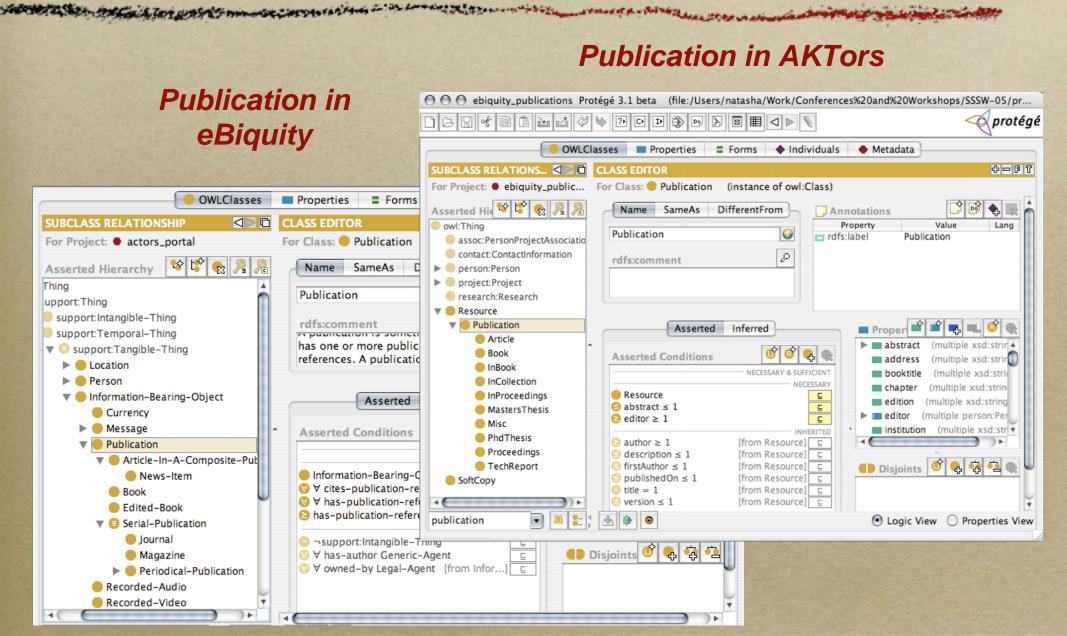
Ontology Mapping and Alignment

Natasha Noy Stanford University

Outline

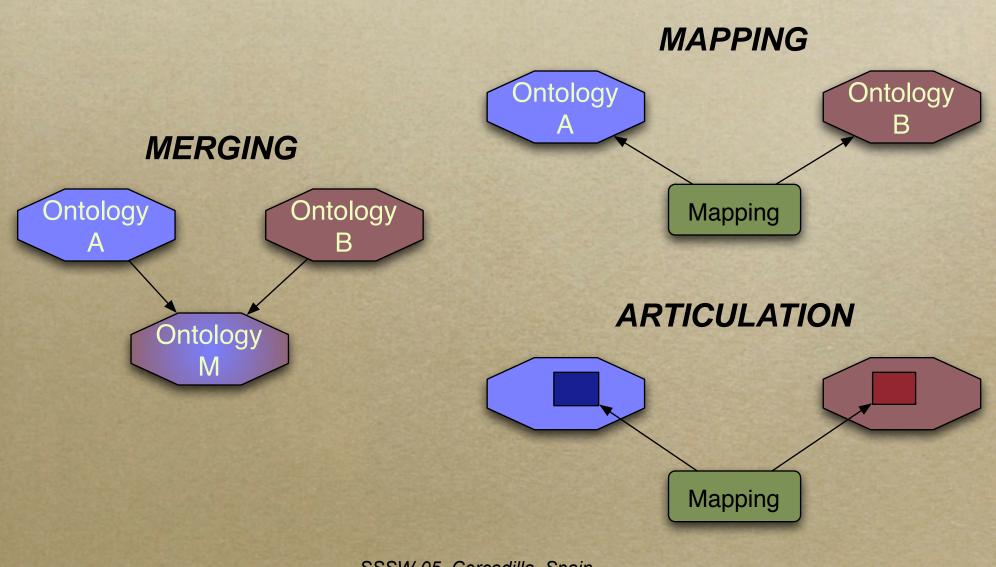
Semantic integration
Types of ontology mismatches
Mapping discovery
Using mappings
Challenges/Issues


Lots of Overlapping Ontologies on the Semantic Web

000	Swoogle
< ► 🟠 ୯	🛛 🐺 http://swoogle.umbc.edu/modules.php?start=18 ^ Q= swoogle 🛛 🤇
	Swoole search and metadata for the semantic web
Document Se	arch: publication Swoogle Search ?
Documents	Terms Classes Properties
1 - 20 of total 185	5 results for publication in 0.1351 seconds
Suffix: Enc Classes define Triples: 1480 Cached: <u>Origin</u> Swoogle view:	s.org/ontology/portal coding: RX Last modified: 2004-12-10 11:15:11 d: 152 Properties defined: 126 Instances defined: 62 Namespaces used: 9 Ontology Ratio: 0.681373 hal File N-Triples Document Properties Term Properties reb.stanford.edu/2004/07/iw.owl
Suffix: owl En Classes define Triples: 589 N Cached: <u>Origi</u> r	acoding: RX Last modified: 2004-11-29 16:50:18 d: 30 Properties defined: 62 Instances defined: 0 lamespaces used: 6 Ontology Ratio: 0.5 hal File N-Triples Document Properties Term Properties
Suffix: owl En Classes define Triples: 207 N Cached: <u>Origi</u> r	nbc.edu/v2.1/ontology/publication.owl icoding: RX Last modified: d: 13 Properties defined: 30 Instances defined: 0 lamespaces used: 8 Ontology Ratio: 0.781818 nal File N-Triples Document Properties Term Properties
Suffix: rdf End Classes define Triples: 266 N Cached: <u>Origi</u> n	vap.org/2003/ont/owlweb.rdf coding: RDF/XML Last modified: 2004-07-14 14:09:16 d: 21 Properties defined: 71 Instances defined: 18 Jamespaces used: 7 Ontology Ratio: 0.821429 al File N-Triples Document Properties Term Properties
Suffix: owl En Classes define Triples: 128 N Cached: <u>Origi</u> n	nbc.edu/v2.1/ontology/person.owl icoding: RX Last modified: d: 21 Properties defined: 10 Instances defined: 0 lamespaces used: 9 Ontology Ratio: 0.837838 hal File N-Triples Document Properties Term Properties

 Search Swoogle for "publication"

- 185 matches in the repository
- Different definitions, viewpoints, notions


Example Definitions of School

"Basically, we're all trying to say the same thing."

Creating Correspondences Between Ontologies

Semantic Integration Tasks

Not a state of the state

Queries across multiple resources
Data transformation
Reasoning with mappings

Outline

 Semantic Integration components and tasks

Types of ontology mismatches

Mapping discovery

• Using mappings

Challenges/Issues

Reasons for Mismatches

 Ontology is not a reality it is a subjective representation of it

Different designers have different views

 Different tasks and requirements for applications

• Different conventions, etc.

Types of Mismatches

Language-level mismatches

- Difference in expressiveness or semantics of ontology language
- Ontology-level mismatches
 - Difference in the structure of semantics of the ontology

Language-level Mismatches

- Syntax
- Expressiveness
 - e.g., presence of disjoints, negations, expressions, unions, intersections, metaclasses, etc. in the language
- Semantics of primitives
 - e.g., union vs intersection semantics for multiple domain and range declarations

Ontology-level Mismatches

- The same terms describing different concepts
- Different terms describing the same concept
- Different modeling paradigms
 - e.g., intervals or points to describe temporal aspects
- Different modeling conventions
- Different levels of granularity
- Different coverage

0

• Different points of view

Ontology-level Mismatches: Examples

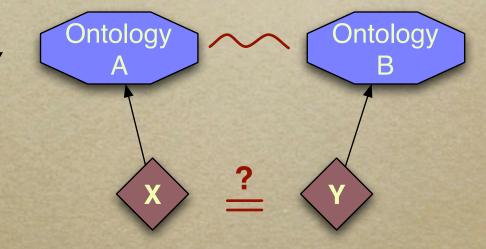
Compare ontologies

- http://www.aktors.org/ontology/: the ontology used in CS AKTive Portal testbed
- http://ebiquity.umbc.edu/ontology/: the ontology developed by the UMBC eBiquity group

Some of the Differences

The alter and the second and the second of t

Different names for the same concept	PhD-Student	PhDStudent
Same term for different concepts	Project: Only current projects	Project: Past projects and proposals
Scope	Includes periodicals, composite publications	Includes alumni, guest speakers, etc
Different focus in definition	<i>Publication</i> : Restrictions on citations, refs.	Publication: Restrictions on abstract, editor
Constructs used	Includes defined classes	Only primitive classes
Different modeling conventins	Journal is a class	journal is a property
Granularity	Professor-In- Academia	Adjunct, affiliated, associate, principal, etc.
Different modeling conventions and level of detail	address property broken up into several properties SSSW-05, Cercedilla, Spain	address property is a single string property


Outline

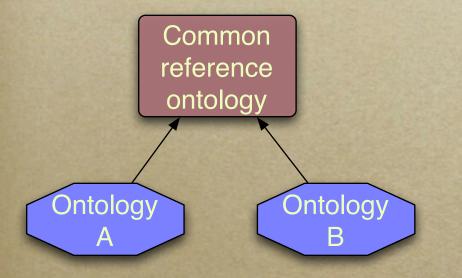
 Semantic Integration components and tasks

- Types of ontology mismatches
- Mapping discovery
- Using mappings
- Challenges/Issues

Categories of Mappings

 Ontology-to-ontology mapping
 Data matching

Mapping Discovery


as consistent the stranger by by the stranger of the shirt by

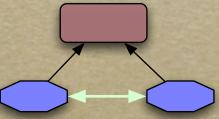
Information SourcesMethods

Mapping Discovery: Information Sources

- A common reference ontology
- Lexical information
- Ontology structure
- User input
- External resources
- Prior matches

Using a Common Reference Ontology

• "Upper" ontologies designed to support information integration


- designed in principled way
- provide common reference terminology
- SUMO, DOLCE
- Domain-specific interlingua

PSL

Solve the problem before it arises

Modes of mapping

- Ontology-to-interlingua
- Ontology-to-ontology, using the interlingua information

Using reference ontologies: Problems

- People are reluctant to reuse
- There have been some successes (in domain-specific settings) and failures
- Usual problems with having standards

Using Lexical Information

• String normalization

- upper and lower case
- blanks and delimiters
- diacritics
- stop-words
- String distance
 - Hamming distance
 - edit distance
- Soundex
- Thesaurus

Using Lexical Information

Ed Hovy (USC/ISI)

- provides a set of heuristics for aligning domain ontologies to a central ontology
- uses natural-language analysis of concept names and definitions
 - splitting composite names
 - finding common substrings
 - finding the ratio of common words in definitions
- uses hierarchy information

Using Ontology Structure

To You Water of the state

JF-Map (Kalfoglou, Schorlemmer)

- Using metrics to compare OWL concepts (Euzenat and Volchev)
- QOM (Ehrig and Staab)
- Similarity Flooding (Melnik, Garcia-Molina, Rahm)
- Schimaera (Stanford KSL)
- Prompt and AnchorPrompt (Stanford SMI)
 - a number of others...

Using External Sources

They at man of the states

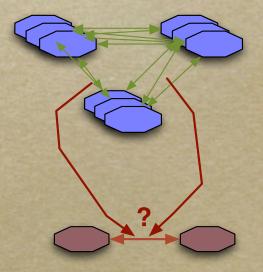
 Grounding sources in standard terminologies

- WordNet
- UMLS
- S-Match (U. Trento)

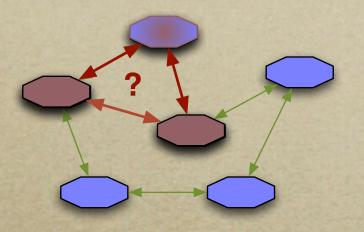
User Input

 Providing information on initial alignment

Providing feedback on alignments


 Invoking or composing alignment methods

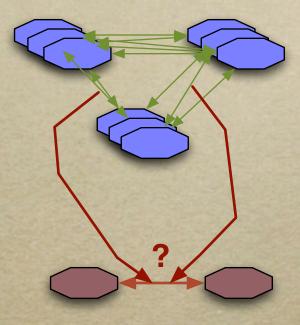
Prompt, Chimaera, ONION


Using Prior Matches

Composing existing matches
 Semantic gossiping
 Using a corpus of matches
 Alon Halevy (UW)

Mapping Composition

Issues


- Quality of initial mappings
- Composition without loss of information
- Choosing which composition route to follow
- Semantic gossiping, Piazza (UW)

Using Corpus of Matches

Marrie Marrie States at the states

• Contents of the corpus

- Domain models
- Instance data
- Validated mappings
- Queries
- Meta-data
- Statistics on the corpus
 - Term usage
 - Co-occurrence of schema and ontology
- O.Etzioni, A. Halevy, et.al. (UW)

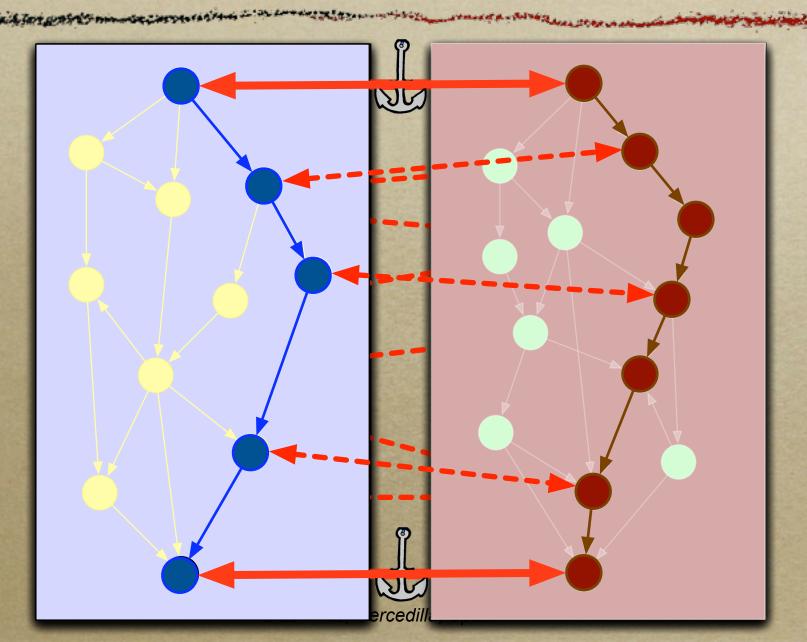
Mapping Discovery: Information Sources

- A common reference ontology
- Lexical information
- Ontology structure
- User input
- External resources
- Prior matches

Mapping Methods

- Heuristic and Rule-based methods
- Graph analysis
- Machine-learning
- Probabilistic approaches
- Reasoning, theorem proving

Rule-Based and Graph-Analysis Methods

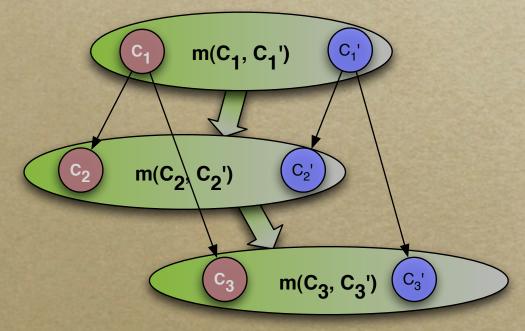

Rule-based methods

- Most structure-analysis and lexical analysis methods
- Prompt, Chimaera, QOM, IF-Map...

Graph-based Methods

 Treat ontologies as graphs and compare the corresponding subgraphs
 Similarity Flooding, Anchor-Prompt

AnchorPrompt: Analyzing Graph Structure


Machine Learning Approaches

Statistics of data content
 Using multiple learners
 Using instance and values information
 GLUE, LSD, SemInt

Probabilistic Approaches

 Combining results produced by heuristic-based mappings

Somen (Mitra & Noy)

• More in data matching

Reasoning and Theorem Proving

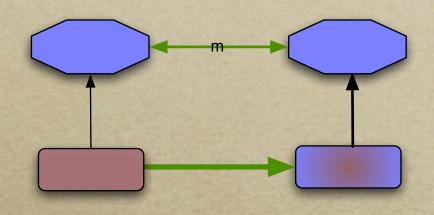
• We are mostly an AI crowd, after all...

S-Match

- Start with a combination of matchers using lexical information and external resources
- Use a SAT solver to find equivalence, generalization, and specialization mappings

Outline

 Semantic Integration components and tasks


- Types of ontology mismatches
- Mapping discovery
- Using mappings

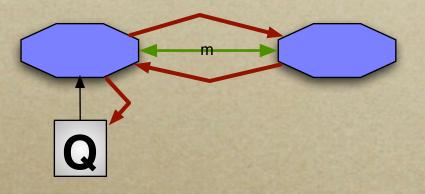
Challenges/Issues

Using Mappings

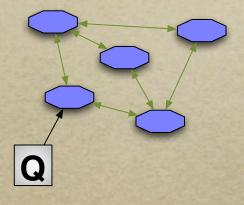
- Data transformation
- Query answering
- Reasoning with mappings
 - mapping composition (covered earlier)
- Generation of ontology extensions

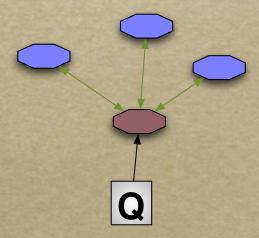
Data Transformation

Mapping Interpreter (Stanford SMI), OntoMerge

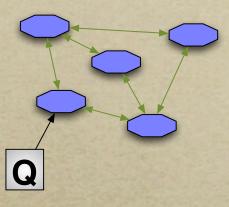

Data Transformation (II)

Mapping interpreter (Stanford SMI)

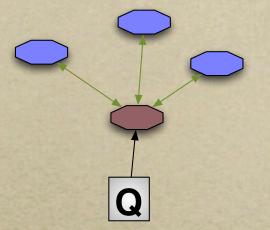

- Uses an instantiated ontology of mappings
 - mapping structure
 - Python rules
- Se OntoMerge
 - Treats source ontologies with data and mapping axioms as a single ontology
 - Uses a theorem prover to create new data


Query Answering

Salta.

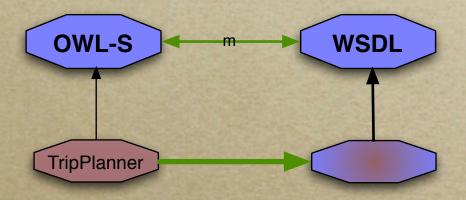


- Two settings
 - one-to-one mappings
 - global ontology


Query Answering (II)

- Peer-to-peer architecture for query answering
- Query refomulation using mappings between adjacent peers

Query Answering


GIS (Calvanese, et. al.)

- Global ontology mapped to local ontologies
- Mappings defined as views
- Using a Description Logic Reasoner to answer queries

Generation of Ontology Extensions

Car & love way

Outline

 Semantic Integration components and tasks

- Types of ontology mismatches
- Mapping
- Using mappings
- Challenges/Issues

Challenges/Issues

Design space of mapping approaches

- Can we create a "toolbox" for designing mapping approaches that fit a given problem?
- We have identified some components, but how can we bring them together?
- Have we reached a "ceiling" in mapping discovery?
 - Will it be "lots of work for little gain" from now on?
 - Are there serious untapped resources?

Challenges/Issues

- Are imperfect and inconsistent mappings useful?
- How do we maintain mappings when ontologies evolve?
- How do we evaluate and compare different tools?
 - EON experiment
 - NIST experiment