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Abstract 
Large-scale ontologies are becoming an essential 
component of many applications including 
standard search (such as Yahoo and Lycos), e-
commerce (such as Amazon and eBay), 
configuration (such as Dell and PC-Order), and 
government intelligence (such as DARPA’s High 
Performance Knowledge Base (HPKB) 
program).  The ontologies are becoming so large 
that it is not uncommon for distributed teams of 
people with broad ranges of training to be in 
charge of the ontology development, design, and 
maintenance.  Standard ontologies (such as 
UNSPSC) are emerging as well which need to be 
integrated into large application ontologies, 
sometimes by people who do not have much 
training in knowledge representation.  This 
process has generated needs for tools that 
support broad ranges of users in (1) merging of 
ontological terms from varied sources, (2) 
diagnosis of coverage and correctness of 
ontologies, and (3) maintaining ontologies over 
time.  In this paper, we present a new merging 
and diagnostic ontology environment called 
Chimaera, which was developed to address these 
issues in the context of HPKB.  We also report 
on some initial tests of its effectiveness in 
merging tasks.                             

1 INTRODUCTION 

Ontologies are finding broader demand and acceptance in 
a wide array of applications.  It is now commonplace to 
see major web sites include taxonomies of topics 
including thousands of terms organized into five-level or 
deeper organizations as a browsing and navigation aid.  In 
addition to broader use of ontologies, we also observe 
larger and more diverse staff creating and maintaining the 

ontologies.  Companies are now hiring “chief ontologists” 
along with “cybrarian” staffs for designing, developing, 
and maintaining these ontologies.  Many times the team 
leader may have knowledge representation or library 
science training, however the staff may not have much or 
any formal training in knowledge representation. The 
broader demand for ontologies along with greater 
diversity of the ontology designers is creating demand for 
ontology tools. 

The average ontology on the web is also changing.  Early 
ontologies, many of which were used for simple browsing 
and navigation aids such as those in Yahoo and Lycos, 
were taxonomies of class names.  The more sophisticated 
ontologies were large and multi-parented.  More recently, 
mainstream web ontologies have been gaining more 
structure.  Arguably driven by e-commerce demands, 
many class terms now also have properties associated 
with them.  Early commerce applications, such as Virtual 
Vineyards, included a handful of relations, and now many 
of the consumer electronics shopping sites are including 
tens or hundreds of slot names, sometimes associated with 
value-type constraints as well.  We now see more 
complicated ontologies even in applications that are only 
using ontologies to support smart search applications.  
Additionally, ontologies are being used more to support 
reasoning tasks in areas such as configuration and 
intelligence tasks.  A decade ago, there were a modest 
number of ontology-supported configurators such as 
PROSE/QUESTAR [McGuinness and Wright, 1998; 
Wright et. al., 1993], however now, web-based 
configurators and configurator companies such as 
Trilogy, Concentra, Calico, etc. are common.  There are 
even spin offs of configurator companies handling special 
areas of configuration such as PC-Order for PC 
configuration.  Configuration ontologies not only have 
class, slot, and value-type information, but they typically 
have cardinality and disjointness information that 
supports reasoning with contradictions.  Thus, we claim 
that ontologies are becoming more common, the designers 
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come from more diverse backgrounds, and ontologies are 
becoming larger and more complicated in their 
representational and reasoning needs. 

Simultaneously, there appears to be a stronger emphasis 
on generating very large and standardized ontologies.  
Areas such as medicine began this task many years ago 
with SNOMED [Spackman, et. al., 1997] and UMLS 
[McCray and Nelson, 1995].  Recently broader and 
shallower efforts have emerged like the joint United 
Nations/Dunn and Bradstreet effort to create an open 
coding system for classifying goods and services 
[UNSPSC, 1999].  Another new distributed broad 
ontology is the DMOZ Open Directory effort [DMOZ, 
1999] with over 200,000 categories and over 21,000 
registered knowledge editors. The goal of standard 
ontologies is to provide a highly reusable, extensible, and 
long-lived structure.  Large ontologies in concert with the 
challenges of multiple ontologies, diverse staffing, and 
complicated representations strengthens the need for 
tools. 

In this paper, we address two main areas.  The first is 
merging different ontologies that may have been written 
by different authors for different purposes, with different 
assumptions, and using different vocabularies.  The 
second is in testing and diagnosing individual or multiple 
ontologies.  In the rest of this paper, we will give two 
project descriptions that served as motivation for our 
work on merging and diagnostic tools.  We will then 
describe an ontology environment tool that is aimed at 
supporting merging and testing ontologies.  We will 
describe the tool’s used in our work on DARPA’s HPKB 
program [Cohen, et. al., 1998].  We will also describe an 
evaluation of the merging capabilities of the tool.  Finally, 
we will present the diagnostic capabilities and discuss 
future plans. 

2 TWO MOTIVATING PROBLEMS 

In the last year, some of the authors were involved in each 
of two major ontology generation and maintenance 
efforts.  We gained insight from the tasks that was used to 
help shape our resulting ontology tool efforts.  
Subsequently, we have used [McGuinness, 1999] as well 
as licensed the tools on other academic and commercial 
ontology projects. We will describe the tasks briefly and 
present an abstraction of the problem characteristics and 
needs with relation to ontology tools. 

2.1 MERGING THE HIGH PERFORMANCE 
KNOWLEDGE BASE ONTOLOGIES 

The first problem was in the HPKB program.  This 
program aimed to generate large knowledge bases quickly 
that would support intelligence experts in making 

strategic decisions.  The KBs had a reasonably broad 
subject area including terrorist groups, general world 
knowledge (such as that contained in the CIA World Fact 
Book [Frank, et. al., 1998]), national interests, events (and 
their results) in the Middle East, etc.  The types of 
questions that an analyst might ask of a KB may be 
simple, including straight “look up” questions like finding 
the leader of an organization or the population of a 
country.  Other questions may be quite complex, 
including asking about the possible reaction of a terrorist 
group to a particular action taken by a country.  
Knowledge bases in this program tended to have a high 
degree of structure, including many slots associated with 
classes, value-type constraints on most slots, values on 
many slots, minimum cardinality constraints on slots, 
disjoint class information, etc.  The knowledge bases were 
typically designed by people trained in knowledge 
representation and usually populated by those literate but 
not expert in artificial intelligence.   

In the first year of the program, many individual 
knowledge bases were created in order to answer 
particular “challenge problem” questions.  These 
questions were designed to be typical of those that a 
government analyst would ask.  Two competitive research 
and integration teams were evaluated on the quality of the 
answers that their knowledge bases and associated 
reasoners returned.  Many of the challenge problem 
questions in the first year were answered in particular 
contexts, i.e., with only a subset of the knowledge bases 
loaded.  In the second year of the program, some teams, 
including ours, needed to be prepared to answer questions 
in any portion of the domain.  We needed to load all of 
the knowledge bases simultaneously and potentially 
reason across all of them. Thus, we needed to load a 
significant number of KBs (approximately 70) that were 
not originally intended to be loaded together and were 
written by many different authors.  Our initial loading and 
diagnosis step was largely manual with a number of ad 
hoc scripts.  This was a result of time pressure in concert 
with the expectation that this was a one-time task.   Some 
of the findings from the merging and diagnosis task were 
as follows: 

• Large ontology development projects may require 
extensive systematic support for pervasive tests and 
changes.  Our final ontology contained approximately 
100,000 statements (and the version of the ontology 
after forward chaining rules had been run contained 
almost a million statements). Even though the 
individual ontologies all shared a common “upper 
ontology”, there was still extensive renaming that 
needed to be done to allow all the ontologies to be 
loaded simultaneously and to be connected together 
properly.  There were also pervasive tests to be run 
such as checks for comment and source field 
existence as well as argument order on functions.  



  

We discovered, for example, that different authors 
were using relational arguments in differing orders 
and thus type constraints were being violated across 
ontologies.  Additionally, if a relation’s domain and 
range constraints were used to conclude additional 
class membership assertions for arguments of the 
relation, then those arguments could end up with 
multiple class memberships that were incorrect.  For 
example, if relation Leader has a domain of Person 
and a range of Country, one author states “(Leader 
Clinton US)”, and another states “(Leader US 
Clinton)”, then Clinton could be inferred to be a 
person AND a country.1 

• Repairing and merging large ontologies require a tool 
that focuses the attention of the editor in particular 
portions of the ontology that are semantically 
interconnected and in need of repair or further 
merging.  There were many places where taxonomic 
relationships were missing when multiple ontologies 
were loaded together.  For example, a class denoting 
nuclear weapons was related to the “weapon” class 
but not to the “weapon of mass destruction” class, 
nor to the disjoint partition of classes under 
“weapon”.  A tool that showed (just) the relevant 
portions of the taxonomies and facilitated taxonomy 
and partition modifications later turned out to be 
extremely valuable for editing purposes. 

• Ontologies may require small, yet pervasive changes 
in order to allow them to be reused for slightly 
different purposes.  In our HPKB task, we found a 
number of slots that needed to be added to classes in 
order to make the classes useful for additional tasks.   
We found many slots in the same ontology that 
appeared to be identical yet were unrelated.  (We 
hypothesize that one major cause of this problem was 
that a term inherited a slot and value-type constraint 
from a parent class, but the author did not know to 
look for the slot under its given name, thus the author 
added a slot to capture the same notion under another 
name.)  Also, we found a large number of slots that 
were inverses of other slots but were not related by 
an explicit slot inverse statement.  Without the 
inverse information, the inverse slots were not being 
populated and thus were not useful for question 
answering even though the information appeared to 
be in the knowledge base.  Our goal was to support 
users in finding the connections that needed to be 
made to make ontologies more useful. 

• Ontologies may benefit from partition definitions and 
extensions.  We found many ontologies that 

                                                           
1 This inference is consistent if there is no information 
that states that country and person are disjoint.   

contained some disjoint partition information (e.g., 
“people” are disjoint from “bodies of water”), but in 
many cases the partition information was under 
specified.  In the previous example with incorrect 
argument order, if we had information stating that 
people were disjoint from countries, then the 
inconsistency could have been detected earlier, most 
likely at knowledge entry time. 

2.2 CREATING CLASS TAXONOMIES FROM 
EXISTING WEB ONTOLOGIES 

In a noticeably different effort, we used a Web crawler to 
mine a number of web taxonomies, including Yahoo! 
Shopping, Lycos, Topica, Amazon, and UN/SPSC, in 
order to mine their taxonomy information and to build 
corresponding CLASSIC [Borgida et. al., 1989; 
Brachman, et. al., 1999] and OKBC (Open Knowledge 
Base Connectivity) [Chaudhri, et. al, 1998] ontologies.  
Our goals for this work were (1) to “generate” a number 
of naturally occurring taxonomies for testing that had 
some commercial purpose, and (2) to build a larger 
cohesive ontology from the “best” portions of other 
ontologies. (“Best” was initially determined by a 
marketing organization as portions of ontologies that had 
more usage and visibility.) 

Our ontology mining, merging, and diagnosis effort had 
little emphasis on reasoning, but instead was centered on 
choosing consistent class names and generating a 
reasonable and extensible structure that could be used for 
all of the ontologies.  The expected use of the output 
ontology was for web site organization, browsing support, 
and search (in a manner similar to that used in FindUR 
[McGuinness, 1998]).  

We found that extensive renaming was required in these 
ontologies mined from the Web.  For example, we found 
the unique names assumption was systematically violated 
within individual ontologies so that class names needed 
their own contexts in order to be useful.  Thus, systematic 
treatment was required to put individual ontology 
branches into their own name space and to separate terms 
like steamers under clothing appliances from steamers 
under kitchen appliances.  We also found extensive need 
for ontological reorganization.  Thus, we still required 
focusing an editor’s attention on pieces of the ontology.  
Additionally, we found need for more diagnostic checks 
with respect to ontological organization.  For example, 
there were multiple occurrences of cycles within class 
graphs.  So, we introduced checks for cycles into our 
diagnostics.  

 There was also no partition information in these 
ontologies, but there were multiple places where it 
appeared beneficial to add it.  Our initial automatically 
generated ontologies were obtained from web sites that 



  

lacked explicit slot information, thus all of our slot 
information was systematically generated (and thus less 
likely to need the same kinds of modifications as those we 
found from human-generated slot information).  
Subsequent inspections of other web ontologies 
containing slot information, however, revealed many of 
the same issues we observed in our HPKB analysis work. 

These two experiences, along with a few decades of staff 
experience with building knowledge representation and 
reasoning systems and applications, led us to design and 
implement an ontology merging and diagnosis tool that 
we will describe next. 

2.3 Needs Analysis 

The two previous efforts motivate the following needs in 
a merging and diagnostic tool: 

• Name searching support (across multiple ontologies) 

• Support for changing names in a systematic manner 

• Support for merging multiple terms into a single term 

• Focus of attention support for term merging based on 
term names 

• Focus of attention support for term merging based on 
the semantics of term descriptions 

• Browsing support for class and slot taxonomies 

• Support for modifying subsumption relationships in 
class and slot taxonomies 

• Partition modification support 

• Support for recognizing logical inconsistencies 
introduced by merges and edits. 

• Diagnostic support for verifying, validating, and 
critiquing ontologies 

3 AN ONTOLOGY MERGING AND 
DIAGNOSIS TOOL 

Chimaera is a new ontology merging and diagnosis tool 
developed by the Stanford University Knowledge 
Systems Laboratory (KSL).  Its initial design goal was to 
provide substantial assistance with the task of merging 
KBs produced by multiple authors in multiple settings.  It 
later took on another goal of supporting testing and 
diagnosing ontologies as well.  Finally, inherent in the 
goals of supporting merging and diagnosis are 
requirements for ontology browsing and editing.  We will 
define the tasks of ontology merging and diagnosis as 
used in our work, and then we will introduce the tool. 

We consider the task of merging two ontologies to be one 
of combining two or more ontologies that may use 
different vocabularies and may have overlapping content.  
The major two tasks are to (1) to coalesce two 
semantically identical terms from different ontologies so 
that they are referred to by the same name in the resulting 
ontology, and (2) to identify terms that should be related 
by subsumption, disjointness, or instance relationships 
and provide support for introducing those relationships.  
There are many auxiliary tasks inherent in these tasks, 
such as identifying the locations for editing, performing 
the edits, identifying when two terms could be identical if 
they had small modifications such as a further 
specialization on a value-type constraint, etc.  We will 
focus on the two main tasks for our discussion. 

The general task of merging can be arbitrarily difficult, 
requiring extensive (human) author negotiation.  
However, we claim that merging tools can significantly 
reduce both labor costs and error rates.  We support that 
claim with the results from some initial tool evaluation 
tests. 

We addressed the task of diagnosing single or multiple 
ontologies by producing a test suite that evaluates (partial) 
correctness and completeness of the ontologies.  The 
major tasks involve finding and reporting provable 
inconsistencies, possible inconsistencies, and areas of 
incomplete coverage.  As with merging, diagnosis can be 
arbitrarily complex, requiring extensive human analysis to 
identify all problems and present them in an order 
appropriate to the problem importance.  Tools built to 
provide the first level of analysis, however, can greatly 
reduce human labor cost as well as improve the 
consistency of the analysis.  In our diagnostic test suite, 
we do not attempt to find all problems; we just choose a 
subset that is computationally viable and motivated by 
usefulness of the reports. 

3.1 CHIMAERA 

Chimæra is a browser-based editing, merging, and 
diagnosis tool.  Its design and implementation is based on 
our experience developing other UIs for knowledge 
applications such as the Ontolingua ontology 
development environment [Farquhar, et al, 1997], the 
Stanford CML editor [Iwasaki, et al, 1997], the Stanford 
JAVA Ontology Tool (JOT), the Intraspect knowledge 
server [Intraspect 1999], a few web interfaces for 
CLASSIC [McGuinness, et. al., 1995; Welty, 1996], and a 
collaborative environment for building ontologies for 
FindUR [McGuinness, 1998].  Chimaera has a web-based 
UI that is optimized for Netscape and MSIE browsers.  It 
is written in HTML, augmented with Javascript where 
necessary to support niceties like spring-loaded menus 
and drag and drop editing.  



  

 Our goal was to make it a standards-based generic 
editing, merging, and diagnosis tool.  When Ontolingua’s 
editor was first developed, there was no standard API for 
knowledge-based systems.  Since then, the OKBC API 
has been developed by KSL and SRI International’s AI 
Lab.  OKBC allows us to develop tools that can merge 

KBs in any OKBC-compliant representation system either 
on the same machine or over the network.  Chimæra was 
designed from the ground up to be a pure OKBC 
application.  Our typical editing environment is 
Ontolingua, but this is not a requirement.  For example,

 
Figure 1: A view of Chimæra's user interface 

one could edit in Ontosaurus {Swartout, et. al, 1996] or 
OntoWeb [Domingue, 1998] to produce the ontology.  If 
the ontology editor produces OKBC-compliant files, then 
they can be loaded directly into Chimaera.  Otherwise, 
indented list format, tuple format, or a few other standard 
forms may be used.  In general, OKBC wrappers can be 
developed for a wide range of knowledge representation 
systems.  For example, in one of our e-commerce 
ontology projects, we generated CLASSIC ontologies and 
developed an OKBC wrapper for CLASSIC that was used 
to load OKBC-compliant input into Chimaera.  
Translation systems such as OntoMorph [Chalupsky, 
2000] could also be used to support multiple languages. 

The UI for the current version of Chimæra is shown in 
Figure 1.  The interface consists of a set of commands on 
spring-loaded menus (the command activates as soon as 
the menu selection is made).  Like most GUIs, the user 
selects operands by clicking on them, and selection is 
shown by the selected operands being displayed in 
boldface.  Applicable commands are then available on the 
menus, and inapplicable commands are also displayed 
showing the reason why they are inapplicable.  The UI 
contains amongst its seventy odd commands a rather full-
featured taxonomy and slot editor as well as commands 

more obviously associated with the ontology merging 
task, e.g., the “Merge Classes” command.  It also contains 
17 diagnostic commands along with options for their 
modification.  The current UI is not a general-purpose 
editing environment for ontologies.  It only addresses 
classes and slots; non-slot individuals and facets are not 
displayed.  Similarly, there is no support for the editing of 
axioms.  We plan to extend the functionality of the tool in 
later versions to include all object types.  In contrast to 
two other merging efforts [Fridman Noy and Musen, 
1999; and Chalupsky, et. al., 1997], our environment also 
supports creating and editing disjoint partition 
information and includes an extensive repertoire of 
diagnostic commands. 

The restricted nature of the UI allows us to present a view 
of the KB to the user that is not cluttered by extraneous 
commands, widgets, or KB content.  This is very 
important to the design of the UI, since focus of attention 
is vital in the KB merging task.  The user may never be 
able to make merging decisions if the classes to be 
considered are many screens apart.  There are, therefore 
(currently) no fewer than 29 different commands in the 
View menu that affect the way the KB is displayed to the 
user, and the system uses sophisticated techniques to 



  

automatically select default settings for those commands 
that are appropriate in most cases. 

Chimaera currently addresses only a portion of the overall 
ontology merging and diagnosis tasks.  Even though it 
may be viewed as an early design in terms of a complete 
merging and diagnostic tool, we have found significant 

value in it to date.  We now describe some experiments 
designed to evaluate its usefulness in merging.  

The experiments we have run only make use of those 
features in Chimaera designed to support the merging of 
class-subclass taxonomies.  Chimaera includes support for

 
Figure 2: Chimæra in name resolution mode suggesting a merge of Mammal and Mammalia 

merging slots and in the future, will support merging of 
facets, relations, functions, individuals, and arbitrary 
axioms.  Similarly, the diagnosis functions only include 
domain independent tests that showed value in our 
experiments to date.  These tests allow limited user input 
for modifications to the tests.  In our future environment, 
we expect to include a diagnostic testing language that 
allows users to dynamically add new tests to the test suite, 
and thus support more domain-dependent diagnostics as 
well 

3.2 MERGING AND EVALUATION 

Chimaera generates name resolution lists that help the 
user in the merging task by suggesting terms each of 
which is from a different ontology that are candidates to 
be merged or to have taxonomic relationships not yet 
included in the merged ontology.  For example, figure 2 
shows a suggestion for merging Mammalia from ontology 
“Test2” with Mammal from ontology “Test1” based on 
the similarity of the names.  The suggested candidates 
may be names of classes or slots.  The module that puts 
candidates on the list is controlled by a user-settable 
“vigor” metric that activates a progressively more 
extensive search for candidate sets of terms.  It considers 
term names, presentation names (called “pretty names” in 
Ontolingua), term definitions, possible acronym and 

expanded forms, names that appear as suffixes of other 
names, etc. 

Chimaera also generates a taxonomy resolution list where 
it suggests taxonomy areas that are candidates for 
reorganization.  It uses a number of heuristic strategies for 
finding such edit points for taxonomies.  One looks for 
classes that have direct subclasses from more than one 
ontology (since such subclasses are likely to need some 
reorganization have additional intended relationships 
among them that are not yet in the merged ontology).  

We ran four experiments aimed at evaluating Chimaera’s 
merging effectiveness.  They were focused on (1) 
coalescing ontology names, (2) performing taxonomic 
edits, (3) identifying ontology edit points, and (4) testing 
overall effectiveness in a substantial merging task.  
Because of space constraints here, we describe our high 
level findings and only describe one of the experiments in 
detail.   

  A long version of the merging experiment write-up is 
available from 
http://www.ksl.stanford.edu/yearindex.html. 

 



  

4 EXPERIMENTAL FINDINGS 

We conducted a set of experiments scoped to be within 
our resource budget that were designed to produce a 
measure of the performance of Chimæra.  We also 
compared those results to the performance of other tools 
that a KB developer might reasonably use to do such a 
merge, absent the KB merging tool itself.  At each stage 
in the experiment, our goal was to control for as many 
factors as possible and to assure that the experimental 
settings correspond closely to the settings in which the 
tool would actually be used. 

KB merging is a non-trivial cognitive task, and our tools 
are also non-trivial, so it is not at all surprising that it 
should be difficult to design experiments to measure the 
utility of such tools.  The overriding principle we used 
was that whenever a judgement call had to be made in the 
experiment design, we tried to make sure that any bias 
introduced in that judgement worked against showing 
Chimæra in a good light. 

We began by conducting a set of three calibration 
experiments in which we determined the number of steps 
and time required to do specific types of operations that 
would be performed while doing a merging task using 
Chimæra, a representative KB editing tool (Ontolingua), 
and a representative text editing tool (Emacs).  These 
studies were designed to provide quantitative “rate” 
comparisons in that they indicated which steps in the 
merging task Chimæra speeds up and by how much, and 
to provide qualitative indications of the steps for which 
Chimæra provides substantial improvements in reliability.  
Using the results of these calibration experiments, we 
then performed a larger merge task using only Chimæra.  
The calibration experiments were then used to estimate 
the comparative utility of Chimæra over this larger task. 

The primary results of these experiments are the 
following: 

• Merging two or more substantial ontologies was 
essentially not doable in a time effective manner 
using a text-editing tool, primarily because of the 
difficulty of examining the taxonomy of any non-
trivial ontology using only a text editor. 

• Chimaera is approximately 3.46 times faster than an 
ontology editing tool (Ontolingua) for merging 
substantial taxonomies.  Moreover, for the portion of 
the taxonomy merging task for which Chimaera’s 
name resolution heuristics apply, Chimaera is 
approximately 14 times faster than an ontology 
editing tool (Ontolingua). 

• Almost all of the operations performed during a 
taxonomy merge would be more error-prone if they 
were performed using an ontology editing tool 

(Ontolingua), and the critical “merge class” 
operations would be extremely error-prone if 
performed using a KB editing tool. 

The ontology merging task is only an interesting problem 
when one tries to merge large ontologies.  Chimaera has 
proved to provide considerable utility in non-trivial 
merging tasks.  The other tool options tried were so poor 
at this task that it became impractical to perform a head-
to-head experiment against other tools because the other 
tools simply were not able to merge reasonably large 
ontologies in a practical amount of time.  We conclude, 
therefore, that Chimæra, even though it addresses only a 
portion of the overall merging task, makes a significant 
qualitative difference in one’s ability to build large 
ontologies using fragments derived from a number of 
sources. 

4.1 EXPERIMENT 3: FINDING EDIT POINTS 

The time taken to execute an editing operation is only a 
minor part of the ontology merging process; a major task 
for the user is finding the places in the input ontologies 
that are to be edited.  Our third experiment, which focused 
on that task, may be the most instructive and important; 
thus, we describe it in detail here. 

In this experiment, we attempted to determine the relative 
performance of Emacs, the Ontolingua editor, and 
Chimæra in the edit-point finding activity.  When we 
attempted to build scripts for these activities using Emacs, 
it became apparent that the task of finding good edit 
points is so difficult in Emacs that one simply could never 
realistically use Emacs for such a task.  The core problem 
is that most of these activities involve the user being able 
to see the ontology’s taxonomy in order to make rational 
decisions.  It is so difficult to examine the taxonomy of 
any non-trivial ontology using Emacs that the user would 
be forced, in effect, to reinvent some sort of 
representation system using either shell scripts or 
keyboard macros in order to have a chance of knowing 
what to do.  We decided that this was sufficiently 
unrealistic that we eliminated Emacs from Experiment 3. 

The idea behind Experiment 3, therefore, was to try to 
measure the time taken by a user to find candidate edit 
points using the Ontolingua editor and Chimæra.  Our 
goal in designing the experiment was to factor out the 
time actually taken to perform the suggested edits, since 
that editing time was considered in Experiment 2. 

Our goal was to measure the performance of users 
performing the edit-point-finding task in as unbiased 
manner as possible.  In the best of all possible worlds, we 
would have a large pool of input ontologies and of test 
subjects with the necessary skills so that we could get an 
overall idea of the performance of the tools.  This was not 
practical, so we selected a pair of test subjects who were 



  

as closely matched as we could find in knowledge 
representation skill as well as skill in the use of the tool.  
We used one subject with the Ontolingua editor who had 
considerable experience using the tool as a browser, 
though little as an editor.  The test subject who was to use 
Chimæra had a small amount of experience using 
Chimæra as a browser, but no experience using any of the 
editing features.  In accordance with our overall strategy 
of bias reduction, the bias in the test subject selection 
clearly favored the Ontolingua editor over Chimæra. 

The test subject using Chimæra was given a guided tour 
of its editing operations.  Both users had about two hours 
to practice using their respective tools specifically on the 
ontology merging task.  For the practice session, they 
were each provided with some small sample ontologies 
that had no overlap with the ontology content of the test 
ontologies. 

We instrumented Chimæra so that we could identify the 
commands being invoked, the times at which the 
commands were executed, and the number of arguments 
used by the commands.  The goal was for the test subject 
to use Chimæra not only to find the edit points, but also to 
perform the edits so that we could learn as much as 
possible from the process.  Having performed the timed 
merge, we would then subtract out the time taken to 
perform the edits to make the results more comparable to 
the use of the Ontolingua editor. 

For the experiment with the Ontolingua editor, we timed 
the test subject with a stopwatch.  When the test subject 
identified an edit point, the clock was stopped, and the 
test subject turned away from the screen.  The desired 
edits were then performed, and the clock restarted.  It is 
essential to perform the edits suggested because 
performing the proposed edits changes the structure of the 
ontology and the way that it appears on the display.  This 
often results in terms that were previously distant on the 
display appearing close together, thereby making other 
candidate edit operations more obvious.  Ironically, as we 
saw in our previous calibration experiments, Chimæra is 
so much more efficient at performing these edits than the 
Ontolingua editor that when the experiment referee 
stepped in to perform the requested edits during the 
experiment, he used Chimæra to perform them. 

We decided that before conducting the experiment it 
would be a good idea to calibrate the experiment by 
getting an idea of the upper bound of the possible 
performance using Chimæra.  We therefore had one of the 
developers of Chimæra - and experienced user - use 
Chimæra to perform the merge of the two proposed input 
ontologies a number of times.  This was to give us an idea 
both of the number of edit operations that could 
reasonably be found in the ontologies, and the maximum 
speed with which a user could perform the merge if all of 
the thinking time necessary to decide what to merge was 

reduced as close to zero as possible.  We anticipated that 
were we to graph the edit operations against time we 
would see a clear knee in the curve at the point at which 
the "low-hanging fruit" had all been plucked.  Given this 
point, we intended to run the real experiment for a time 
not exceeding the time for the knee in the curve.  This 
would, we thought, give us some confidence that we were 
likely to be in the low-hanging fruit operating region of 
both tools, since we anticipated that Chimæra would be 
faster than the Ontolingua editor.  If we were to stop the 
experiment after an arbitrary time without performing this 
calibration, we might bias the result in favor of the slower 
tool if the faster tool had been fast enough to get outside 
its low-hanging fruit region in the time allotted, but the 
slower tool had not. 

Figure 3 shows the results from this calibration 
experiment.  The anticipated knee in the curve did not 
actually appear, though there is a knee at 622 seconds, 
where the user finished his first pass through the Name 
Resolution agenda.  After about an hour, the user stopped, 
reporting that all of the edits that he was performing 
seemed by that point to be concentrated in cleaning up 
one of the input ontologies, rather than actually merging 
the ontologies.  Given the results of this calibration run, 
we decided to give the two test subjects 55 minutes in 
which to perform their edit-point finding. 

Figure 3: The cumulative number of edit points found and 
edits performed using Chimæra plotted against time in 
seconds.  The dense set of points early on was 
characterized by a large number of merge operations 
driven from the Name-Resolution agenda.  Subsequent 
edit points were found using the Taxonomy-Traversal 
agenda and other Chimæra browsing features. 

We wanted to try to control as much as possible for the 
different representational decisions that two test subjects 
might make, so during the experiment, the developer who 
performed the calibration experiment was on-hand to 
answer any representational questions whenever such 
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questions arose.  This oracle was not allowed to volunteer 
any edit suggestions, but would, if prompted, say whether 
any pair of classes should be merged or have an additional 
relationship asserted. 

Our goal was to define the idea of "finding an edit point" 
to mean as closely as possible the same thing for the two 
tools.  There were, however, some differences because of 
the nature of the tools.  For Chimæra, the time taken to 
find an edit point was the time taken to identify the place 
to edit and to select the arguments for the editing 
operation.  These times were captured by Chimæra’s 
instrumentation.  For the Ontolingua editor, we measured 
the time taken between the clock being started and the 
user calling out for the clock to be stopped upon finding a 
candidate edit and calling out the arguments to be used in 
the edit.  We did this because we knew that we would not 
be using the Ontolingua editor actually to perform the 
edits. 

We had to decide whether to allow edits within input 
ontologies as well as across ontology boundaries during 
the experiment.  We anticipate that the ontology merging 
process may typically involve some clean up to the input 
ontologies, but we wanted to focus our evaluation on the 
merging process rather than on intra-ontology editing, so 
we decided to disallow intra-ontology edits for this 
experiment. Cycorp provided to us for use in this 
experiment the part of their IKB relating to Agents that 
they had built for the HPKB program.  With this input 
ontology, which we had not seen before, we could be 
confident that we had received a clean and well-
documented ontology, and that there would be a 
reasonable amount of overlap with our own Agents 
representation similarly developed for the HPKB 
program.  Restricting scoring of candidate edit points to 
include only proposed edits that had at least one argument 
from each ontology was easy in Chimæra, since they are 
color-coded.  In the case of the Ontolingua editor, we 
renamed all of the terms in one ontology to have a 
common suffix indicating the ontology of origin. We 
provided this substantial help to the subject using 
Ontolingua in order to improve the comparability of the 
experimental results.  Interestingly, we used a command 
in Chimæra to do this systematic renaming. 

Figure 4: Chimæra proved to be superior to the 
Ontolingua editor at finding candidate edit points 

Figure 4 shows the results from Experiment 3.  There are 
a number of ways to interpret at these results depending 
on what we hope to learn.  The fact that the curve for 
Chimæra is always well above the curve for the 
Ontolingua editor clearly shows the significant superiority 
of Chimæra for this task.  Overall, the Chimæra test 
subject was able to identify 3.7 times as many edit points, 
and was also able to perform the edits. 

It is difficult to come up with a simple numeric rate for 
the number of edit points found per minute because we 
need to have reason to believe that there is an underlying 
linear model before such a rate number has any meaning 
or predictive value.  Luckily, we do have reason to 
believe that there is a linear model underlying at least part 
of Experiment 3 (there may be linear models underlying 
other parts, but we do not know this with certainty).  The 
Name Resolution menu in Chimæra presents the user with 
a simple list of candidate edit points.  The user, in general, 
iterates through this list until all elements of the list have 
been processed.  This is what our user was doing during 
the first 185 seconds of the experiment.  In this linear 
region, merges were being found, considered, and 
accepted or rejected at the rate of about one every nine 
seconds.  The correlation to a linear fit in this region is 
R2=0.94, supporting our reasoning that the underlying 
model is linear.  This result is consistent with our 
experience on other ontologies.  We expect that this linear 
model should be broadly independent of ontology size, 
since the time taken to construct the agenda itself is 
factored out.  The algorithm that constructs the name 
resolution menu is O(n2).  Within the known linear 
region, Chimæra outperformed the Ontolingua editor by a 
factor of fourteen. 

The test subject who was using the Ontolingua editor also, 
we believe, exhibited a linear strategy.  This happened 
because during the practice session the test subject 
developed a systematic method for finding candidate edit 
points that involved a systematic traversal of the 
ontology.  The strategy involved looking in turn at each 
class and then considering all of its siblings and the 
siblings of each of its superclasses up to the roots to see 
whether a merge or taxonomic edit was appropriate.  The 
number of examination steps necessary for any given 
class is a function of the depth of the taxonomy and 
branching factor of the superclasses.  The time taken to 
perform any given iteration in this strategy is therefore 
reasonably constant, though influenced by the number of 
subclasses that must be inspected once a candidate edit 
has been selected.  We believe that the complexity of this 
strategy is bounded by O(n.logb(n)) and O(n2), where b is 
the average subclass branching factor and n is the size of 
the ontology.  For an ontology such as the one we used as 

Experiment 3: Chimжra vs. Ontolingua editor

0

20

40

60

80

100

0 400 800 1200 1600 2000 2400 2800 3200 3600

Time (s)

C
um

ul
at

iv
e 

op
er

at
io

ns

Chimжra
Ontolingua Editor



  

input, however, the model should be roughly linear.  The 
results for a linear fit throughout the experiment for the 
Ontolingua editor give us a rate of 157 seconds per edit 
point found, with a correlation of 0.98. 

5 DIAGNOSTICS TESTS 

Chimaera also has a set of diagnostics that can be run 
selectively or in their entirety.  Routinely when we obtain 
knowledge bases now, we run the diagnostics and 
invariably find issues with our incoming KBs.  The 
current list of diagnostics was derived as a retrospective 
analysis of the most useful domain independent tests that 
we needed to run on the HPKB and on the crawled web 
ontologies.  They group into four areas:   

1) Simple checks for incompleteness (missing argument 
names, missing documentation strings, missing 
sources, missing type constraints, missing term 
definitions);  

2) Syntactic analysis (incidence of words (or sub-
strings), possible acronym expansion);  

3) Taxonomic analysis (redundant super classes, 
redundant types, trivial instances or subclasses of 
THING, definition extensions from included 
ontologies), and  

4) Semantic evaluation (slot value/type mismatch, class 
definition cycle, domain/range mismatch). 

This is obviously not everything that could be checked.  
The current diagnostic suite does not connect to the full 
theorem prover so there is only limited consistency 
checking.  The current testing environment also does not 
give users the power to add their own, potentially domain-
specific, checks.  Even with the limited power of the 
diagnostics set though, we successfully used it to provide 
initial correctness and completeness checks of all incoming 
HPKB knowledge bases for our final team evaluation.  
Possibly more importantly, its output was usable by people 
with little training in knowledge representation, and we 
found that with no training they could make effective and 
correct improvements to the knowledge bases guided by 
the diagnostic output.  Also, the tool takes multiple input 
formats, thus we were able to allow people to use it who 
had no familiarity with OKBC or Ontolingua.  We had 
some SNARK and KIF-literate users load in their 
ontologies in the input format they were familiar with, run 
diagnostics, and debug their knowledge bases with little 
intervention from us.   We also used this toolset to check 
for problems in our semi-automatically generated 
ontologies from web crawls.  The tests found a surprising 
number of things that would have been tedious or difficult 
for us to find ourselves, such as class cycles and 
inconsistency in naming in Amazon’s ontology.  Finally, 
we used the merging tool with ontologies generated by 

naïve users with no training, and they were able to 
immediately merge independent ontologies and use the 
tool effectively to focus their attention on the problem 
areas in the ontologies.  They also used the diagnostics 
effectively with no training. 

6 CONCLUSION 

We have presented an ontology editing, merging, and 
diagnostic environment developed to meet the emerging 
needs of representation and reasoning tasks on the Web 
and of ontology creation and maintenance tasks.  We have 
briefly overviewed the merging and diagnostics 
components and presented some evaluation results on the 
merging side and some anecdotal reports on the 
diagnostics side.  While our tool is in its early stages, 
these evaluations of the tool, our own personal use of the 
tool, and demand for the tool from both the commercial 
and academic sectors provide notable evidence that it 
makes significant improvements in productivity and 
quality of ontology development and maintenance. We 
are continuing to develop the tool, focusing in particular 
on extending its reasoning capabilities, semantic analysis, 
its extensibility, and usability by non-experts. 
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