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Abstract. Ontologies now play an important role for many knowledge-intensive
applications for which they provide a source of precisely defined terms. How-
ever, with their wide-spread usage there come problems concerning their prolif-
eration. Ontology engineers or users frequently have a core ontology that they
use, e.g., for browsing or querying data, but they need to extend it with, adapt it
to, or compare it with the large set of other ontologies. For the task of detecting
and retrieving relevant ontologies, one needs means for measuring the similar-
ity between ontologies. We present a set of ontology similarity measures and a
multiple-phase empirical evaluation.

1 Introduction

A core purpose for the use of ontologies is the exchange of data not only at a com-
mon syntactic, but also at a shared semantic level. Especially on the WWW more and
more ontologies are constructed and used, beginning to replace the old-fashioned ways
of exchanging business data via standardized comma-separated formats by standards
that adhere to semantic specifications given through ontologies. Thus, in the near future
more and more ontologies will be made available on the WWW. With this upswing and
beginning widespread usage of ontologies, however, new problems are incurred. Ontol-
ogy engineers or users frequently have a core ontology that they use, e.g., for browsing
or querying data, but they need to extend it with, adapt it to, or compare it with the large
set of other ontologies. For the task of detecting and retrieving relevant ontologies, one
needs means for measuring the similarity between ontologies on a canonical scale (e.g.,
the reals in [0; 1]).

So, how may we measure the similarity of ontologies or of ontology parts? One
could make use of the formal structures of ontologies and try at the unification of on-
tologies or ontology parts (which is essentially subgraph matching). The drawback here
would be that all real-world ontologies that we know of do not only specify its con-
ceptualization by logical structures, but to a large extent also by reference to terms that
are grounded through human natural language use. For instance, modeling that MAN



and WOMAN are subordinates of PERSON suffices for many purposes even without any
further differentiae. Two ontologies that contain these parts agree on their semantics
only to a small extent by formal means, but to a larger extent by reference to common
terminology. Furthermore, missing structures need not be problematic. For instance, if
one ontology comes with concepts referred to by VEHICLE, CAR, SPORTSWAGON and
the other with VEHICLE and SPORTSWAGON only, the semantic exchange of data may
still be rather easy, even though the second ontology lacks the two taxonomic links from
VEHICLE to CAR and to SPORTSWAGON.

Looking at these requirements, we have found a lack of comprehensive methodolog-
ical inventory to measure similarity between real-world ontologies, as well as practical,
reproducable experiences with measuring similarity between ontologies. Firstly, this
paper is about introducing the necessary inventory. We break down the overall task and
propose a set of measures that capture the similarity of ontologies at two different levels,
the lexical and the conceptual. In general our similarity measures describe the extent to
which one ontology specification is covered by the other — and vice versa. Secondly,
this paper is about providing some practical experiences and results with the proposed
measures. Five subjects, four novices and one ontology engineering expert, have mod-
eled ontologies in three different phases about a commonly well-known domain given
some additional background knowledge in form of domain texts. The ontologies gen-
erated by the different subjects then served as input to an empirical evaluation study of
our similarity measuring framework.

In the following, we first prepare the ground for our proposal and our empirical
evaluation study by formally specifying the ontology structure and its semantic we refer
to subsequently. In the two sections thereafter, we propose measures for describing the
similarity of different ontology parts at the lexical and conceptual level. In Section 5,
we describe the empirical evaluation study and the results we achieved there, before we
relate to other research and conclude the paper with an outlook on future challenges.

2 A Two-Layer View of Ontologies

In order to compare two ontologies and measure similarity between them (or between
parts of them), one may consider different semiotic levels. The two levels that we can
focus on (abstracting from an actual application) are: First, at the lexical level we may
investigate how terms are used to convey meanings. Second, at the conceptual level we
may investigate what conceptual relations exist between the terms. 4 For this investiga-
tion we define a simple notion of ontology and some auxiliary functions in six steps.

Definition 1 (Concept Language). Our simple concept language is defined starting
from atomic concepts and roles. Concepts are unary predicates and roles are binary
predicates over a domain U , with individuals being the elements of U . Correspondingly,
an interpretation I of the language is a function that assigns to each concept symbol
(taken from the set A) a subset of the domain U , I : A 7! 2U , to each role symbol
(taken from the set P) a binary relation of U , I : P 7! 2U�U . Concept terms and role

4 Further studies could look at the pragmatic and the social level and try find out about the
application of terms in concrete applications and social contexts.



terms are defined inductively with terminological axioms and using operators. C and
D denote concept terms, R and S denote roles.

Concept Forming Operator
Syntax Semantics
Catom

�
d 2 UI j Catom atomic; d 2 I (Catom)

	
C uD CI \DI

8R:C
�
d 2 UI j 8e(d; e) 2 RI ) e 2 CI

	
Role Forming Operators

Syntax Semantics
Ratom

�
(d; e) 2 UI � UI jRatom atomic; (d; e) 2 I (Ratom)

	
R u S RI \ SI

C �D
�
(d; e) 2 CI �DI

	
Terminological Axioms

Axiom Semantics Axiom Semantics
D

:
= C DI = CI D v C DI � CI

S
:
= R SI = RI S v R SI � RI

Definition 2 (Lexicon). The lexicon consists of a set of terms (lexical entries) for con-
cepts, Lc, and a set of terms for relations, Lr. Their union is the lexicon L := Lc [Lr.

Definition 3 (Reference Function). The reference functions F , G, with F : 2L
c

7!
2A and G : 2L

s

7! 2P . F and G link sets of lexical entries5 fLig � L to the set of
concepts and relations they refer to, respectively. In general, one lexical entry may refer
to several concepts or relations and one concept or relation may be refered to by several
lexical entries. Their inverses are F�1 and G�1.

We distinguish between terms and concept/relation symbols, because we want to
allow for the explicit expression of ambiguities. For instance, one term like “bank”
may refer to two concept symbols, viz. BANK-1 being a subconcept of FURNITURE

and BANK-2 being a subconcept of COMPANY. Expressing this by disjunction (e.g.,
BANK

:
= BANK-1 t BANK-2) would be logically equivalent, but it would conflate two

ontological states, viz. “bank” being an ambiguous natural language term and BANK-1
being a construed symbol for precise logical denotation.

Definition 4 (Core Ontology). A core ontologyO is a tuple (A;P ;D;L;F ;G), which
consists of a set of concept symbols A, a set of relation symbols P , a set of statements
D in the concept language defined above, a lexiconL and two reference functionsF ;G.

Definition 5 (Concept Hierarchy). The concept hierarchyH is defined by
H := f(C;D)jC;D 2 A ^ CI � DIg

Definition 6 (Domain/Range). Domain (d(R)) and range (r(R)) of a relation R are
defined by fdj9e(d; e) 2 RIg and fej9d(d; e) 2 RIg, respectively.

In the following sections we propose and use methods for measuring similarity of
ontologies based on the lexical and the conceptual level of ontologies.

5 The reference functions are defined on sets of lexical entries (instead of single entities) in order
to allow for a more compact description of formulae later on.



3 Lexical Comparison Level

The edit distance formulated by Levenshtein [5] is a well-established method for weight-
ing the difference between two strings. It measures the minimum number of token in-
sertions, deletions, and substitutions required to transform one string into another using
a dynamic programming algorithm. For example, the edit distance, ed, between the two
lexical entries “TopHotel” and “Top Hotel” equals 1, ed(“TopHotel”; “Top Hotel”) = 1,
because one insertion operation changes the string “TopHotel” into “Top Hotel”.

Based on Levenshtein’s edit distance we propose a lexical similarity measure for
strings, the String Matching (SM), which compares two lexical entries L i; Lj :

SM(Li; Lj) := max

�
0;

min(jLij; jLj j)� ed(Li; Lj)

min(jLij; jLj j)

�
2 [0; 1]:

SM returns a degree of similarity between 0 and 1, where 1 stands for perfect match
and zero for bad match. It considers the number of changes that must be made to
change one string into the other and weighs the number of these changes against the
length of the shortest string of these two. In our example from above, we compute
SM(“TopHotel”; “Top Hotel”) = 7

8 . In order to provide a summarizing figure for the
lexical level of two sign systems, e.g. for the lexica referring to concepts L c

1;L
c
2 of two

ontologiesO1;O2, we compare two setsL1;L2 returning the averaged String Matching
SM(L1;L2):

SM(L1;L2) :=
1

jL1j

X
Li2L1

max
Lj2L2

SM(Li; Lj):

SM(L1;L2) is an asymmetric measure that determines the extent to which the lexical
level of a sign system L1 (the target) is covered by the one of a second sign system
L2 (the source). Obviously, SM(L1;L2) may be quite different from SM(L2;L1). E.g.,
when L2 contains all the strings of L1, but also plenty of others, then SM(L1;L2) = 1,
but SM(L2;L1) may approach zero. Compared to the relative number of hits,

RelHit(L1;L2) :=
jL1 \ L2j

jL1j
;

SM diminishes the influence of string pseudo-differences in different ontologies, such
as use vs. not-use of underscores or hyphens, use of singular vs. plural, or use of addi-
tional markup characters. Of course, SM may sometimes be deceptive, when two strings
resemble each other though they there is no meaningful relationship between them, e.g.
“power” and “tower”. In our case study, however, we have found that in spite of this
added “noise” SM may be very helpful for proposing good matches of strings.

4 Conceptual Comparison Level

At the conceptual level we may compare semantic structures of ontologiesO 1;O2, that
vary for concepts A1;A2. In our model the conceptual structures are constituted by
H1;H2 and P1;P2.



4.1 Comparing taxonomiesH1;H2

Though there has been a long discussion in the literature about comparing the simi-
larity of two concepts in a common taxonomy (cf. Section 6), we have not found any
discussion about comparing two taxonomies.

We start by determining the extent to which two taxonomies as seen from two par-
ticularly identified concepts compare. More precisely, we assume that we have one
lexical entry L 2 Lc

1 \ L
c
2 that refers via F1 and F2 to two concepts C1; C2 from two

different taxonomies H1;H2. The intensional semantics of C1 (C2) may be seen to be
constituted by the semantic cotopy (SC) of C1 (C2), i.e. all its super- and subconcepts:

SC(Ci;H) := fCj 2 AjH(Ci; Cj) _H(Cj ; Ci)g:

SC is overloaded to process sets of concepts, too.

SC(fC1; : : : ; Cng;H) :=
[

i:=1:::n

SC(Ci;H):

The taxonomic overlap (TO) betweenH1 andH2 as seen from the concepts referred
to byLmay then be computed by followingF �1

1 andF�1

2 back to the common lexicon.

TO0(L;O1;O2) :=
jF�1

1 (SC(F(fLg);H1)) \ F
�1
2 (SC(F(fLg);H2))j

jF�1
1 (SC(F(fLg);H1)) [ F

�1
2 (SC(F(fLg);H2))j

Averaging over all lexical entries we may thus compute a semantic similarity for
the two given hierarchies.

In addition, however, we must consider the case where a lexical entry L is in L c
1,

but not in Lc
2. Then, the simplest assumption is that the L is simply missing from Lc

2,
but when comparing the two hierarchies the optimistic taxonomic approximation is the
one that searches for the maximum overlap given a fictive membership of L to L c

2 by

TO00(L;O1;O2) := max
C2C2

�
jF�1

1 (SC(F(fLg);H1)) \ F
�1
2 (SC(C);H2)j

jF�1
1 (SC(F(fLg);H1)) [ F

�1
2 (SC(C);H2)j

�

Given these premises the averaged similarity TO between two taxonomies (H 1;H2)
of ontologies (O1;O2) may then be defined by:

TO(O1;O2) :=
1

jLc1j

X
L2Lc

1

TO(L;O1;O2); with

TO(L;O1;O2) :=

(
TO0(L;O1;O2) if L 2 Lc2

TO00(L;O1;O2) if L 62 Lc2
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Fig. 1. Two Example Ontologies O1;O2

Example: A partial example for comparing taxonomies is given in Figure 1: The tax-
onomic overlap TO0(“hotel”;H1;H2) is determined byF�1

1 (SC(F(f“hotel”g);H1)) =
f“hotel”; “accomodation”g andF�1

2 (SC(F(f“hotel”g);H2)) = f“wellness hotel”; “hotel”g
resulting in TO0(“hotel”;H1;H2) =

1
3 as input to TO.

When we consider the lexical entry “accomodation”, which is only in L c
1, we com-

pute the taxonomic overlap as follows: We compute for the lexical entry “accomodation”
F�1
1 (SC(F(f“accomodation”g);H1)) = f“youth hostel”; “accomodation”; “hotel”g. The

concept referred to by “hotel” in A2 yields the best match resulting in
F�1
2 (SC(F(f“hotel”g))) = f“wellness hotel”; “hotel”g and, thus,

TO00(“accomodation”;H1;H2) =
1
4 .

The reader may note several properties of TO: First, TO is asymmetric. While TO 0 is
a symmetrical measure, TO00 is asymmetric, because depending on coverage it may be
very easy to integrate one taxonomy into another one, but it may be very difficult to do
it the other way around. Second, for ease of presentation of the basic principles we have
given here a shortened definition. The longer version specially considers the (minority
of) cases, where one lexical entry refers to several concepts. The longer version does
not consider the semantic cotopies of all referred concepts for computing TO, but only
those that eventually optimize TO. Third, obviously TO becomes meaningless whenL c

1

and Lc
2 are disjoint. The more Lc

1 and Lc
2 overlap (or are made to overlap, e.g. through

a syntactic merge), the better TO may focus on existing hierarchical structures and not
on optimistic estimations of adding a new lexical entry to Lc

2.

4.2 Comparing relationsP1;P2

At the lexical level a relation R1 is referred to by a lexical entry L1. At the conceptual
level it specifies a pair (C1; D1); C1; D1 2 C describing the conceptC1 that the relation
belongs to and its range restriction D1.

We determine the accuracy that two relations match, RO (relation overlap), based
on the geometric mean value of how similar their domain and range concepts are. The
geometric mean reflects the intuition that if either domain or range concepts utterly
fail to match, the matching accuracy converges against 0, whereas the arithmetic mean
value might still turn out a value of 0.5.

The similarity between two concepts (the concept match CM) may be computed by
considering their semantic cotopy. However, the measures derived from complete co-



topies underestimate the place of concepts in the taxonomy. For instance, the semantic
cotopy of the concept corresponding to “hotel” in L 2 (Figure 1) is identical to the se-
mantic cotopy of the one corresponding to “wellness hotel”. Hence, for the purpose of
similarity of concepts (rather than taxonomies), we define the upwards cotopy (UC) as
follows:

UC(Ci;H) := fCj 2 AjH(Ci; Cj)g:

Based on the definition of the upwards cotopy (UC) the concept match (CM) is then
defined in analogy to TO 0:

CM(C1;O1; C2;O2) :=
jF�1

1 (UC(C1;H1)) \ F
�1
2 (UC(C2;H2))j

jF�1
1 (UC(C1;H1)) [ F

�1
2 (UC(C2;H2))j

:

Then RO0 of relations R1; R2 may be defined by:

RO0(R1;O1; R2;O2) :=
p

CM(d(R1);O1; d(R2);O2) � CM(r(R1);O1; r(R2);O1):

In order to take reference by L 2 Lr
1; L 2 L

r
2 into account:

RO00(L;O1;O2) :=
1

jG1(fLg)j

X
R12G1(fLg) max

R22G2(fLg)

fRO0(R1;O1; R2;O2)g

Some lexical entries only refer to relations in P1:

RO000(L;O1;O2) :=
1

jG1(fLg)j

X
R12G1(fLg)

max
R22P2

fRO0(R1;O1; R2;O2)g

Combined we have for L 2 Lr
1:

RO(L;O1;O2) :=

(
RO00(L;O1;O2) if L 2 Lr2

RO000(L;O1;O2) if L 62 Lr2

The averaged relation overlap RO is then defined by:

RO(O1;O2) :=
1

jLr1j

X
L2Lr

1

RO(L;O1;O2):

Example. We take Figure 1 as an example setting for computing RO. We assume one
relation R1 in O1, referenced by “located at” and specifying the domain and range
corresponding to (“hotel”, “area”). In O2, the same lexical entry may refer to R2, with
domain and range corresponding to (“hotel”, “city”). Computing CM for the concepts
referred to by “hotel” inO1 andO2 results in 1

2 . The CM between the concepts referred



to by “area” in O1 and “city” in O2 also returns 1
2 . Thus, the RO0 for the lexical entry

“located at” boils down to
q

1
2 �

1
2 = 0:5 as input to RO.

The reader may note two major characteristics of RO. First, it depends on the agree-
ment of the lexica and the taxonomies of O1 and O2. Without reasonable agreement,
RO may not reach high values of similarity. Second, RO is also asymmetric reflecting
the coverage of relations of the first by the second ontology.

5 Empirical Evaluation

In this section we present a case study that has been carried out in a seminar on ontology
engineering at our institute. We have pursued two main objectives with our evaluation
study: (i) we wanted to determine the quality of our measures and evaluate them on
actual data, and, (ii), we wanted to investigate and get an intuition about how similar
ontologies about the same domain are that have been modeled by different persons.

5.1 Evaluation Study

The experiment was carried out with four subjects, viz. undergraduates in industrial en-
gineering. The modeling expertise of the subjects was limited. Before actual modeling,
they received 3 hours training in ontology engineering in general and 3 hours in using
our ontology engineering workbench. Furthermore, they were acquainted with the pur-
pose of the ontology, viz. as an ontology for information extraction and semantic search.
Our study required from each of them the building of ontologies in the tourism domain
using their background knowledge and using web pages from a WWW site about touris-
tic offers, e.g. hotels with various attractions or cultural events. Our objective was an
overall cross-comparison of ontologies, but we also wanted to test the appropriateness
of single measures, To avoid error chaining, we therefore performed the evaluation in
three phases (resulting in 4 � 3 = 12 ontologies). Furthermore, an expert ontology engi-
neer (subject 0) modeled a “gold standard” for the task (a 13th ontology).

Phase I: A small top level structure was given to the subjects.6 Based on this top level
and the available knowledge sources, the subjects had to model a complete tourism
domain ontology. To keep the ontologies within comparable ranges, the students were
required to model around 300 concepts and 80 relations.

Phase II: The second phase was geared to produce results for TO, while avoiding the
uncertainties of lexical disagreement. Therefore, the subjects were given 310 lexical en-
tries (for concepts) from the gold standard and the top level structure described before.
Then everyone of them had to, first, model the taxonomy for concepts referred to by the
310 lexical entries and, second, model about 80 relations.

Phase III: The last phase was defined to control RO in absence of “noise” from dif-
ferent taxonomies and lexica. There the taxonomy (from the gold standard) was given.
It consisted of 310 lexical entries, Lc, and a set of 310 corresponding concepts, A,
taxonomically related by H. The subjects had to model about 80 relations.

6 It contained four concepts referred to by “thing”, “material”, “intangible”, and “situation”.



5.2 Lexical Comparison Level

The phase I-ontologies described above are used for general cross-comparison, includ-
ing the lexical level. The pairwise string matching (SM, cf. Section 3) of the five lexica
referring to concepts and relations, respectively, returned the results depicted in Table 1.

Results: The results for computing SM(Lc
1;L

c
2) of matching lexical entries referring to

concepts vary between 0.38 and 0.65 with an average of 0.45. Comparing lexical entries
referring to relations SM(Ls

1;L
s
2) results in values between 0.16 and 0.53 with an av-

erage of 0.36. Several typical, though not necessarily good, pairs for which high string
match values were computed are shown in Table 2. RelHit(Lc

1;L
c
2) ranged between 20

to 25%, i.e. this percentage of lexical entries referring to concepts matched exactly. For
lexical entries referring to relations the results were much worse, viz. between 10 to
15%.

Subject

inj 0 1 2 3 4
0 - 0.51,0.35 0.53,0.21 0.46,0.39 0.5,0.29
1 0.43,0.52 - 0.65,0.43 0.43,0.53 0.39,0.41
2 0.42,0.24 0.54,0.37 - 0.36,0.24 0.4,0.2
3 0.38,0.47 0.43,0.45 0.38,0.28 - 0.38,0.36
4 0.46,0.38 0.41,0.5 0.48,0.16 0.43,0.39 -

Table 1. SM(Lc
i ;L

c
j), SM(Ls

i ;L
s
j) for phase I-ontologies.

Interpretation: Analysing the figures we find that human subjects have a considerable
higher agreement on lexical entries referring to concepts than on ones referring to rela-
tions. Investigating the auxiliary measures we have found that SM values above 0.75 in
general retrieve meaningful matches — in spite of few pitfalls (cf. Table 2).

L1 L2 SM(L1; L2)

Sehenswuerdigkeit Sehenswürdigkeit 0.875
[seesight] [seesight]

Verkehrsmittel Luftverkehrsmittel 0.71
[vehicle] [air vehicle]

Zelt Zeit 0.75
[tent] [time]

Anzahl Betten hat Anzahl Betten 0.77
[number beds] [has number beds]

Table 2. Typical string matches



5.3 Conceptual Comparison Level

At the conceptual level we may compare semantic structures of ontologiesO 1;O2, that
vary for concepts A1;A2. We use the ontologies of phase I, II, and III for evaluating
our measures introduced in Section 4.

Results: Table 3 presents the results we have obtained for the phase I-ontologies using
the similarity measures taxonomy overlap (TO) and relation overlap (RO). The reader
may note that these ontologies have been built without any previous assumptions about
the lexica L1 and L2, thus their similarity values are well below those of later phases
where the lexica for concepts were predefined.

Subject

inj 0 1 2 3 4
0 - 0.33,0.35 0.31,0.25 0.32,0.5 0.29,0.28
1 0.35,0.15 - 0.4,0.41 0.34,0.03 0.28,0.15
2 0.28,0.12 0.36,0.25 - 0.25,0.04 0.24,0.15
3 0.36,0.4 0.31,0.32 0.24,0.04 - 0.26,0.03
4 0.38,0.29 0.31,0.21 0.32,0.2 0.32,0.26 -

Table 3. TO(Oi;Oj), RO(Oi;Oj) for phase I-ontologies.

Table 4 depicts the similarity measures computed for phase II-ontologies. Values for
TO range between 0.47 and 0.87, the average TO over all 20 cross-comparisons results
in 0.56. RO yields values from 0.34 to 0.82 with an average of 0.47.

Subject

inj 0 1 2 3 4
0 - 0.57,0.5 0.54,0.47 0.54,0.48 0.59,0.39
1 0.57,0.44 - 0.86,0.78 0.48,0.45 0.55,0.35
2 0.54,0.46 0.87,0.82 - 0.46,0.46 0.58,0.35
3 0.54,0.44 0.48,0.5 0.46,0.47 - 0.47,0.34
4 0.58,0.4 0.55,0.45 0.57,0.45 0.47,0.35 -

Table 4. TO(Oi;Oj), RO(Oi;Oj) for phase II-ontologies.

Interpretation: The figures indicate that subjects tend to agree or disagree on tax-
onomies irrespective of the amount of material being predefined. In fact, correlation
between TO values of phase I- and phase II- ontologies support this indication, because
correlation is 0:58 — distinctly positive — for the ontologies with and without prede-
fined lexica. Furthermore, we may conjecture that comparison between TO values (in
order to select the best) remains meaningful even with a restricted overlap of lexica.



Results: Table 5 depicts the similarity measures computed for phase III-ontologies,
where only RO has been computed, because the taxonomy was predefined. RO here
ranges between 0:23 and 0:71, the average RO over all 20 cross-comparisons achieving
0:5.

Subject

inj 0 1 2 3 4
0 - 0.61 0.38 0.51 0.54
1 0.69 - 0.56 0.57 0.55
2 0.4 0.49 - 0.35 0.23
3 0.67 0.71 0.5 - 0.57
4 0.45 0.44 0.3 0.41 -

Table 5. RO(Oi;Oj) for phase III-ontologies.

Interpretation: The correlation of RO values between phases I and II computes to 0:34,
between phases I and III to 0:27, and between phases II and III to 0:16. In general,
higher RO values are reached without a predefined taxonomy — this reflects the obser-
vation that subjects found it easy to use a predefined lexicon, but extremely difficult to
continue modeling given a predefined taxonomy.

Overall, we may conjecture that the engineers’ use of their lexicon correlates rather
strongly with their conceptual model and vice versa: The similarity measures for subject
3 ontologies with subject 4 ontologies result in very low values at the lexical and at
the conceptual level. In contrast, subject 1 ontologies reach high similarity values with
subject 2 ontologies at all levels.

6 Related Work

Similarity measures for ontological structures have been widely researched, e.g. in
cognitive science, databases [9], software engineering[11], and AI (e.g., [8, 1, 4, 3]).
Though this research covers many wide areas and application possibilities, most of it
has restricted its attention to the determination of similarity of lexicon, concepts, and
relations within one ontology.

The nearest to our comparison between two ontologies come [2, 3] and [13]. [2]
introduces several similarity measures in order to locate a new complex concept into
an existing ontology by similarity rather than by logic subsumption. Bisson restricts
the attention to the conceptual comparison level. In contrast to our work the new con-
cept is described in terms of the existing ontology. Furthermore, he does not distinguish
relations into taxonomic relations and other ones, thus ignoring the semantics of in-
heritance. [13] compute description compatibility in order to answer queries that are
formulated with a conceptual structure that is different from the one of the information
system. In contrast to our approach their measures depend to a very large extent on
a shared ontology that mediates between locally extended ontologies. Their algorithm



also seems less suited to evaluate similarities of sets of lexical entries, taxonomies, and
other relations.

Dieng & Hug [3] compare concept lattices in order to find out about the common
location of two concepts in a merged ontology using several measures taking also ad-
vantage of the lattice. Again, however, their concerns are different from ours as they do
not determine similarities of ontologies.

Research in the area of schema integration has been carried out since the beginning
of the 1980s. Schema comparison analyzes and compares schema in order to determine
correspondences and comes therefore near to our approach. However, their purpose is
the alignment of pairs of tables or concepts [9] and often restricted to string and data
type similarities.

Finally, so-called pathfinder networks [10] began in 1981 as an attempt to develop a
network model for proximity data. They use use multidimensional scaling techniques.
This statistical techniques transforms the concept network relationships into inter-point
distances in a space of minimal dimensionality. In this space different similarity opera-
tions are performed. In contrast to our work, however, pathfinder networks do not focus
on “real-world ontologies” including a lexical layer.

7 Conclusion

We have considered ontologies as two-layered systems, consisting of a lexical and a
conceptual layer. Based on this core ontology model a methodological inventory to
measure similarity between ontologies with each other based on the notions of lex-
icon L, reference functions F ;G and semantic cotopy (SC;UC) has been described.
Then, we have performed a three-phase empirical evaluation study to see how our mea-
sures perform in isolation and in combination. With our investigation we have created
a methodological baseline and collected some empirical experiences.

Our measures may be applied in different application fields. First, we are currently
working on an “ontology search engine” that will use the proposed measures as a basis
retrieving ontologies based a user-defined core ontology that matches against available
ontologies. Classical evaluation measures like precision and recall from the information
retrieval community will serve as input for a quality-based evaluation of the proposed
measures. Second, in [7] we describe how the measures presented in this paper may be
extended for the instance level. Based on these instance-based similarity measures we
provide means for computing a hierarchical clustering of ontology-based instances. Pre-
liminary evaluation studies of applying the instance-based similarity measures within
a clustering algorithm have shown promising results. Third, the measures proposed
within this paper have shown to be very useful for supporting the discovery of mappings
between two ontologies (see [6]). Fourth, such applications scenarios will become im-
portant for integrating existing ontologies into an ontology engineering process or for
facilitating collaborative ontology engineering (cf. [12]).
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