith large ontologies nor
for small ontologies in real time environments.

We have further shown theoretically that it is possible twdothese complexities
considerably. QOM only require@(n - (log(n)) of runtime. In the next section we
show that the effectiveness of the mappings is not lower ithather approaches.

7 Empirical Evaluation and Results

In this section we show that the worst case considerationy oger to practical ex-
periments and that the quality of QOM is only negligibly lowkan the one of other
approaches. The implementation itself was coded in Java tise KAON-framework
for ontology operations.

7.1 Test Scenario

Metrics We use standard information retrieval metrics to assesdifferent ap-
proaches (cf. [DMRO02]):

Precision We measure the number of correct mappings found versustédlentonber
of retrieved mappings (correct and wrong).

__ F#correct_found-mapping
_ ound_mappings

. . .
Recall descr{bes the npurrglber of correct mappings found in compatdsthe total num-
ber of existing mappings.

#correct_found-mappings
#existing-mappings

T =

In our tests we measure the level of f-measure reached after The f-measure
combines the two parameters precision and recall. It wasifit®duced by [VR79].
The standard formula is defined as:

f= (b2+1)pr
= TbZptr

b is a factor to quantify the value of precision and recall agaeach other. For the
consequent test runs we use- 1.

Data Sets Three separate data sets were used for evaluation purpesesl world on-
tologies and especially their mappings are scarce, staa@re asked to independently
create and map ontologiés.

Russia 1In this first set we have two ontologies describing Russia Jtudents cre-
ated the ontologies with the objectives to represent theecbof two independent travel
websites about Russia. These ontologies have approxiymti8lentities each, includ-
ing concepts, relations, and instances. The total numbposdible mappings is 160,
which the students have assigned manually. This scenado isasy scenario, with
which many individual methods can be tested.

7 http://kaon.semanticweb.org/
8 The datasets are available from http://www.aifb.uni-karlsruhe.de/WBSmapping/.

22

Russia 2The second set again covers Russia, but the two ontologienare difficult
to map. After their creation they have been altered by dejetitities and changing the
labels at random. They differ substantially in both labeld atructure. Each ontology
has 300 entities with 215 possible mappings, which wereucagtduring generation.
Often not even humans are capable of identifying these mgppi

Tourism Finally, the participants of a seminar created two ont@egvhich separately
describe the tourism domain of Mecklenburg-VorpommernthBamntologies have an
extent of about 500 entities. No instances were modellel this ontology though,
they only consist of concepts and relations. The 300 magpirege created manually.

Strategies We evaluated the mapping strategies described in the u®sgiections:

— PROMPT — As the PROMPT algorithm is rather simple and fast & it as
a baseline to evaluate the speed. The empirical evaluaibased on the actual
implementation of PROMPT rather than its theoretic potdntéis described in the
previous section.

— NOM / Anchor-PROMPT — Naive Ontology Mapping is an approadiking use
of a wide range of features and measures. Therefore it redmple levels of effec-
tiveness and represents our quality baseline. In termsuaftaral information used
and complexity incurred it is similar to Anchor-PROMPT.

— QOM — Quick Ontology Mapping is our novel approach focusimgedficiency. It
uses an agenda of combined strategies as well as sevenabptimizing measures
as described.

To circumvent the problem of having semi-automatic merdimgjs (PROMPT and
Anchor-PROMPT) in our fully automatic mapping tests, weuassd that every propo-
sition of the system is meaningful and correct. Further, atad difficulties in running
Anchor-PROMPT with the size of the given data sets, we radahé results of the
somewhat similar NOM. For GLUE we face another general gmoblThe algorithm
has a strong focus on example instance mappings. As we cgrotle this, we re-
frained from running the tests on a poorly trained estimatioich would immediately
result in poor quality results.

7.2 Results and Discussion

We present the results of the strategies on each of the datindeéigures 3 to 5. The
x-axis shows the elapsed time on a logarithmic scale, theis/@orresponds to the
f-measure. The symbols represent the result after eactiderstep.

Depending on the scenario PROMPT reaches good resultswaitsihort period of
time. Please notice that for ontologies with a small numbeinilar labels (Figure 4)
this strategy is not satisfactory (f-measure 0.06). In st} the f-measure value of the
NOM strategy rises slowly but reaches high absolute valfiep to 0.8. Unfortunately
it requires a lot of time. Finally the QOM Strategy is plottédreaches high quality
levels very quickly. In terms of absolute values it also seéoreach the best quality
results of all strategies. This appears to be an effect of Caahleving an about 20
times higher number of iterations than NOM within the givienet frame.

23

1

0,9

08 #
o 0.7 .r!!. *
S 06 n
8 05
£ 04 PROMPT] |
“ 03 oNOM | |

0.2 m QOM

0,1

0 T T T

1000 10000 100000 1000000 10000000
time (ms)

Fig. 3. Mapping quality reached over time with Russia 1 ontologies.

0.9 4|+ PROMPT
0.8 {/#Nom
07 1lmaom

0,6

’ &
08 ﬂo
0,4 f L 2
0,3 =
0,2 - 2

mn

0,1 B

0 T T

1000 10000 100000 1000000

time (ms)

f-measure

Fig. 4. Mapping quality reached over time with Russia 2 ontologies.

Lessons LearnedWe had the hypothesis that faster mapping results can beebta
with only a negligible loss of quality. We here briefly preséme bottom line of our
considerations in this paper:

1. Optimizing the mapping approach for efficiency — like QOMed — decreases
the overall mapping quality. If ontologies are not too lagyee might prefer to
rather avoid this.

2. Labels are very important for mapping, if not the most imgat feature of all, and
alone already return very satisfying results.

3. Using an approach combining many features to determirmmpimgs clearly leads
to significantly higher quality mappings.

4. The Quick Ontology Mapping approach shows very good tesQluality is low-
ered only marginally, thus supporting our hypothesis.

24

09

0,8
0,7 |

0,6

05

f-measure

03 APROMPT]_|
«NOM

0.2 mQoM [

0,1

1000 10000 100000 1000000 10000000

time (ms)

Fig. 5. Mapping quality reached over time with Tourism ontologies.

5. QOM is faster than standard prominent approaches by arfati0 to 100 times.

Recapitulating we can say that our mapping approach is fegtive and efficient.

8 Related Work

Most of the ideas for measuring similarity are derived froomenon sense and are
easily understood. To our knowledge existing approachassfon specific methods to
determine similarity rather than using an overall inteiggaind efficient approach.
Various authors have tried to find a general descriptionrofiarity with several of
them being based on knowledge networks. [REOQ] give a gemezaview of similarity.
As the basic ontology mapping problem has been around foe s@ars, first tools
have already been developed to address this. The tools PR@KIPANchorPROMPT
[NMO3] use labels and to a certain extent the structure oblogtes. However, their
focus lies on ontology merging i.e. how to create one ontplogt of two. Potential
matches are presented to the user for confirmation. In thelr@NION [MWKOOQ]
the authors use rules and inferencing to execute mappingsstbased on manu-
ally assigned mappings or very simple heuristics. [DDH08¢ & general approach
of relaxation labelling in their tool GLUE. However, most tfeir work is based
on the similarity of instances only. [McGO0O] created a tom fmapping called Chi-
maera. Besides equality first steps are taken in the direofioomplex matches. These
could also include concatenation of two fields such as “fiesh@” and “last name”
to “name”[DRO02]. Another interesting approach for schemd antology mapping is
presented by [BMSZ03]. Explicit semantic rules are addeccémsideration. A SAT
solver is used to prevent mappings to imply semantical edlidtions.
Despite the large number of related work on effective mapjineady mentioned
throughout this paper, there are very few approaches gatiBmissue of efficiency.
Apart from the ontology domain research on mapping and ratemn has been
done in various computer science fields. [ASO1] present gmoagh to integrate

25

documents from different sources into a master catalogreThas also been re-
search on efficient schema and instance integration witiéndatabase community.
[RHdV03,MNU00,YMKO2] are a good source for an overview. Hmar, even though
these algorithms have been optimized for many years, theypcly be partly used for
our purposes, as they are mainly oriented towards (dongeeni$c) instance compar-
isons rather than schema matching. Due to this comparisibh®wr approach are very
difficult. Another community involved in similarity and mpmg are object-oriented
representations[BS98]. To the best of our knowledge, thec@@munity has explored
efficient similarity computations to very little extent. jIR3] shows an approach for
UML. Even though efficiency has been a topic in related arealy, very little can
directly be transferred to ontology mapping.

9 Conclusion

The problem of mapping two ontologies effectively and edfittly arises in many ap-
plication scenarios [EHvH03,HSS03]. We have devised a generic process model to
investigate and compare different approaches that genenablogy mappings. In par-
ticular, we have developed an original method, QOM, for tihgimg mappings between
two ontologies. We have shown that it is on a par with otherdgstate-of-the-art al-
gorithms concerning the quality of proposed mappings,evbiitperforming them with
respect to efficiency — in terms of run-time complexi¥((:-log(n)) instead oD (n?))

and in terms of the experiments we have performed (by a fattd to 100). Vice versa
QOM shows better quality results than approaches withisémee complexity class.

Acknowledgement®Research reported in this paper has been partially finangéteb
EU in the IST projects WonderWeb (IST-2001-33052), SWAPT{£801-34103) and
SEKT (IST-2003-506826).

References

[AS01] Rakesh Agrawal and Ramakrishnan Srikant. On integratintpegtanProceedings
of the tenth international conference on World Wide Wadiges 603-612. ACM
Press, 2001.

[Bis95] G. Bisson. Why and how to define a similarity measure for objeset representa-
tion systemsTowards Very Large Knowledge Baspages 236—246, 1995.

[BMSZ03] Paolo Bouquet, B. Magnini, L. Serafini, and S. Zanobini. AS#ased algorithm for
context matching. ItV International and Interdisciplinary Conference on Modeling
and Using Context (CONTEXT'20Q3tanford University (CA, USA), June 2003.

[Bod91] M. Boddy. Anytime problem solving using dynamic programmitrgProceedings
of the Ninth National Conference on Artificial Intelligenqeges 738-743, Ana-
heim, California, 1991. Shaker Verlag.

[BS98] Ralph Bergmann and Armin Stahl. Similarity measures for objeented case
representationd.ecture Notes in Computer Sciend€88:25+, 1998.

[CAFP98] S. V. Castano, M. G. De Antonellis, B. Fugini, and C. PerniatheBna analysis:
Techniques and application8CM Trans. System&3(3):286—333, 1998.

[CC94] T. Cox and M. CoxMultidimensional ScalingChapman and Hall, 1994.

26

[DDHO3]

[DLD+04]

[DMR02]

[DRO2]

A. Doan, P. Domingos, and A. Halevy. Learning to match thieestas of data
sources: A multistrategy approaciLDB Journal 50:279-301, 2003.

Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon Halevy &edro Domin-
gos. imap: discovering complex semantic matches between databaseaschin

Proceedings of the 2004 ACM SIGMOD international conference on iemant
of data pages 383-394, 2004.

H. Do, S. Melnik, and E. Rahm. Comparison of schema matchiraluations. In
Proceedings of the second int. workshop on Web Databases (Genfaamétics

Society) 2002.

H. Do and E. Rahm. COMA - a system for flexible combination dfesna matching
approaches. IRroceedings of the 28th VLDB Conferene®ng Kong, China, 2002.

[EHVHT03] M. Ehrig, P. Haase, F. van Harmelen, R. Siebes, S. Staab, HkeBszhmidt,

[ES04a]

[ES04b]

[EVO3]

[Gru93]

[HSS03]

[Lev66]
[McG00]
[MMSV02]

[MNUOO]

[MS02]

[MWO1]

IMWKOO]

R. Studer, and C. Tempich. The SWAP data and metadata model fonsesrdaased
peer-to-peer systems. Rroceedings of MATES-2003. First German Conference on
Multiagent Technologied NAI, Erfurt, Germany, September 22-25 2003. Springer.
M. Ehrig and S. Staab. Quick ontology mapping with QOM. Techni-
cal report, University of Karlsruhe, Institute AIFB, 2004. http://wwwhbaiini-
karlsruhe.de/WBS/meh/mapping/.

Marc Ehrig and York Sure. Ontology mapping - an integrat@dageh. In Christoph
Bussler, John Davis, Dieter Fensel, and Rudi Studer, edRooseedings of the 1st
ESWSvolume 3053 of ecture Notes in Computer Scienpages 76-91, Heraklion,
Greece, MAY 2004. Springer Verlag.

J. Euzenat and P. Valtchev. An integrative proximity measaretfitology alignment.
In Anhai Doan, Alon Halevy, and Natasha Noy, edité*mceedings of the Semantic
Integration Workshop at ISWC-03003.

Tom R. Gruber. Towards Principles for the Design of Ontokgised for Knowl-
edge Sharing. In N. Guarino and R. Poli, editdfsrmal Ontology in Conceptual
Analysis and Knowledge Representatibeventer, The Netherlands, 1993. Kluwer
Academic Publishers.

A. Hotho, S. Staab, and G. Stumme. Ontologies improve texinaeat clustering. In
Proceedings of the International Conference on Data Mining — ICDM32BEE
Press, 2003.

I. V. Levenshtein. Binary codes capable of correcting defstiinsertions, and re-
versals.Cybernetics and Control Theqr§966.

Deborah L. McGuinness. Conceptual modeling for distributetblogy environ-
ments. Ininternational Conference on Conceptual Structugges 100-112, 2000.
Alexander Maedche, Boris Motik, Nuno Silva, and Rapha#fVMafra - a mapping
framework for distributed ontologies. FProceedings of the EKAW 2002002.
Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. Efficiecitistering of high-
dimensional data sets with application to reference matchinignowledge Discov-
ery and Data Miningpages 169-178, 2000.

Alexander Maedche and Steffen Staab. Measuring similaritydetwntologies. In
Proceedings of the European Conference on Knowledge AcquisitioMandge-
ment (EKAW)Springer, 2002.
Prasenjit Mitra and Gio Wiederhold. An ontology-composition algebTechnical
report, Stanford University, Stanford, California, USA, 2001.
Prasenjit Mitra, Gio Wiederhold, and Martin Kersten. A grapfeoted model for
articulation of ontology interdependencied.ecture Notes in Computer Science
1777:86+, 2000.

27

[NMO3]

[REOO]

[RHAV03]

[Ruf03]

[SEH™03]

[She00]

[Stu02]

[Su02]

[TVO3]

[VR79]

[YMKO2]

Natalya F. Noy and Mark A. Musen. The PROMPT suite: interactmwols for on-
tology merging and mappinglnternational Journal of Human-Computer Studies
59(6):983-1024, 2003.

M. Andrea Rodrguez and Max J. Egenhofer. Determiningasgimsimilarity among
entity classes from different ontologidEEE Transactions on Knowledge and Data
Engineering 2000.

John Roddick, Kathleen Hornsby, and Denise de Vries. ifying semantic distance
model for determining the similarity of attribute values. Rroceedings of the 26th
Australsian Computer Science Conference (ACSC2@aflaide, Australia, 2003.
Raimi Ayinde Rufai. Similarity metric for uml models. Master’s $ige King Fahd
University of Petroleum and Minerals, 2003.

Gerd Stumme, Marc Ehrig, Siegrfried Handschuh, Andreas Hétegander Maed-
che, Boris Motik, Daniel Oberle, Christoph Schmitz, Steffen staab, LjiljSta
janovic, Nenad Stojanovic, Rudi Studer, York Sure, Raphael Vold, \dadentin
Zacharias. The Karlsruhe view on ontologies. Technical report,ddsity of Karl-
sruhe, Institute AIFB, 2003.

Colin Shearer. The CRISP-DM model: The new blueprint && dhining.Journal
of Data Warehousing2000.

H. Stuckenschmidt. Approximate information filtering with multiple sifisa-
tion hierarchieslnternational Journal on Computational Intelligence Applicatipns
2002. Accepted for publication.

Xiaomeng Su. A text categorization perspective for ontologypimg. Technical
report, Department of Computer and Information Science, Norwegdraversity of
Science and Technology, Norway, 2002.

Christoph Tempich and Raphael Volz. Towards a benchmarkémantic web rea-
soners - an analysis of the DAML ontology library. In York Sure, edifmMaluation
of Ontology-based Tools (EON2003) at Second International Sem&rbaConfer-
ence (ISWC 2003Dctober 2003.

C. J. Van Rijsbergerinformation Retrieval, 2nd editiobDept. of Computer Science,
University of Glasgow, 1979.
Liu Yaolin, Martin Molenaar, and Menno-Jan Kraak. Semantiikarity evaluation
model in categorical database generalizationSymposium on Geospatial Thepry
2002.

28

