
An Environment for Merging and Testing Large Ontologies

 Deborah L. McGuinness Richard Fikes James Rice Steve Wilder
Knowledge Systems Laboratory Knowledge Systems Laboratory CommerceOne Knowledge Systems Laboratory
 Computer Science Department Computer Science Department Mountain View, CA Computer Science Department
 Stanford University Stanford University rice@jrice.com Stanford University
 dlm@ksl.stanford.edu fikes@ksl.stanford.edu wilder@ksl.stanford.edu

Abstract
Large-scale ontologies are becoming an essential
component of many applications including
standard search (such as Yahoo and Lycos), e-
commerce (such as Amazon and eBay),
configuration (such as Dell and PC-Order), and
government intelligence (such as DARPA’s High
Performance Knowledge Base (HPKB)
program). The ontologies are becoming so large
that it is not uncommon for distributed teams of
people with broad ranges of training to be in
charge of the ontology development, design, and
maintenance. Standard ontologies (such as
UNSPSC) are emerging as well which need to be
integrated into large application ontologies,
sometimes by people who do not have much
training in knowledge representation. This
process has generated needs for tools that
support broad ranges of users in (1) merging of
ontological terms from varied sources, (2)
diagnosis of coverage and correctness of
ontologies, and (3) maintaining ontologies over
time. In this paper, we present a new merging
and diagnostic ontology environment called
Chimaera, which was developed to address these
issues in the context of HPKB. We also report
on some initial tests of its effectiveness in
merging tasks.

1 INTRODUCTION

Ontologies are finding broader demand and acceptance in
a wide array of applications. It is now commonplace to
see major web sites include taxonomies of topics
including thousands of terms organized into five-level or
deeper organizations as a browsing and navigation aid. In
addition to broader use of ontologies, we also observe
larger and more diverse staff creating and maintaining the

ontologies. Companies are now hiring “chief ontologists”
along with “cybrarian” staffs for designing, developing,
and maintaining these ontologies. Many times the team
leader may have knowledge representation or library
science training, however the staff may not have much or
any formal training in knowledge representation. The
broader demand for ontologies along with greater
diversity of the ontology designers is creating demand for
ontology tools.

The average ontology on the web is also changing. Early
ontologies, many of which were used for simple browsing
and navigation aids such as those in Yahoo and Lycos,
were taxonomies of class names. The more sophisticated
ontologies were large and multi-parented. More recently,
mainstream web ontologies have been gaining more
structure. Arguably driven by e-commerce demands,
many class terms now also have properties associated
with them. Early commerce applications, such as Virtual
Vineyards, included a handful of relations, and now many
of the consumer electronics shopping sites are including
tens or hundreds of slot names, sometimes associated with
value-type constraints as well. We now see more
complicated ontologies even in applications that are only
using ontologies to support smart search applications.
Additionally, ontologies are being used more to support
reasoning tasks in areas such as configuration and
intelligence tasks. A decade ago, there were a modest
number of ontology-supported configurators such as
PROSE/QUESTAR [McGuinness and Wright, 1998;
Wright et. al., 1993], however now, web-based
configurators and configurator companies such as
Trilogy, Concentra, Calico, etc. are common. There are
even spin offs of configurator companies handling special
areas of configuration such as PC-Order for PC
configuration. Configuration ontologies not only have
class, slot, and value-type information, but they typically
have cardinality and disjointness information that
supports reasoning with contradictions. Thus, we claim
that ontologies are becoming more common, the designers

Deborah L. McGuinness, Richard Fikes, James Rice, and Steve Wilder. “An Environment for Merging and Testing
Large Ontologies”. Proceedings of the Seventh International Conference on Principles of Knowledge
Representation and Reasoning (KR2000). Breckenridge, Colorado. April 12 - 15, 2000.

come from more diverse backgrounds, and ontologies are
becoming larger and more complicated in their
representational and reasoning needs.

Simultaneously, there appears to be a stronger emphasis
on generating very large and standardized ontologies.
Areas such as medicine began this task many years ago
with SNOMED [Spackman, et. al., 1997] and UMLS
[McCray and Nelson, 1995]. Recently broader and
shallower efforts have emerged like the joint United
Nations/Dunn and Bradstreet effort to create an open
coding system for classifying goods and services
[UNSPSC, 1999]. Another new distributed broad
ontology is the DMOZ Open Directory effort [DMOZ,
1999] with over 200,000 categories and over 21,000
registered knowledge editors. The goal of standard
ontologies is to provide a highly reusable, extensible, and
long-lived structure. Large ontologies in concert with the
challenges of multiple ontologies, diverse staffing, and
complicated representations strengthens the need for
tools.

In this paper, we address two main areas. The first is
merging different ontologies that may have been written
by different authors for different purposes, with different
assumptions, and using different vocabularies. The
second is in testing and diagnosing individual or multiple
ontologies. In the rest of this paper, we will give two
project descriptions that served as motivation for our
work on merging and diagnostic tools. We will then
describe an ontology environment tool that is aimed at
supporting merging and testing ontologies. We will
describe the tool’s used in our work on DARPA’s HPKB
program [Cohen, et. al., 1998]. We will also describe an
evaluation of the merging capabilities of the tool. Finally,
we will present the diagnostic capabilities and discuss
future plans.

2 TWO MOTIVATING PROBLEMS

In the last year, some of the authors were involved in each
of two major ontology generation and maintenance
efforts. We gained insight from the tasks that was used to
help shape our resulting ontology tool efforts.
Subsequently, we have used [McGuinness, 1999] as well
as licensed the tools on other academic and commercial
ontology projects. We will describe the tasks briefly and
present an abstraction of the problem characteristics and
needs with relation to ontology tools.

2.1 MERGING THE HIGH PERFORMANCE
KNOWLEDGE BASE ONTOLOGIES

The first problem was in the HPKB program. This
program aimed to generate large knowledge bases quickly
that would support intelligence experts in making

strategic decisions. The KBs had a reasonably broad
subject area including terrorist groups, general world
knowledge (such as that contained in the CIA World Fact
Book [Frank, et. al., 1998]), national interests, events (and
their results) in the Middle East, etc. The types of
questions that an analyst might ask of a KB may be
simple, including straight “look up” questions like finding
the leader of an organization or the population of a
country. Other questions may be quite complex,
including asking about the possible reaction of a terrorist
group to a particular action taken by a country.
Knowledge bases in this program tended to have a high
degree of structure, including many slots associated with
classes, value-type constraints on most slots, values on
many slots, minimum cardinality constraints on slots,
disjoint class information, etc. The knowledge bases were
typically designed by people trained in knowledge
representation and usually populated by those literate but
not expert in artificial intelligence.

In the first year of the program, many individual
knowledge bases were created in order to answer
particular “challenge problem” questions. These
questions were designed to be typical of those that a
government analyst would ask. Two competitive research
and integration teams were evaluated on the quality of the
answers that their knowledge bases and associated
reasoners returned. Many of the challenge problem
questions in the first year were answered in particular
contexts, i.e., with only a subset of the knowledge bases
loaded. In the second year of the program, some teams,
including ours, needed to be prepared to answer questions
in any portion of the domain. We needed to load all of
the knowledge bases simultaneously and potentially
reason across all of them. Thus, we needed to load a
significant number of KBs (approximately 70) that were
not originally intended to be loaded together and were
written by many different authors. Our initial loading and
diagnosis step was largely manual with a number of ad
hoc scripts. This was a result of time pressure in concert
with the expectation that this was a one-time task. Some
of the findings from the merging and diagnosis task were
as follows:

• Large ontology development projects may require
extensive systematic support for pervasive tests and
changes. Our final ontology contained approximately
100,000 statements (and the version of the ontology
after forward chaining rules had been run contained
almost a million statements). Even though the
individual ontologies all shared a common “upper
ontology”, there was still extensive renaming that
needed to be done to allow all the ontologies to be
loaded simultaneously and to be connected together
properly. There were also pervasive tests to be run
such as checks for comment and source field
existence as well as argument order on functions.

We discovered, for example, that different authors
were using relational arguments in differing orders
and thus type constraints were being violated across
ontologies. Additionally, if a relation’s domain and
range constraints were used to conclude additional
class membership assertions for arguments of the
relation, then those arguments could end up with
multiple class memberships that were incorrect. For
example, if relation Leader has a domain of Person
and a range of Country, one author states “(Leader
Clinton US)”, and another states “(Leader US
Clinton)”, then Clinton could be inferred to be a
person AND a country.1

• Repairing and merging large ontologies require a tool
that focuses the attention of the editor in particular
portions of the ontology that are semantically
interconnected and in need of repair or further
merging. There were many places where taxonomic
relationships were missing when multiple ontologies
were loaded together. For example, a class denoting
nuclear weapons was related to the “weapon” class
but not to the “weapon of mass destruction” class,
nor to the disjoint partition of classes under
“weapon”. A tool that showed (just) the relevant
portions of the taxonomies and facilitated taxonomy
and partition modifications later turned out to be
extremely valuable for editing purposes.

• Ontologies may require small, yet pervasive changes
in order to allow them to be reused for slightly
different purposes. In our HPKB task, we found a
number of slots that needed to be added to classes in
order to make the classes useful for additional tasks.
We found many slots in the same ontology that
appeared to be identical yet were unrelated. (We
hypothesize that one major cause of this problem was
that a term inherited a slot and value-type constraint
from a parent class, but the author did not know to
look for the slot under its given name, thus the author
added a slot to capture the same notion under another
name.) Also, we found a large number of slots that
were inverses of other slots but were not related by
an explicit slot inverse statement. Without the
inverse information, the inverse slots were not being
populated and thus were not useful for question
answering even though the information appeared to
be in the knowledge base. Our goal was to support
users in finding the connections that needed to be
made to make ontologies more useful.

• Ontologies may benefit from partition definitions and
extensions. We found many ontologies that

1 This inference is consistent if there is no information
that states that country and person are disjoint.

contained some disjoint partition information (e.g.,
“people” are disjoint from “bodies of water”), but in
many cases the partition information was under
specified. In the previous example with incorrect
argument order, if we had information stating that
people were disjoint from countries, then the
inconsistency could have been detected earlier, most
likely at knowledge entry time.

2.2 CREATING CLASS TAXONOMIES FROM
EXISTING WEB ONTOLOGIES

In a noticeably different effort, we used a Web crawler to
mine a number of web taxonomies, including Yahoo!
Shopping, Lycos, Topica, Amazon, and UN/SPSC, in
order to mine their taxonomy information and to build
corresponding CLASSIC [Borgida et. al., 1989;
Brachman, et. al., 1999] and OKBC (Open Knowledge
Base Connectivity) [Chaudhri, et. al, 1998] ontologies.
Our goals for this work were (1) to “generate” a number
of naturally occurring taxonomies for testing that had
some commercial purpose, and (2) to build a larger
cohesive ontology from the “best” portions of other
ontologies. (“Best” was initially determined by a
marketing organization as portions of ontologies that had
more usage and visibility.)

Our ontology mining, merging, and diagnosis effort had
little emphasis on reasoning, but instead was centered on
choosing consistent class names and generating a
reasonable and extensible structure that could be used for
all of the ontologies. The expected use of the output
ontology was for web site organization, browsing support,
and search (in a manner similar to that used in FindUR
[McGuinness, 1998]).

We found that extensive renaming was required in these
ontologies mined from the Web. For example, we found
the unique names assumption was systematically violated
within individual ontologies so that class names needed
their own contexts in order to be useful. Thus, systematic
treatment was required to put individual ontology
branches into their own name space and to separate terms
like steamers under clothing appliances from steamers
under kitchen appliances. We also found extensive need
for ontological reorganization. Thus, we still required
focusing an editor’s attention on pieces of the ontology.
Additionally, we found need for more diagnostic checks
with respect to ontological organization. For example,
there were multiple occurrences of cycles within class
graphs. So, we introduced checks for cycles into our
diagnostics.

 There was also no partition information in these
ontologies, but there were multiple places where it
appeared beneficial to add it. Our initial automatically
generated ontologies were obtained from web sites that

lacked explicit slot information, thus all of our slot
information was systematically generated (and thus less
likely to need the same kinds of modifications as those we
found from human-generated slot information).
Subsequent inspections of other web ontologies
containing slot information, however, revealed many of
the same issues we observed in our HPKB analysis work.

These two experiences, along with a few decades of staff
experience with building knowledge representation and
reasoning systems and applications, led us to design and
implement an ontology merging and diagnosis tool that
we will describe next.

2.3 Needs Analysis

The two previous efforts motivate the following needs in
a merging and diagnostic tool:

• Name searching support (across multiple ontologies)

• Support for changing names in a systematic manner

• Support for merging multiple terms into a single term

• Focus of attention support for term merging based on
term names

• Focus of attention support for term merging based on
the semantics of term descriptions

• Browsing support for class and slot taxonomies

• Support for modifying subsumption relationships in
class and slot taxonomies

• Partition modification support

• Support for recognizing logical inconsistencies
introduced by merges and edits.

• Diagnostic support for verifying, validating, and
critiquing ontologies

3 AN ONTOLOGY MERGING AND
DIAGNOSIS TOOL

Chimaera is a new ontology merging and diagnosis tool
developed by the Stanford University Knowledge
Systems Laboratory (KSL). Its initial design goal was to
provide substantial assistance with the task of merging
KBs produced by multiple authors in multiple settings. It
later took on another goal of supporting testing and
diagnosing ontologies as well. Finally, inherent in the
goals of supporting merging and diagnosis are
requirements for ontology browsing and editing. We will
define the tasks of ontology merging and diagnosis as
used in our work, and then we will introduce the tool.

We consider the task of merging two ontologies to be one
of combining two or more ontologies that may use
different vocabularies and may have overlapping content.
The major two tasks are to (1) to coalesce two
semantically identical terms from different ontologies so
that they are referred to by the same name in the resulting
ontology, and (2) to identify terms that should be related
by subsumption, disjointness, or instance relationships
and provide support for introducing those relationships.
There are many auxiliary tasks inherent in these tasks,
such as identifying the locations for editing, performing
the edits, identifying when two terms could be identical if
they had small modifications such as a further
specialization on a value-type constraint, etc. We will
focus on the two main tasks for our discussion.

The general task of merging can be arbitrarily difficult,
requiring extensive (human) author negotiation.
However, we claim that merging tools can significantly
reduce both labor costs and error rates. We support that
claim with the results from some initial tool evaluation
tests.

We addressed the task of diagnosing single or multiple
ontologies by producing a test suite that evaluates (partial)
correctness and completeness of the ontologies. The
major tasks involve finding and reporting provable
inconsistencies, possible inconsistencies, and areas of
incomplete coverage. As with merging, diagnosis can be
arbitrarily complex, requiring extensive human analysis to
identify all problems and present them in an order
appropriate to the problem importance. Tools built to
provide the first level of analysis, however, can greatly
reduce human labor cost as well as improve the
consistency of the analysis. In our diagnostic test suite,
we do not attempt to find all problems; we just choose a
subset that is computationally viable and motivated by
usefulness of the reports.

3.1 CHIMAERA

Chimæra is a browser-based editing, merging, and
diagnosis tool. Its design and implementation is based on
our experience developing other UIs for knowledge
applications such as the Ontolingua ontology
development environment [Farquhar, et al, 1997], the
Stanford CML editor [Iwasaki, et al, 1997], the Stanford
JAVA Ontology Tool (JOT), the Intraspect knowledge
server [Intraspect 1999], a few web interfaces for
CLASSIC [McGuinness, et. al., 1995; Welty, 1996], and a
collaborative environment for building ontologies for
FindUR [McGuinness, 1998]. Chimaera has a web-based
UI that is optimized for Netscape and MSIE browsers. It
is written in HTML, augmented with Javascript where
necessary to support niceties like spring-loaded menus
and drag and drop editing.

 Our goal was to make it a standards-based generic
editing, merging, and diagnosis tool. When Ontolingua’s
editor was first developed, there was no standard API for
knowledge-based systems. Since then, the OKBC API
has been developed by KSL and SRI International’s AI
Lab. OKBC allows us to develop tools that can merge

KBs in any OKBC-compliant representation system either
on the same machine or over the network. Chimæra was
designed from the ground up to be a pure OKBC
application. Our typical editing environment is
Ontolingua, but this is not a requirement. For example,

Figure 1: A view of Chimæra's user interface

one could edit in Ontosaurus {Swartout, et. al, 1996] or
OntoWeb [Domingue, 1998] to produce the ontology. If
the ontology editor produces OKBC-compliant files, then
they can be loaded directly into Chimaera. Otherwise,
indented list format, tuple format, or a few other standard
forms may be used. In general, OKBC wrappers can be
developed for a wide range of knowledge representation
systems. For example, in one of our e-commerce
ontology projects, we generated CLASSIC ontologies and
developed an OKBC wrapper for CLASSIC that was used
to load OKBC-compliant input into Chimaera.
Translation systems such as OntoMorph [Chalupsky,
2000] could also be used to support multiple languages.

The UI for the current version of Chimæra is shown in
Figure 1. The interface consists of a set of commands on
spring-loaded menus (the command activates as soon as
the menu selection is made). Like most GUIs, the user
selects operands by clicking on them, and selection is
shown by the selected operands being displayed in
boldface. Applicable commands are then available on the
menus, and inapplicable commands are also displayed
showing the reason why they are inapplicable. The UI
contains amongst its seventy odd commands a rather full-
featured taxonomy and slot editor as well as commands

more obviously associated with the ontology merging
task, e.g., the “Merge Classes” command. It also contains
17 diagnostic commands along with options for their
modification. The current UI is not a general-purpose
editing environment for ontologies. It only addresses
classes and slots; non-slot individuals and facets are not
displayed. Similarly, there is no support for the editing of
axioms. We plan to extend the functionality of the tool in
later versions to include all object types. In contrast to
two other merging efforts [Fridman Noy and Musen,
1999; and Chalupsky, et. al., 1997], our environment also
supports creating and editing disjoint partition
information and includes an extensive repertoire of
diagnostic commands.

The restricted nature of the UI allows us to present a view
of the KB to the user that is not cluttered by extraneous
commands, widgets, or KB content. This is very
important to the design of the UI, since focus of attention
is vital in the KB merging task. The user may never be
able to make merging decisions if the classes to be
considered are many screens apart. There are, therefore
(currently) no fewer than 29 different commands in the
View menu that affect the way the KB is displayed to the
user, and the system uses sophisticated techniques to

automatically select default settings for those commands
that are appropriate in most cases.

Chimaera currently addresses only a portion of the overall
ontology merging and diagnosis tasks. Even though it
may be viewed as an early design in terms of a complete
merging and diagnostic tool, we have found significant

value in it to date. We now describe some experiments
designed to evaluate its usefulness in merging.

The experiments we have run only make use of those
features in Chimaera designed to support the merging of
class-subclass taxonomies. Chimaera includes support for

Figure 2: Chimæra in name resolution mode suggesting a merge of Mammal and Mammalia

merging slots and in the future, will support merging of
facets, relations, functions, individuals, and arbitrary
axioms. Similarly, the diagnosis functions only include
domain independent tests that showed value in our
experiments to date. These tests allow limited user input
for modifications to the tests. In our future environment,
we expect to include a diagnostic testing language that
allows users to dynamically add new tests to the test suite,
and thus support more domain-dependent diagnostics as
well

3.2 MERGING AND EVALUATION

Chimaera generates name resolution lists that help the
user in the merging task by suggesting terms each of
which is from a different ontology that are candidates to
be merged or to have taxonomic relationships not yet
included in the merged ontology. For example, figure 2
shows a suggestion for merging Mammalia from ontology
“Test2” with Mammal from ontology “Test1” based on
the similarity of the names. The suggested candidates
may be names of classes or slots. The module that puts
candidates on the list is controlled by a user-settable
“vigor” metric that activates a progressively more
extensive search for candidate sets of terms. It considers
term names, presentation names (called “pretty names” in
Ontolingua), term definitions, possible acronym and

expanded forms, names that appear as suffixes of other
names, etc.

Chimaera also generates a taxonomy resolution list where
it suggests taxonomy areas that are candidates for
reorganization. It uses a number of heuristic strategies for
finding such edit points for taxonomies. One looks for
classes that have direct subclasses from more than one
ontology (since such subclasses are likely to need some
reorganization have additional intended relationships
among them that are not yet in the merged ontology).

We ran four experiments aimed at evaluating Chimaera’s
merging effectiveness. They were focused on (1)
coalescing ontology names, (2) performing taxonomic
edits, (3) identifying ontology edit points, and (4) testing
overall effectiveness in a substantial merging task.
Because of space constraints here, we describe our high
level findings and only describe one of the experiments in
detail.

 A long version of the merging experiment write-up is
available from
http://www.ksl.stanford.edu/yearindex.html.

4 EXPERIMENTAL FINDINGS

We conducted a set of experiments scoped to be within
our resource budget that were designed to produce a
measure of the performance of Chimæra. We also
compared those results to the performance of other tools
that a KB developer might reasonably use to do such a
merge, absent the KB merging tool itself. At each stage
in the experiment, our goal was to control for as many
factors as possible and to assure that the experimental
settings correspond closely to the settings in which the
tool would actually be used.

KB merging is a non-trivial cognitive task, and our tools
are also non-trivial, so it is not at all surprising that it
should be difficult to design experiments to measure the
utility of such tools. The overriding principle we used
was that whenever a judgement call had to be made in the
experiment design, we tried to make sure that any bias
introduced in that judgement worked against showing
Chimæra in a good light.

We began by conducting a set of three calibration
experiments in which we determined the number of steps
and time required to do specific types of operations that
would be performed while doing a merging task using
Chimæra, a representative KB editing tool (Ontolingua),
and a representative text editing tool (Emacs). These
studies were designed to provide quantitative “rate”
comparisons in that they indicated which steps in the
merging task Chimæra speeds up and by how much, and
to provide qualitative indications of the steps for which
Chimæra provides substantial improvements in reliability.
Using the results of these calibration experiments, we
then performed a larger merge task using only Chimæra.
The calibration experiments were then used to estimate
the comparative utility of Chimæra over this larger task.

The primary results of these experiments are the
following:

• Merging two or more substantial ontologies was
essentially not doable in a time effective manner
using a text-editing tool, primarily because of the
difficulty of examining the taxonomy of any non-
trivial ontology using only a text editor.

• Chimaera is approximately 3.46 times faster than an
ontology editing tool (Ontolingua) for merging
substantial taxonomies. Moreover, for the portion of
the taxonomy merging task for which Chimaera’s
name resolution heuristics apply, Chimaera is
approximately 14 times faster than an ontology
editing tool (Ontolingua).

• Almost all of the operations performed during a
taxonomy merge would be more error-prone if they
were performed using an ontology editing tool

(Ontolingua), and the critical “merge class”
operations would be extremely error-prone if
performed using a KB editing tool.

The ontology merging task is only an interesting problem
when one tries to merge large ontologies. Chimaera has
proved to provide considerable utility in non-trivial
merging tasks. The other tool options tried were so poor
at this task that it became impractical to perform a head-
to-head experiment against other tools because the other
tools simply were not able to merge reasonably large
ontologies in a practical amount of time. We conclude,
therefore, that Chimæra, even though it addresses only a
portion of the overall merging task, makes a significant
qualitative difference in one’s ability to build large
ontologies using fragments derived from a number of
sources.

4.1 EXPERIMENT 3: FINDING EDIT POINTS

The time taken to execute an editing operation is only a
minor part of the ontology merging process; a major task
for the user is finding the places in the input ontologies
that are to be edited. Our third experiment, which focused
on that task, may be the most instructive and important;
thus, we describe it in detail here.

In this experiment, we attempted to determine the relative
performance of Emacs, the Ontolingua editor, and
Chimæra in the edit-point finding activity. When we
attempted to build scripts for these activities using Emacs,
it became apparent that the task of finding good edit
points is so difficult in Emacs that one simply could never
realistically use Emacs for such a task. The core problem
is that most of these activities involve the user being able
to see the ontology’s taxonomy in order to make rational
decisions. It is so difficult to examine the taxonomy of
any non-trivial ontology using Emacs that the user would
be forced, in effect, to reinvent some sort of
representation system using either shell scripts or
keyboard macros in order to have a chance of knowing
what to do. We decided that this was sufficiently
unrealistic that we eliminated Emacs from Experiment 3.

The idea behind Experiment 3, therefore, was to try to
measure the time taken by a user to find candidate edit
points using the Ontolingua editor and Chimæra. Our
goal in designing the experiment was to factor out the
time actually taken to perform the suggested edits, since
that editing time was considered in Experiment 2.

Our goal was to measure the performance of users
performing the edit-point-finding task in as unbiased
manner as possible. In the best of all possible worlds, we
would have a large pool of input ontologies and of test
subjects with the necessary skills so that we could get an
overall idea of the performance of the tools. This was not
practical, so we selected a pair of test subjects who were

as closely matched as we could find in knowledge
representation skill as well as skill in the use of the tool.
We used one subject with the Ontolingua editor who had
considerable experience using the tool as a browser,
though little as an editor. The test subject who was to use
Chimæra had a small amount of experience using
Chimæra as a browser, but no experience using any of the
editing features. In accordance with our overall strategy
of bias reduction, the bias in the test subject selection
clearly favored the Ontolingua editor over Chimæra.

The test subject using Chimæra was given a guided tour
of its editing operations. Both users had about two hours
to practice using their respective tools specifically on the
ontology merging task. For the practice session, they
were each provided with some small sample ontologies
that had no overlap with the ontology content of the test
ontologies.

We instrumented Chimæra so that we could identify the
commands being invoked, the times at which the
commands were executed, and the number of arguments
used by the commands. The goal was for the test subject
to use Chimæra not only to find the edit points, but also to
perform the edits so that we could learn as much as
possible from the process. Having performed the timed
merge, we would then subtract out the time taken to
perform the edits to make the results more comparable to
the use of the Ontolingua editor.

For the experiment with the Ontolingua editor, we timed
the test subject with a stopwatch. When the test subject
identified an edit point, the clock was stopped, and the
test subject turned away from the screen. The desired
edits were then performed, and the clock restarted. It is
essential to perform the edits suggested because
performing the proposed edits changes the structure of the
ontology and the way that it appears on the display. This
often results in terms that were previously distant on the
display appearing close together, thereby making other
candidate edit operations more obvious. Ironically, as we
saw in our previous calibration experiments, Chimæra is
so much more efficient at performing these edits than the
Ontolingua editor that when the experiment referee
stepped in to perform the requested edits during the
experiment, he used Chimæra to perform them.

We decided that before conducting the experiment it
would be a good idea to calibrate the experiment by
getting an idea of the upper bound of the possible
performance using Chimæra. We therefore had one of the
developers of Chimæra - and experienced user - use
Chimæra to perform the merge of the two proposed input
ontologies a number of times. This was to give us an idea
both of the number of edit operations that could
reasonably be found in the ontologies, and the maximum
speed with which a user could perform the merge if all of
the thinking time necessary to decide what to merge was

reduced as close to zero as possible. We anticipated that
were we to graph the edit operations against time we
would see a clear knee in the curve at the point at which
the "low-hanging fruit" had all been plucked. Given this
point, we intended to run the real experiment for a time
not exceeding the time for the knee in the curve. This
would, we thought, give us some confidence that we were
likely to be in the low-hanging fruit operating region of
both tools, since we anticipated that Chimæra would be
faster than the Ontolingua editor. If we were to stop the
experiment after an arbitrary time without performing this
calibration, we might bias the result in favor of the slower
tool if the faster tool had been fast enough to get outside
its low-hanging fruit region in the time allotted, but the
slower tool had not.

Figure 3 shows the results from this calibration
experiment. The anticipated knee in the curve did not
actually appear, though there is a knee at 622 seconds,
where the user finished his first pass through the Name
Resolution agenda. After about an hour, the user stopped,
reporting that all of the edits that he was performing
seemed by that point to be concentrated in cleaning up
one of the input ontologies, rather than actually merging
the ontologies. Given the results of this calibration run,
we decided to give the two test subjects 55 minutes in
which to perform their edit-point finding.

Figure 3: The cumulative number of edit points found and
edits performed using Chimæra plotted against time in
seconds. The dense set of points early on was
characterized by a large number of merge operations
driven from the Name-Resolution agenda. Subsequent
edit points were found using the Taxonomy-Traversal
agenda and other Chimæra browsing features.

We wanted to try to control as much as possible for the
different representational decisions that two test subjects
might make, so during the experiment, the developer who
performed the calibration experiment was on-hand to
answer any representational questions whenever such

Experiment 3: Maximum edits performed vs. time

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000 3500

Time(s)

questions arose. This oracle was not allowed to volunteer
any edit suggestions, but would, if prompted, say whether
any pair of classes should be merged or have an additional
relationship asserted.

Our goal was to define the idea of "finding an edit point"
to mean as closely as possible the same thing for the two
tools. There were, however, some differences because of
the nature of the tools. For Chimæra, the time taken to
find an edit point was the time taken to identify the place
to edit and to select the arguments for the editing
operation. These times were captured by Chimæra’s
instrumentation. For the Ontolingua editor, we measured
the time taken between the clock being started and the
user calling out for the clock to be stopped upon finding a
candidate edit and calling out the arguments to be used in
the edit. We did this because we knew that we would not
be using the Ontolingua editor actually to perform the
edits.

We had to decide whether to allow edits within input
ontologies as well as across ontology boundaries during
the experiment. We anticipate that the ontology merging
process may typically involve some clean up to the input
ontologies, but we wanted to focus our evaluation on the
merging process rather than on intra-ontology editing, so
we decided to disallow intra-ontology edits for this
experiment. Cycorp provided to us for use in this
experiment the part of their IKB relating to Agents that
they had built for the HPKB program. With this input
ontology, which we had not seen before, we could be
confident that we had received a clean and well-
documented ontology, and that there would be a
reasonable amount of overlap with our own Agents
representation similarly developed for the HPKB
program. Restricting scoring of candidate edit points to
include only proposed edits that had at least one argument
from each ontology was easy in Chimæra, since they are
color-coded. In the case of the Ontolingua editor, we
renamed all of the terms in one ontology to have a
common suffix indicating the ontology of origin. We
provided this substantial help to the subject using
Ontolingua in order to improve the comparability of the
experimental results. Interestingly, we used a command
in Chimæra to do this systematic renaming.

Figure 4: Chimæra proved to be superior to the
Ontolingua editor at finding candidate edit points

Figure 4 shows the results from Experiment 3. There are
a number of ways to interpret at these results depending
on what we hope to learn. The fact that the curve for
Chimæra is always well above the curve for the
Ontolingua editor clearly shows the significant superiority
of Chimæra for this task. Overall, the Chimæra test
subject was able to identify 3.7 times as many edit points,
and was also able to perform the edits.

It is difficult to come up with a simple numeric rate for
the number of edit points found per minute because we
need to have reason to believe that there is an underlying
linear model before such a rate number has any meaning
or predictive value. Luckily, we do have reason to
believe that there is a linear model underlying at least part
of Experiment 3 (there may be linear models underlying
other parts, but we do not know this with certainty). The
Name Resolution menu in Chimæra presents the user with
a simple list of candidate edit points. The user, in general,
iterates through this list until all elements of the list have
been processed. This is what our user was doing during
the first 185 seconds of the experiment. In this linear
region, merges were being found, considered, and
accepted or rejected at the rate of about one every nine
seconds. The correlation to a linear fit in this region is
R2=0.94, supporting our reasoning that the underlying
model is linear. This result is consistent with our
experience on other ontologies. We expect that this linear
model should be broadly independent of ontology size,
since the time taken to construct the agenda itself is
factored out. The algorithm that constructs the name
resolution menu is O(n2). Within the known linear
region, Chimæra outperformed the Ontolingua editor by a
factor of fourteen.

The test subject who was using the Ontolingua editor also,
we believe, exhibited a linear strategy. This happened
because during the practice session the test subject
developed a systematic method for finding candidate edit
points that involved a systematic traversal of the
ontology. The strategy involved looking in turn at each
class and then considering all of its siblings and the
siblings of each of its superclasses up to the roots to see
whether a merge or taxonomic edit was appropriate. The
number of examination steps necessary for any given
class is a function of the depth of the taxonomy and
branching factor of the superclasses. The time taken to
perform any given iteration in this strategy is therefore
reasonably constant, though influenced by the number of
subclasses that must be inspected once a candidate edit
has been selected. We believe that the complexity of this
strategy is bounded by O(n.logb(n)) and O(n2), where b is
the average subclass branching factor and n is the size of
the ontology. For an ontology such as the one we used as

Experiment 3: Chimжra vs. Ontolingua editor

0

20

40

60

80

100

0 400 800 1200 1600 2000 2400 2800 3200 3600

Time (s)

C
um

ul
at

iv
e

op
er

at
io

ns

Chimжra
Ontolingua Editor

input, however, the model should be roughly linear. The
results for a linear fit throughout the experiment for the
Ontolingua editor give us a rate of 157 seconds per edit
point found, with a correlation of 0.98.

5 DIAGNOSTICS TESTS

Chimaera also has a set of diagnostics that can be run
selectively or in their entirety. Routinely when we obtain
knowledge bases now, we run the diagnostics and
invariably find issues with our incoming KBs. The
current list of diagnostics was derived as a retrospective
analysis of the most useful domain independent tests that
we needed to run on the HPKB and on the crawled web
ontologies. They group into four areas:

1) Simple checks for incompleteness (missing argument
names, missing documentation strings, missing
sources, missing type constraints, missing term
definitions);

2) Syntactic analysis (incidence of words (or sub-
strings), possible acronym expansion);

3) Taxonomic analysis (redundant super classes,
redundant types, trivial instances or subclasses of
THING, definition extensions from included
ontologies), and

4) Semantic evaluation (slot value/type mismatch, class
definition cycle, domain/range mismatch).

This is obviously not everything that could be checked.
The current diagnostic suite does not connect to the full
theorem prover so there is only limited consistency
checking. The current testing environment also does not
give users the power to add their own, potentially domain-
specific, checks. Even with the limited power of the
diagnostics set though, we successfully used it to provide
initial correctness and completeness checks of all incoming
HPKB knowledge bases for our final team evaluation.
Possibly more importantly, its output was usable by people
with little training in knowledge representation, and we
found that with no training they could make effective and
correct improvements to the knowledge bases guided by
the diagnostic output. Also, the tool takes multiple input
formats, thus we were able to allow people to use it who
had no familiarity with OKBC or Ontolingua. We had
some SNARK and KIF-literate users load in their
ontologies in the input format they were familiar with, run
diagnostics, and debug their knowledge bases with little
intervention from us. We also used this toolset to check
for problems in our semi-automatically generated
ontologies from web crawls. The tests found a surprising
number of things that would have been tedious or difficult
for us to find ourselves, such as class cycles and
inconsistency in naming in Amazon’s ontology. Finally,
we used the merging tool with ontologies generated by

naïve users with no training, and they were able to
immediately merge independent ontologies and use the
tool effectively to focus their attention on the problem
areas in the ontologies. They also used the diagnostics
effectively with no training.

6 CONCLUSION

We have presented an ontology editing, merging, and
diagnostic environment developed to meet the emerging
needs of representation and reasoning tasks on the Web
and of ontology creation and maintenance tasks. We have
briefly overviewed the merging and diagnostics
components and presented some evaluation results on the
merging side and some anecdotal reports on the
diagnostics side. While our tool is in its early stages,
these evaluations of the tool, our own personal use of the
tool, and demand for the tool from both the commercial
and academic sectors provide notable evidence that it
makes significant improvements in productivity and
quality of ontology development and maintenance. We
are continuing to develop the tool, focusing in particular
on extending its reasoning capabilities, semantic analysis,
its extensibility, and usability by non-experts.

Acknowledgements

The authors are indebted to DARPA for their support of
this research under contract N66001-97-C-8554, Large-
Scale Repositories of Highly Expressive Knowledge. We
would also like to thank Cycorp for kindly providing
knowledge base fragments for some of the merging
experiments and Bob Schrag at IET for his support in the
design and conducting of the experiments.

Bibliography

Alex Borgida, Ronald J. Brachman, Deborah L.
McGuinness, and Lori Alperin Resnick; CLASSIC: A
Structural Data Model for Objects, Proceedings of the
1989 ACM SIGMOD International Conference on
Management of Data, Portland, Oregon, June, 1989, pp.
59--67.

Ronald J. Brachman, Alex Borgida, Deborah L.
McGuinness, and Peter F. Patel-Schneider; "Reducing"
CLASSIC to Practice: Knowledge Representation Theory
Meets Reality; In the Artificial Intelligence Journal,
114(1-2) pages 203-237, October, 1999.

Hans Chalupsky, Eduard Hovy, Tom Russ; Progress on
an Automatic Ontology Alignment Methodology;
Proceedings of the ANSI ad hoc group on ontology
standards, 1997. http://ksl-web.stanford.edu/onto-std/ .

Hans Chalupsky. OntoMorph: A Translation System for
Symbolic Knowledge, in A. G. Cohn, F. Giunchiglia, and
B. Selman, editors, Principles of Knowledge

Representation and Reasoning: Proceedings of the
Seventh International Conference (KR2000), Morgan
Kaufmann Publishers, San Francisco, CA., 2000.

Vinay Chaudhri, Adam Farquhar, Richard Fikes, Peter
Karp, and James Rice; OKBC: A Programmatic
Foundation for Knowledge Base Interoperability;
Proceedings of the Fifteenth National Conference on
Artificial Intelligence (AAAI-98); AAAI Press.
(http://www.ksl.stanford.edu/KSL_Abstracts/KSL-98-
08.html)

Paul R. Cohen, Robert Schrag, Eric Jones, Adam Pease,
Albert Lin, Barbara Starr, David Easter, David Gunning,
and Murray Burke. The DARPA High Performance
Knowledge Bases Project. In Artificial Intelligence
Magazine. Vol. 19, No. 4, pp.25-49, 1998.

DMOZ – Open Directory Project. http://www.dmoz.org .

John Domingue. Tadzebao and WebOnto: Discussing,
Browsing, and Editing Ontologies on the Web. 11th
Knowledge Acquisition for Knowledge-Based Systems
Workshop, April 18th-23rd. Banff, Canada, 1998.

Adam Farquhar, Richard Fikes, and James Rice; The
Ontolingua Server: a Tool for Collaborative Ontology
Construction; International Journal of Human-Computer
Studies 46, 707-727, 1997.
(http://www.ksl.stanford.edu/KSL_Abstracts/KSL-96-
26.html)

Gleb Frank, Adam Farquhar, and Richard Fikes; Building
a Large Knowledge Base from a Structured Source: The
CIA World Fact Book; IEEE Intelligent Systems, Vol. 14,
No. 1, January/February 1999.
(http://www.ksl.stanford.edu/KSL_Abstracts/KSL-98-
16.html)

Natalya Fridman Noy and Mark A. Musen. An Algorithm
for Merging and Aligning Ontologies: Automation and
Tool Support in AAAI-99 Workshop on Ontology
Management. Also, SMI Technical Report SMI-99-0799.

Natalya Fridman Noy and Mark A. Musen; SMART:
Automated Support for Ontology Merging and Alignment;
Twelfth Banff Workshop on Knowledge Acquisition,
Modeling, and Management; Banff, Alberta, Canada;
1999. Also, SMI Technical Report SMI-1999-0813

Intraspect Knowledge Server, Intraspect Corporation,
1999.
(http://www.intraspect.com/product_info_solution.htm)

Y. Iwasaki, A. Farquhar, R. Fikes, & J. Rice; A Web-
based Compositional Modeling System for Sharing of
Physical Knowledge. Morgan Kaufmann, Nagoya, Japan,
1997. (http://www.ksl.stanford.edu/KSL_Abstracts/KSL-
98-17.html).

Kevin Knight and Steve Luk; Building a Large-Scale
Knowledge Base for Machine Translation; Proceedings of
the National Conference on Artificial Intelligence
(AAAI), 1994.

A.T. McCray and S.J. Nelson; The representation of
meaning in the UMLS; Methods of Information in
Medicine; 1995; 34: 193-201.

Deborah L. McGuinness; Ontologies for Electronic
Commerce, Proceedings of the AAAI Artificial
Intelligence for Electronic Commerce Workshop,
Orlando, Florida, July, 1999.

Deborah L. McGuinness; Ontological Issues for
Knowledge-Enhanced Search; Proceedings of Formal
Ontology in Information Systems, June 1998. Also in
Frontiers in Artificial Intelligence and Applications, IOS-
Press, Washington, DC, 1998.

Deborah L. McGuinness and Peter Patel-Schneider;
Usability Issues in Knowledge Representation Systems;
Proceedings of the Fifteenth National Conference on
Artificial Intelligence, Madison, Wisconsin, July, 1998.
This is an updated version of Usability Issues in
Description Logic Systems published in Proceedings of
International Workshop on Description Logics, Gif sur
Yvette, (Paris) France, September, 1997.

Deborah L. McGuinness, Lori Alperin Resnick, and
Charles Isbell; Description Logic in Practice: A
CLASSIC: Application; Proceedings of the 14th
International Joint Conference on Artificial Intelligence,
Montreal, Canada; August, 1995.

Deborah L. McGuinness and Jon Wright; An Industrial
Strength Description Logic-based Configurator Platform;
IEEE Intelligent Systems, Vol. 13, No. 4, July/August
1998, pp. 69-77.

Deborah L. McGuinness and Jon Wright; Conceptual
Modeling for Configuration: A Description Logic-based
Approach; Artificial Intelligence for Engineering Design,
Analysis, and Manufacturing Journal - special issue on
Configuration, 1998.

K.A. Spackman, K.E. Campbell, and R.A. Cote;
SNOMED-RT: a reference terminology for health care;
Proceedings of the 1997 AMIA Annual Fall Symposium;
1997; 640-644.

William Swartout, Ramesh Patil, Kevin Knight, and Tom
Russ; Toward Distributed Use of Large-Scale Ontologies,
Proceedings of the 10th Banff Knowledge Acquisition
Workshop; Banff, Alberta, Canada; November 9-14,
1996.

United Nations Standard Product and Services
Classification (UNSPSC) Code organization.
http://www.unspsc.org/home.htm

Chris Welty; An HTML Interface for CLASSIC;
Proceedings of the 1996 International Workshop on
Description Logics; AAAI Press; November, 1996.

