
On Schema Matching with Opaque Column Names and
Data Values

Jaewoo Kang Jeffrey F. Naughton
Department of Computer Sciences
University of Wisconsin-Madison

1210 West Dayton Street
Madison, WI 53706, USA

{jaewoo, naughton}@cs.wisc.edu

ABSTRACT
Most previous solutions to the schema matching problem rely in
some fashion upon identifying "similar" column names in the
schemas to be matched, or by recognizing common domains in the
data stored in the schemas. While each of these approaches is
valuable in many cases, they are not infallible, and there exist
instances of the schema matching problem for which they do not
even apply. Such problem instances typically arise when the
column names in the schemas and the data in the columns are
"opaque" or very difficult to interpret. In this paper we propose a
two-step technique that works even in the presence of opaque
column names and data values. In the first step, we measure the
pair-wise attribute correlations in the tables to be matched and
construct a dependency graph using mutual information as a
measure of the dependency between attributes. In the second
stage, we find matching node pairs in the dependency graphs by
running a graph matching algorithm. We validate our approach
with an experimental study, the results of which suggest that such
an approach can be a useful addition to a set of (semi) automatic
schema matching techniques.

1. INTRODUCTION
The schema matching problem at the most basic level refers to the
problem of mapping schema elements (for example, columns in a
relational database schema) in one information repository to
corresponding elements in a second repository. While schema
matching has always been a problematic and interesting aspect of
information integration, the problem is exacerbated as the number
of information sources to be integrated, and hence the number of
integration problems that must be solved, grows. Such schema
matching problems arise both in “classical” scenarios such as
company mergers, and in “new” scenarios such as the integration
of diverse sets of queryable information sources over the web.

Purely manual solutions to the schema matching problem are too
labor intensive to be scalable; as a result, there has been a great
deal of research into automated techniques that can speed this
process by either automatically discovering good mappings, or by

proposing likely matches that are then verified by some human
expert. In this paper we present such an automated technique that
is designed to be of assistance in the particularly difficult cases in
which the column names and data values are “opaque,” and/or
cases in which the column names are opaque and the data values
in multiple columns are drawn from the same domain. Our
approach works by computing the “mutual information” between
pairs of columns within each schema, and then using this
statistical characterization of pairs of columns in one schema to
propose matching pairs of columns in the other schema.

To clarify our aims and provide some context, consider a classical
schema mapping problem that arises in a corporate merger. To
complete the merger, we have to integrate the databases of the two
companies. How should we determine which attributes in one
company’s tables should be mapped to which attributes in the
other’s tables? First, one logical approach is to compare attribute
names across the tables. Some of the attribute names will be clear
candidates for matching, due to common names or common parts
of names. Using the classification given in [20], such an approach
is an example of schema-based matching [4][18]. However, for
many columns schema-based matching will not be effective,
because different institutions may use different terms or encodings
for semantically identical attributes, or use similar names for
semantically different attributes.

When schema-based matching fails, the next logical approach is
to look at the data values stored in the schemas. Again referring
to the classification from [20], this approach is called instance-
based matching [6][12][13]. Instance-based matching also will
work in many cases. For example, if we are deciding whether to
match Dept in one schema to either DeptName or DeptID in the
other, by looking at the column instances one may easily find the
mapping, because DeptName and DeptID are likely to be drawn
from different domains, e.g., names and alpha-numeric codes.
Unfortunately, however, instance-based matching is also not
always successful.

When instance-based mapping fails, it is often because of its
inability to distinguish different columns over the same data
domain and, similarly, its inability to find matching columns over
different encodings of logically similar domains. For example,
EmployeeID and CustomerID columns in a table are unlikely to
be distinguished if both the columns are of numeric data types and
the ranges of the IDs are identical. Similarly, if one company uses
numeric values for the EmployeeID while the other company uses
a formatted text for what is logically the same column, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD 2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-643-X/03/06…$5.00.

traditional instance-based approach will fail to identify the
correspondence between the two EmployeeID columns.

The technique we propose in this paper is also an instance-based
technique. However, it applies in cases where previously
proposed techniques do not apply because 1) it does not rely on
any interpretation of data values, and 2) it considers correlations
among the columns in each table. We emphasize that our claim is
not that our technique dominates previously proposed techniques
(it doesn’t); rather, since it applies where previous techniques do
not apply, it is a useful addition to a suite of automated schema
mapping tools.

To gain insight into our approach, consider the example tables in
Figure 1. Suppose these tables are from two automobile plants in
different companies or divisions of a large company. Imagine that
the column names of the second table and data instances in
columns B and C are some plant specific codes that are
incomprehensible to the schema matching tools. Conventional
instance-based matchers may find correspondence between the
columns Model and A due to their syntactic similarity. However,
no further matches are likely to be found because the two columns
B and C cannot be interpreted and they share exactly same
statistical characteristics; that is, they have the same number of
unique values, similar distributions, and so forth.

To make progress in such a difficult situation, our technique
exploits dependency relationships between the attributes in each
table. For instance, in the first table in Figure 1, there will exist
some degree of dependency between Model and Tire if model
partially determines the kinds of tires a car can use. On the other
hand, perhaps Model and Color are likely to have very little
interdependency. If we can measure the dependency between
columns A and B and columns A and C, and compare them with
the dependency measured from the first table, it may be possible
to find the remaining correspondences.

As we can see, an advantage of using dependency relations in
schema matching is that this approach does not require data
interpretation; that is, even if the data sets in the schemas to be
matched use different encodings, we can still measure the
dependency relations. As a result, our proposed matching
technique can be applied to multiple unrelated domains without
retraining or customization. We refer to matching techniques that
are not dependent of data interpretation as un-interpreted
matching, and make this precise in the next definition.

Definition 1.1 Interpreted vs. Un-Interpreted Matching Let
M1 = match(R(r1, r2, .., rn), S(s1, s2, .., sm)) and M2 = match(R(r1,
r2, .., rn), S(f1(s1), f2(s2), .., fm(sm)) where Mi is a match result,
match is a schema matching algorithm, R is a source schema of
size n, S is a target schema of size m, and finally fi is an arbitrary
one-to-one function applied to the values of column i in the target
schema. We call the given matching algorithm, match, an un-
interpreted matching if and only if the two match results M1 and

M2 are identical regardless of the function fi. Conversely, it is
called an interpreted matching if the two results are different.

In the following it will also be useful to have the following
definition, which captures the notion of whether the matching
algorithm considers data elements in isolation or their relationship
to other data elements.

Definition 1.2 Element vs. Structure Matching Structure
Matching algorithms utilize the relationship between columns in
a table, while element matching algorithms only consider
properties of single columns.

Figure 2 illustrates classification of schema matching techniques
based on the use of data interpretation and structural similarity.
While all four classes of techniques are valuable in different
domains, we focus in this paper on un-interpreted structure
matching. We propose a two-step technique that works in the
presence of opaque attribute names and values. In the first stage,
we measure the pair-wise attribute correlations in the tables to be
matched and construct a dependency graph using mutual
information [5] (a measure of the dependency between attributes.)
In the second stage, we find matching node pairs in the
dependency graphs by running a graph matching algorithm. In
this paper we are making the following contributions:

• We introduce a new criterion, data interpretation, in
classifying schema matching techniques. Along with
structural similarity we classify schema matching techniques
into four categories. Using this classification, we identify a
new problem class that has not been addressed by existing
techniques.

• We introduce a new two-step schema matching technique
that takes into account the dependency relations among the
attributes.

• We reduce a schema matching problem to a traditional graph
matching problem by capturing hidden dependencies
between attributes and structuring them as a labeled graph.

• We validate our approach with an experimental study, the
results of which suggest that such an approach can be a
useful addition to a set of (semi) automatic schema matching
techniques. Our experiments also show by exploiting
relationships between columns our techniques can do much
better than a technique that only considers statistical
properties of individual columns.

Model Color Tire

XLE White P2R6

XG2.5 Silver XR5

LE Red GM6

A B C

GL3.5 b1 c1

XGL b2 c2

XE b3 c3

Figure 1. Two tables from car part databases

D
at

a
In

te
rp

re
ta

tio
n

In
te
rp
re
te
d

U
n-
in
te
rp
re
te
d

Figure 2. Schema matching technique classification

The rest of the paper is organized as follows: Section 2 describes
the two-step un-interpreted structure matching technique. Section
3 validates the framework with an experimental study. Section 4
presents related work. Lastly, Section 5 concludes the paper and
identifies future work.

2. UN-INTERPRETED MATCHING
In this section we describe in detail our un-interpreted structure
matching technique. The algorithm takes two table instances as
input and produces a set of matching node pairs. Our approach
works in two main steps as shown below. The function
Table2DepGraph() in the first step transforms an input table like
the one shown in Figure 3(a) into a dependency graph shown in
Figure 3(c). The function GraphMatch() in the second step takes
as input the two dependency graphs generated in the first step and
produces a mapping between corresponding nodes in the two
graphs.

1. G1 = Table2DepGraph(S1);
G2 = Table2DepGraph(S2);

2. {(G1(a), G2(b))} = GraphMatch(G1, G2);

where Si = input table, Gi = dependency graph,
(G1(a), G2(b)) = matching node pair.

The two steps are described in detail later in this section.

2.1 Preliminaries
To construct a dependency graph, we use mutual information and
entropy, which are defined as follows (these definitions are from
“Elements of Information Theory” by Cover and Thomas [5]):

Definition 2.1 Mutual Information Let X and Y be two
attributes with alphabets X and Y, respectively. Consider some

joint probability distribution p(x, y) and marginal probability
distributions p(x) and p(y) over two attributes. We define the
mutual information of X and Y as:

(,)
(;) (,) log

() ()x y

p x y
MI X Y p x y

p x p y∈ ∈
= ∑ ∑

X Y

Definition 2.2 Entropy Let X be an attribute with alphabet X,

and consider some probability distribution p(x) of X. We define
the entropy H(X) by:

() () log ()
x

H X p x p x
∈

= −∑
X

Note that both entropy and mutual information are functions of
probability distributions and thus are independent of the actual
values of attributes. This property allows them to be used in un-
interpreted matching. One interesting question we explore in our
performance section is whether we need to compute mutual
information, or whether entropy alone suffices. Our results show
that mutual information can substantially improve the matching
algorithm in many cases.

Entropy describes the uncertainty of values in an attribute with a
non-negative real number. Similarly, mutual information
describes the correlation between the two attributes’ probability
distributions, also using a non-negative real number. In other
words, it measures the amount of information captured in one
attribute about the other. This becomes more intuitive when we

consider the relationship between mutual information and
entropy. To explain this relationship we need one more basic
definition, that of conditional entropy [5].

Definition 2.3 Conditional Entropy Let X and Y be two
attributes with alphabets X and Y, respectively. We define the

conditional entropy of X and Y as:

(|) (,) log (|)
x y

H X Y p x y p x y
∈ ∈

= −∑ ∑
X Y

Conditional entropy H(X|Y) measures the uncertainty of attribute
X given knowledge of attribute Y. It is a non-negative real
number and becomes zero when X=Y or when there exists a
functional dependency from Y to X, because in these cases, no
uncertainty exists for attribute X. On the other hand, if the two
attributes X and Y are independent, the conditional entropy H(X|Y)
equals H(X). We can now redefine the mutual information
formula using entropy and conditional entropy.

(,)
(;) (,) log (;)

() ()

(|)
(,) log

()

(,) log (|) (,) log ()

() (|) () (|)

x y

x y

x y x y

p x y
MI X Y p x y MI Y X

p x p y

p x y
p x y

p x

p x y p x y p x y p x

H X H X Y H Y H Y X

∈ ∈

∈ ∈

∈ ∈ ∈ ∈

= =

=

= −

= − = −

∑ ∑

∑ ∑

∑ ∑ ∑ ∑

X Y

X Y

X Y X Y

As we can see in the equation, mutual information measures the
reduction in uncertainty of one attribute due to the knowledge of
the other attribute. In other words, it measures the amount of
information that one attribute contains about the other. It is zero
when two attributes are independent, and increases as the
dependency between the two attributes grows. Note that mutual
information of an attribute with itself (called self information),
MI(X; X), is equivalent to the entropy of X, i.e. H(X).

2.2 Modeling Dependency Relation
Consider the example illustrated in Figure 3. Figure 3(a) and 3(b)
show two four-column input tables and 3(c) and 3(d) show the
corresponding dependency graphs. The Table2DepGraph()
function produces such dependency graphs by calculating the
pair-wise mutual information over all pairs of attributes in a table
and structuring them in an undirected labeled graph. For instance,
each edge in the dependency graph G1 (Figure 3(c)) has a label
indicating mutual information between the two adjacent nodes;
for example, the mutual information between nodes A and B is
1.5, and so on. The label on a node represents the entropy of the
attribute, which is equivalent to its mutual information with itself
or self information. Hence we can model our dependency graph in
a simple symmetric square matrix of mutual information, which is
defined as follows:

Definition 2.4 Dependency Graph Let S be a schema instance
with n attributes and ai (1≤ i≤ n) be its ith attribute. We define
dependency graph of schema S using square matrix M by:

() , where (;), 1 ,ij ij i jM m m MI a a i j n= = ≤ ≤

The intuition behind using mutual information as a dependency
measure is twofold: 1) it is value independent; hence it can be

used in un-interpreted matching 2) it captures complex
correlations between two probability distributions in single
number, which simplifies the matching task in the second stage of
our algorithm.

2.3 Matching Strategies
In this subsection, we focus on the second half of the schema
matching process: GraphMatch(). Before we delve into the main
discussion, let us first examine the types of cardinality constraints
that we need to consider in schema matching. Let A and B be two
input schemas that we are trying to match. We consider three
types of cardinality constraints.

 One-to-one mapping ([1,1] – [1,1], in UML notation): Each
attribute in A has a unique match in B, and vice versa. This
corresponds to a case in which we know that the tables that
we are trying to map have the same number of attributes, so
the problem is just finding a correspondence between the
attributes.

 Onto mapping ([0,1] – [1,1]): Each attribute in A has a
unique match in B while each attribute in B either has a
unique match in A or remains unmatched. This corresponds
to a case in which we know that table A’s attributes are a
subset of table B’s, so we have to discover this subset and
then decide how to map attributes within this subset.

 Partial mapping ([0,1] – [0,1]): Each attribute in A either has
a unique match in B or remains unmatched, and vice versa.
This corresponds to the most general and difficult case in
which we do not know which attributes of A map to B, nor
do we even know how many attributes of A map to B. In
this case we need to find the best subset of attributes of A to
map to B, and also need to find how this subset of A should
be mapped.

In the following, we will use distance metrics to evaluate the
quality of matching. A distance is assigned to each instance of
mapping between schema elements, and the goal is to find a
mapping that optimize the distance, i.e., minimize it or maximize
it, depending on how the distance metric is defined. One-to-one

mappings and onto mappings both guarantee that all attributes in
schema A will find matches in schema B, whereas partial
mappings do not. Because of this, some distance metrics that work
for one-to-one and onto mappings do not work for partial
mappings. Let us formally define the class of such metrics:

Definition 2.5 Monotonic of Distance Metrics Let A and B be
two dependency graphs with sizes (#of nodes) n and m,
respectively, where n ≤ m. Let Dp(A,B) be the distance of best
matching for two p node sub-graphs of A and B. The distance
metric Dp(A,B) is monotonic if and only if Dp(A,B) ≥ (or ≤)
Dp+1(A,B) for all graphs A and B, and for all p in 1≤p≤n-1.

Monotonic metrics are not suitable for partial mapping because
they reach their best score after either one attribute has been
matched or all attributes have been fully matched depending on
their direction of monotonicity, hence they will never produce a
mapping in between (this problem doesn’t arise with the one-to-
one and onto mapping problems, because the problem statement
enforces the number of columns to be matched.) To see this,
suppose we are matching two schemas R(r1, r2, .., rn), S(s1, s2, ..,
sm). With a metric cost (or distance) of which increases
monotonically as the size of matching grows, some pair of
columns will be chosen first as being the best match; suppose this
is ri matched to sj, and that the cost of this match is c. With such
metric, we can never improve upon c, and the matching algorithm
will just return that the "best" match is ri and sj, in effect not even
considering matchings for additional columns. This is not
appropriate for the partial mapping problem. Therefore, we need
to be careful with metric selection in case of partial mapping. In
this paper we consider two basic distance metrics, one monotonic,
the other not monotonic. Clearly these are not the only possible
metrics, and finding better metrics is an interesting area for future
research. However, as we will see in the experimental section,
these simple metrics perform surprisingly well. Consider the
following basic distance metric:

Definition 2.6 Euclidean Distance Metric Let A and B be two
equal size dependency graphs and aij and bij be the mutual
information between the node i and j in graph A and B,
respectively. Let m be an index that maps a node in graph A to the
matching node in graph B (i.e., m(node in A) = matching node in
B). We define the Euclidean distance metric for graph A and B
as:

2
() ()

,
(,) ()U

ij m i m jM i j
D A B a b= −∑

As we can see in the definition, the Euclidean distance metric is
monotonic; that is, the distance between two input graphs
increases monotonically as the number of matches increases. The
minimum distance we get from the metric is always the distance
of a single best matching node pair. Hence, we can not use the
metric on partial mapping problems. As we pointed out, we need a
non-monotonic distance metric for partial mapping. Here is one
such metric:

Definition 2.7 Normal Distance Metric Let α be some positive
constant. Similarly, we can define the normal distance metric for
graph A and B as:

() ()

,
() ()

(,) (1)
ij m i m jN

M i j
ij m i m j

a b
D A B

a b
α −

= −
+∑

A B C D
a1 b2 c1 d1
a3 b4 c2 d2
a1 b1 c1 d2
a4 b3 c2 d3

W X Y Z
w2 x1 y1 z2
w4 x2 y3 z3
w3 x3 y3 z1
w1 x2 y1 z2

a) Example Table S1 b) Example Table S2

c) Dependency Graph (G1) of
Table S1

d) Dependency Graph (G2) of
Table S2

Figure 3. Two input table examples and their dependency
graphs. A weight on an edge represents mutual information
between the two adjacent attributes and a weight on a node
represents entropy of the attribute (or equivalently, self-
information MI(A;A)).

In the second term of the subtraction, we normalized the
difference of two pairing mutual information values by dividing
by the sum of the two values. The intuition behind this
normalization is that, for example, mutual information values 8
and 9 are likely to indicate a better match than the pair 1 and 2
because the relative error in the latter is much greater than it is in
the former. We refer to this normalized term,

()() () () ()ij m i m j ij m i m ja b a b− + , as normal distance. The normal

distance falls in the range of [0, 1] because the mutual information
is non-negative real number. If we assume the mutual information
values are uniformly distributed and we randomly choose two of
them, the expected value of normal distance is 1/3. Now consider
the control parameter α. In case of α =3, the expected value of
whole distance metric becomes 0 with the normal distribution /
random selection assumption. In such cases, the mapping of
randomly chosen two attributes will not contribute to the distance
metric. Conversely, if the two attributes map correctly the
mapping will positively contribute to the distance metric.

By changing the parameter α, we can control the behavior of the
distance metric. As we increase the α gradually from the original
value, say 3, we will see the random mapping assignments start to
contribute negatively to the distance metric. As a result, the
matching returned from the normal distance metric with large α is
likely to be more conservative than that with small α. That is,
metric with large α returns smaller but high confidence candidate
matches while the metric with small α returns larger but less
confident candidates.

So far, we have discussed two distance metrics: one for
monotonic and one for non-monotonic tasks. Let us now examine
the search (or graph matching) algorithms we will use. In terms
of complexity, the search for a one-to-one mapping is the easiest
among the three cardinality types. Let n and m be the number of
attributes in schemas A and B, respectively, and suppose that we
are finding mappings from A to B. Then, the size of search space
for one-to-one mapping is O(n!). The search space of onto
mapping is factor of mCn bigger than that of one-to-one mapping,
which is O(m!/(m-n)!). Finally, partial mapping is the one with
the most flexible cardinality constraints and its complexity is

asymptotically
1

! ()!
n

n k
k

C m m k= −∑ . It is obvious that a naïve

exhaustive search will be impractical for schemas with large
numbers of attributes.

In practice, however, we can use instead an approximate search
algorithm that trades off the accuracy of matching and the
computational complexity. A large volume of literature has been
devoted to finding such efficient, yet accurate graph matching
approximations. In our experiments, however, we used a simple
exhaustive search and did not explore the options of using
approximations, because we wanted to measure the accuracy of
un-interpreted matching precisely and the use of approximation
might affect the measurement to some degree, due to the
algorithm’s own approximation error.

To improve upon a naïve exhaustive search and reduce the
complexity at least to a tractable range (for example, hours not
days), in our experiments in Section 4, we used simple heuristics
to limit the search space. We set an upper bound for the number
of match candidates that a search algorithm considers for each
attribute. In our experiments, the match algorithm compares the
entropies of attributes across the two input tables and chooses, for

each source attribute, the closest p target attributes from the target
table. We used three as the upper bound, p, in our experiments.

The match algorithm matches the two input graphs by finding the
mapping that optimizes the distance metric. We can optimize
different metrics in different ways. For example, if the Euclidean
distance metric is used, the match algorithm must minimize the
metric to find the best mapping. On the other hand, the match
algorithm must maximize it if the normal distance metric is used.

Now, recall that one of our goals was to determine if mutual
information matching is necessary, or whether entropy-only
mapping was sufficient. To address this issue, we need an
entropy-only version of the two distance metrics.

Definition 2.8 Entropy-only Euclidean Distance Metric Let A
and B be two tables with equal number of attributes and ai and bi
be the entropies of attribute i in table A and B, respectively. Let m
be an index that maps an attribute in table A to the matching
attribute in table B. We define the entropy-only Euclidean
distance metric for table A and B as:

2
()(,) ()U

i m iE i
D A B a b= −∑

Definition 2.9 Entropy-only Normal Distance Metric Similarly,
we can define the entropy-only normal distance metric for graph
A and B as:

()

()
(,) (1)

i m iN
E i

i m i

a b
D A B

a b
α −

= −
+∑

The entropy-only matching works mainly in the same way as the
mutual information based matching. It matches the attributes
across the two input tables by finding the mapping that optimizes
the entropy-only metric.

Let us now turn to a metric that we use to measure the accuracy of
match result. We use Precision and Recall, which is a measure for
answer quality widely used in the text retrieval community. Let n
be the number of matches produced by a schema matching
algorithm; m be the total number of true matches in two input
schemas; and c be the number of correct matches in the produced
match results. Given that, we can define Precision and Recall as
follows:

• Precision = c / n

• Recall = c / m

Note that Precision and Recall are identical if we are considering
one-to-one mapping or onto mapping, because the number of
produced matches and true matches are always same due to the
cardinality constraints.

3. VALIDATING THE FRAMEWORK
In this section, we present the results of some schema matching
experiments using our proposed approach. We ran experiments
over two real-world data sets from different domains. We
conducted several different types of experiments. For each type of
cardinality constraint, we performed a set of experiments on
different input sizes (or sizes of the overlap between two input
schemas, in case of partial mapping) and different sample (data
instance) sizes.

Testbed Implementation

We implemented our two-step matching algorithm using Java 1.4.
The first step of our algorithm uses a data loader and analyzer.
The data loader/analyzer component loads data tables from text
files; analyzes the loaded tables; and constructs dependency
graphs. Then, the graph matching algorithm takes over and
performs graph matching over the two dependency graphs. We
implemented a naïve exhaustive search algorithm with simple
filtering (considering in all cases only the n candidates with
closest entropy values) to limit the search space. Although the
filters we applied reduce the search space for the algorithms, the
remaining search space is still very large. To run such expensive
experiments, we divided the experiment runs to multiple sub-runs
and executed them in parallel on multiple workstations. The full
set of experiments with 50 iterations took approximately 5 hours
to finish.

Data Sets

We used real-world data sets from two different data domains:
medical data and census data. The medical data set we used in
our experiments contains patients’ lab exam results for diagnosing
thrombosis [19]. Figure 4(a) shows the measured entropies of 30
randomly chosen attributes of the thrombosis lab exam data and
Figure 4(c) shows a fragment of the first 10 (out of the 30)
attributes’ data values. The original table contains 12 years worth
of patient exam records, which is approximately 50K tuples, and
each tuple consists of 44 attributes representing test types. The
column data types are mostly numeric, and a significant portion of
the table is left blank (see attributes 15 – 30 in Figure 4(a).) Our
basic experimental technique with the medical data set was to
range partition the original table into two sub-tables based on
exam dates (column 1) and to use these two sub-tables for
experiments. We “pretended” that these sub-tables were two
different tables that needed to have their schemas mapped.

Obviously, we “knew” the correct answer for the mapping; but the
mapping algorithm did not.

For our second data set, we used census data. Figure 4(b) and
4(d) show attribute entropies and a table fragment from the census
data set, respectively. We used two state census data files, CA and
NY, in our experiments [22]. Each table consists of 240 attributes.
We ran the experiments over a randomly chosen set of 30
attributes.

Note that in Figure 4(d), attributes 8 and 9 are duplicated. The
original census data files have some number of duplicate columns
and two of them happened to be in the 30 attributes randomly
chosen for our experiments. Evaluating the match results, we
didn’t count mappings like NY9 to CA8 a correct match; therefore
the accuracy of matching was somewhat reduced degree by these
duplicate columns.

As we can see in Figure 4(a) and 4(c), even entropy-only
matching gives a fair number of matches when the number of
attributes to match is small and the attribute entropies differ by a
substantial amount. However, the entropy-only approach fails
when two or more attributes have close entropies. For example, in
Figure 4(a), attributes 21 and 24 are likely to be cross-matched
because the entropies of the two attributes are reversely ordered in
the two tables. In our experiments below, we will continue to
compare the entropy-only approach with our mutual information-
based matching, to see if and when the additional complexity of
considering mutual information is useful.

One-to-one mapping

Figure 5 presents the results of one-to-one schema matching. We
ran the experiment while increasing the number of attributes in
two input tables to be matched. For each table width, two to 20,
we iterated the measurement 50 times with randomly chosen

0

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Attributes

E
nt

ro
py

Lab Exam 1

Lab Exam 2

.
a) Thrombosis lab exam 10K (#of tuples) samples

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Attributes

E
nt

ro
py

Census NY

Census CA

b) Census data 10K samples

1 2 3 4 5 6 7 8 9 10
97070 23 53 10 6. 4 14 0.5 23 10
97102 26 56 10 6. 5. 13 0.5 25 10
97122 25 48 90 6. 5. 15 0.6
98012 26 57 10 7 4. 16 0.4 22 93
98021 34 52 98 5. 10 0.6 23 11
98031 35 54 95 6. 5. 13 0.5 24 11
98051 30 54 10 6. 5. 14 0.5 23 19
98063 26 55 10 6. 5 13 0.5 24 89
98082 26 22 20 6. 5. 9.8 0.6 20 18
98092 32 23 19 7. 5. 13. 0.6 27 15

c) First ten columns of Lab Exam 1 fragment

1 2 3 4 5 6 7 8 9 10
18091 1063 10 9 9 41 15 368 368 288
17511 3281 25 21 40 89 59 1211 1211 796

609 3424 29 13 15 148 26 1055 1055 861
3861 2884 18 7 4 114 11 670 670 568

18614 1478 12 10 15 40 16 630 630 459
3999 2414 29 16 27 87 21 967 967 753
5283 2385 42 17 39 46 40 968 968 622

21892 3053 28 17 16 99 33 1400 1400 1130
18554 14506 160 131 92 499 170 5084 5084 3965
12491 823 2 0 1 39 4 240 240 226

d) First ten columns of Census CA fragment

Figure 4. Attribute entropies of two data sets.

subsets of attributes and averaged the results. Entropy-only
matching results (labeled ET) are also presented to show the
improvements obtained by taking into accounts of correlations
between the attributes, which is given in the results of mutual
information based matching (labeled MI). Furthermore, we tested
both Euclidean and normal distance metrics in both entropy only
and mutual information matching.

Figure 5(a) shows the precision of match results using thrombosis
lab exam 10K tuple samples. As we see in Figure 5(a), match
results obtained from narrow tables are better than that from wider
tables. As the tables get wider, the precision of matching
deteriorates. Comparing the two matching techniques, the entropy
only matching combination shows much faster deterioration than
mutual information matching. The best performer was the mutual
information matching using the Euclidean distance metric, and the
worst was entropy only matching using the normal distance
metric. Comparing two metrics, the Euclidean distance metric
works better than the normal distance metric in both the entropy
only and mutual information matching. We used 3.0 for the
normal distance metric’s control parameter α. However, the value
of the control parameter, α, has no effect in the match results in
this case. As we mentioned in Section 3, the control parameter α
balances the precision and recall of the match results. Both
precision and recall are, however, always the same in one-to-one
mapping and onto mapping.

Figure 5(b) shows the match results using the census data set 10K
tuple samples. Although the overall precision is slightly better,
the results look quite similar to those presented in Figure 5(a).
Similarly, in Figure 5(b), mutual information matching yielded
superior results to entropy only matching and the Euclidean
distance metric performed better that the normal distance metric.
Mutual information matching with the Euclidean metric produced
a matching of approximately 93% accuracy when two 20 column
tables were matched, in which on average, more than 18 attributes
were correctly matched while only two mismatched. On the other
hand, 85% accuracy was achieved by entropy only matching using
the same metric. In Figure 5(a) with the lab exam data set, we had
86% and 74% accuracy for mutual information and entropy only
matching, respectively, which can be interpreted as 3 misses and 5
misses out of 20 true matches.

The results from census data were slightly better than those of the
lab exam data. One explanation for this can be found in the

entropy signature of the two data sets shown in Figure 4. In
Figure 4(a), we can see that the last six attributes, from 25 to 30,
have very low entropy values. These are the columns in the
original data that have mostly null values. Because of the lack of
information in them, these columns do not contribute much to the
match results. By contrast, in the census data, only one such
attribute exists, which is attribute 14 in Figure 4(b).

Turning to the issue of deterioration, one plausible explanation is
that the search space (or the number of match candidates) grows
super exponentially as the size of matching schema increases. For
instance, matching two schemas of size two has only two match
candidates; that is, for schemas S1(a1, b1) and S2(a2, b2), we can
match either a1-a2 and b1-b2 or a1-b2 and b1-a2. By contrast,
for schemas of size 20, we have 20! candidates to search.
Considering the super exponential growth of search space, the
deterioration of mutual information matching precision is
relatively small.

Onto mapping

Figure 6 illustrates the results of schema matching with the onto
cardinality constraint. Figure 6(a) shows the results from
thrombosis lab exam data and Figure 6(b) shows census data. In
this experiment, we kept the target schema size constant at 22
attributes while increasing the source schema size from two to 20
attributes. In each step, as was done in our one-to-one mapping
experiments, we iterated the measurement 50 times with randomly
chosen subsets of attributes and averaged the results.

As was the case in the one-to-one mapping experiments, the
census data match result is slightly better than that of the lab exam
data. For example, with census data, the precision of the match
result reached 81% when matching 11 attributes out of 22, while
it was 75% with lab exam data. The performance gap between the
two data sets widened as the source schema size increased from
there; e.g., when the schema size reached 20, census data yielded
91% precision while lab exam data turned out only 80%. The
performance gap phenomenon is consistent with what we
observed in the one-to-one mapping results shown in Figure 5 and
has a similar explanation.

In both data sets, mutual information matching outperformed
entropy only matching. The precision of lab exam data matching
was improved approximately 31% (from 61% in entropy only to
80% with mutual information) while precision in census data

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Schema size (#of attributes)

Pr
ec

is
io

n

MI Euclidean
MI Normal(3.0)
ET Euclidean
ET Normal(3.0)

a) Thrombosis lab exam 10K samples

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Schema size (#of attributes)

Pr
ec

is
io

n

M I Euclidean
MI Normal(3.0)
ET Euclidean
ET Normal(3.0)

b) Census data 10K samples

Figure 5. One-to-one mapping results.

improved 12% (from 81% in entropy only to 91% for mutual
information). We see that mutual information was more helpful
for the lab exam data than it was for the census data. This is
because in the lab exam data, more attributes had similar entropy,
so that entropy-only mapping was more likely to get “confused.”
Turning now to compare our two metrics, Euclidean and normal,
the Euclidean distance metric yielded better results overall in both
data sets, which is consistent with our observations in the one-to-
one mapping results.

To summarize the situation up to this point, we have considered
the performance of two matching methods and two distance
metrics, and the results have been consistent with those in the
one-to-one mapping case.

However, there is a notable difference: the precision of matching
in the onto case improves as the size of source schema increases,
which is the opposite of what we saw in the one-to-one mapping
case. We turn now to explain this phenomenon.

Let us consider the matching as two step process: selecting a
subset of attributes from the target schema, and searching for the
correct permutation of this selected subset. The reason that the
onto experiments had better performance with a larger source
schema is that the first step is harder than the second. If the first
step were easy, the result of the onto mapping experiments should
have looked similar to that of the one-to-one experiments. To
illustrate this, let us consider an extreme case where the first step
always returns the correct attribute subset. With this assumption,
the onto mapping problem reduces to the one-to-one mapping
problem. However, the result of the onto mapping is opposite to
that of the one-to-one mapping; that is, as the schema size
increases, the onto mapping precision improves while one-to-one
mapping precision deteriorates.

Now suppose that the second step always returned the correct
permutation. Then the onto matching problem reduces to
choosing the correct attribute subset from the target schema. In
fact, this assumption is not too far from the real situation, because
as shown in the one-to-one mapping results, the second step
indeed produces almost perfect results, especially when the
number of attributes is small. For example, consider the case of
finding two attributes out of 22 attributes. The total number of
possible selections is 231, and one of them is the correct selection
and 40 others have only one correct attribute (50% precision). The
remaining 190 selections yield no match (therefore 0% precision).

Whereas, in case of finding 20 attributes out of 22, the maximum
mismatch number is two; therefore, it will achieve 90% precision
in the worst case. Considering this, it is easy to see why the
precision improves in spite of the fast growing search space.

Partial mapping

Figure 7 illustrates the results of schema matching with the partial
mapping cardinality constraint. Figure 7(a) and 7(c) show the
precision and recall of the thrombosis lab exam data results and
Figure 7(b) and 7(d) shows the precision and recall of the census
data results, respectively. In this experiment, we keep the size of
both source and target schema constant at 12 attributes while
varying the number of correct matches from two to 10 attributes.
In each step, as was done in the previous experiments, we iterated
the measurement 50 times with randomly chosen subsets of
attributes and averaged the results. Unlike previous two cases,
partial mapping requires a non-monotonic distance metric because
in this case, the size of source schema and the number of correct
matches are not necessarily same. For the same reason, both
precision and recall should be examined.

In this experiment, we used the normal distance metric with three
different control parameter values: 1, 4, and 7. In Figure 7(a), MI
Normal(1.0) represents mutual information matching using
normal distance metric with control parameter α=1, and similarly
others. Unlike the previous two cases, it is not easy to tell which
approach dominates from the experiments. In fact, the choice of α
is dependent on the application semantics. If an application
prefers a small number of candidates with high confidence, then a
larger α is going to be more suitable. In contrast, if the application
is willing to accept relatively low confidence in match candidates
but wants as many probable matches retrieved as possible, then
smaller α should work better.

For instance, in Figure 7(a), MI Normal(7.0) achieved 75%
precision where the two input schemas contain ten true matches,
while the same metric turned out only 45% recall at the same
point in Figure 7(c). In other words, it produced candidate
matches, 75% of which were correct, and the number of correct
matches in the candidates was 45% of the number of total true
matches. On the other hand, MI Normal(1.0) achieved
approximately 67% precision, while it turned out 75% recall at
the same point in the graph. It is intuitively clear that the normal
distance metric with α=1.0 returned a larger number of candidates
than the metric with α=7.0. In fact, we can calculate the average

40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Source schema size (#of attributes)

Pr
ec

is
io

n
MI Euclidean
MI Normal(3.0)
ET Euclidean
ET Normal(3.0)

a) Thrombosis lab exam 10K samples

40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Source schema size (#of attributes)

Pr
ec

is
io

n

MI Euclidean
MI Normal(3.0)
ET Euclidean
ET Normal(3.0)

b) Census data 10K samples

Figure 6. Onto mapping results. Target schema size is kept constant at 22 attributes while source schema size varying.

number of candidates returned by the two metrics using the
definition of precision and recall given in Section 3. The normal
distance metric with α=7.0 (where #of matching attributes=10)
returned on average six candidates while the metric with α=1.0
returned more than 11 candidates.

As was the case in the previous two scenarios, the performance on
the census data set is slightly better than that of lab exam data. In
Figure 7(b) and 7(d), MI Normal(4.0) achieved approximately
75% precision and 79% recall, where the number of matching
attributes is ten. Comparing two matching methods, in the lab
exam data set, mutual information matching improved entropy
only matching results by approximately 24% in both precision and
recall, where the number of matching attributes was ten and α was
1.0. In case of census data set, the improvement was 19% and
16% for precision and recall, respectively, at the same data point
in Figure 7(b) and 7(d) (i.e., #of matching attributes=10) using α
= 4.0.

Unlike previous two scenarios, the search space for partial
mapping remains same throughout the experiments with varying
numbers of matching attributes. The search space in our
experiment in Figure 7 (i.e., 12 attribute to 12 attribute schema
matching) was over 53 billion possible matches. Although the
search space did not change, the accuracy of results improved as
the number of matching attributes increased. The explanation we
gave for the onto mapping scenario applies here as well. It is
easier to find more matches when the number of true matches is

greater. Compared to the onto mapping experiments, however, the
accuracy of results is significantly dampened when the number of
true matches is small.

For example, in Figure 7(a) and 7(c) where only two true matches
exist, the precision of the results was around 10% with the recall
of 46% (using α = 1.0). In experiments with the onto mapping, the
precision was over 50% with the same data set. One reason for
this discrepancy is that the search space for partial mapping is
significantly larger than that for the onto mapping, and the
difference is more striking in cases with a small number of
matches. Another possible reason is that we were using normal
distance metrics in the partial mapping scenario, which was
shown to be inferior to the Euclidean distance metrics in the
previous two matching scenarios. As pointed out earlier, the
Euclidean metric is monotonic and therefore is not applicable to
the partial mapping scenarios.

On the Result of Unrelated Schema Matching

So far we have examined the cases of matching where we know
matches exist. In this subsection, we consider the matching of
unrelated schema instances. We examine how our matching
algorithm reacts to the matching of such schema pairs. The ability
of identifying relevant/irrelevant schema instances from many
others is an important aspect of schema matching technique.
Consider a scenario of Web-source integration. The number of
sources on the Web grows daily, and, to make matters worse,
sources are added and removed in an uncontrolled fashion.

0%

10%

20%

30%

40%

50%

60%

70%

80%

2 3 4 5 6 7 8 9 10

#of matching attributes

Pr
ec

is
io

n

MI Normal(1.0)
MI Normal(4.0)
MI Normal(7.0)
ET Normal(1.0)
ET Normal(4.0)
ET Normal(7.0)

a) Precision of lab exam mapping results (10K samples)

0%

10%

20%

30%

40%

50%

60%

70%

80%

2 3 4 5 6 7 8 9 10

#of matching attributes

Pr
ec

is
io

n

MI Normal(1.0)
MI Normal(4.0)
MI Normal(7.0)
ET Normal(1.0)
ET Normal(4.0)
ET Normal(7.0)

b) Precision of census data mapping results (10K samples)

20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%

2 3 4 5 6 7 8 9 10

#of matching attributes

R
ec

al
l

MI Normal(1.0)
MI Normal(4.0)
MI Normal(7.0)
ET Normal(1.0)
ET Normal(4.0)
ET Normal(7.0)

c) Recall of lab exam mapping results

20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%

2 3 4 5 6 7 8 9 10

#of matching attributes

R
ec

al
l

MI Normal(1.0)
MI Normal(4.0)
MI Normal(7.0)
ET Normal(1.0)
ET Normal(4.0)
ET Normal(7.0)

d) Recall of census data mapping results

Figure 7. Partial mapping results. The size of both source schema and target schema is set to 12 attributes, while the number of correct
matches varies.

Without automated tool support, the task of building and
maintaining Web-source information integration systems will be
very human-labor intensive. Considering this, at the very least, the
ability of classifying or clustering schemas is a desirable feature
for a (semi) automatic schema matching tool. Therefore, as a first
step, we would like to investigate if our matching techniques can
distinguish “good” or “bad” candidates for matchings of schemas.

Turning to our schema matching algorithm, ideally, we will see
that the algorithm turns out much worse metric values in “bad”
cases (where the two tables being considered are really distinct)
than it does on the “good” cases (where the two tables logically
should be integrated). One such example is shown in Figure 8(a).
We tried matching the Census data for California to the Lab
exam1 (henceforth Lab1-CA) data set and compared the results to
the case of a correct matching (matching New York’s census data
to California’s census data.) Figure 8(a) shows the Euclidean
metric values of one-to-one and onto mapping results. As we
expected, NY-CA's Euclidean distance grows in much lower rate
than Lab1-CA's distance as the size of source schema increases.
Note that with the Euclidean distance metric, the smaller the
distance between two schemas, the closer the matching tool thinks
the schemas are. On the other hand, with the normal distance
metric, larger metric values mean closer matching. Figure 8(b)
shows the normal distance metric values of the same set of test
shown in Figure 8(a). Unlike the previous case, Lab1-CA’s
normal metric value declines while NY-CA's normal metric grows,
for both one-to-one and onto mapping.

Figure 8(c) shows the results of partial mapping using normal
metric with three different control parameters (α): 1.0, 4.0, and
7.0. In all three cases, NY-CA's normal metric (Figure 8(c)) grows
in a similar fashion as the normal metric of one-to-one and onto
mapping cases (i.e., Figure 8(b) NY-CA.) On the other hand,
Lab1-CA's normal metric values are virtually unchanged. The
reason for this is that in partial mapping, there is no cardinality
constraint and because of that, the mapping always turns out the
smallest possible matches (in case with α of 4.0 and 7.0) for all
range in x-axis of the graph because there is no true match
between Lab1 and CA. In case of α ≤ 1.0, the normal distance
metric becomes a monotonic metric because the subtraction inside
of summation is always greater than or equal to zero; as a result,
the metric always turns out maximum matches. Because of this,
the Lab1-CA’s Normal(1.0) shows relatively high values

compared to the metric with two other α values. Despite that, the
metric values are virtually unchanged throughout the range as no
matches can be found.

Considering the results in Figure 8, our technique shows promise
in that it clearly distinguishes the case of being applied to two
tables that should be integrated and being applied to two tables
that are logically disjoint.

Summary of Experimental Results

In summary, the accuracy of matching results is generally better
when the two schemas to be matched have a larger overlap (in
relative terms; i.e., five out of ten is better than five out of 20).
Accuracy in the one-to-one mapping scenario (100% overlap) was
in the range of 85% to 95%; in the onto mapping scenario (approx.
90% overlap, where source schema size=20) this dropped to 80%
to 90% accuracy; and in the partial mapping scenario (83%
overlap, where #of matching attributes=10) achieved around 70%
precision and 75% recall on both data sets.

One of the reasons for worse results in smaller overlap cases is
that at least in our experiments, the task of finding a correct
attribute subset to which to map is much more difficult than the
task of finding the right permutation once the subset has been
identified.

For both data sets, lab exam and census data, we used 10K tuple
samples throughout the experiments. Figure 9 shows the effects
of sample size in schema matching accuracy. Figure 9(a) presents
the results of lab exam data and Figure 9(b), that of census data.
As we expected, the larger sample produced the better accuracy in
both data sets. However, the effect of sample size was much
greater in census data set. One reason for this is that census data
is denser than the lab exam data in that census data has no nulls
whereas lab data has large number of empty fields and therefore,
the contribution to the matching results per tuple units is much
greater with census data than with lab exam data.

4. RELATED WORK
Most previously proposed work on schema matching has focused
on developing interpreted matching techniques (see [20] for
survey). Such techniques are largely dependent on identifying
similarity in schema element names, common data representation
formats, or common data domains. Because our technique is

0

10

20

30

40

50

60

70

2 4 6 8 10 12 14 16 18 20
Schema size (#of attributes)

M
et

ri
c

va
lu

e

One-to-One NY-CA Euclidean
One-to-One Lab1-CA Euclidean
Onto NY-CA Euclidean
Onto Lab1-CA Euclidean

-300

-250

-200

-150

-100

-50

0

50

100

150

200

2 4 6 8 10 12 14 16 18 20
Schema size (#of attributes)

M
et

ri
c

va
lu

e

One-to-One NY-CA Normal(3.0)
One-to-One Lab1-CA Normal(3.0)
Onto NY-CA Normal(3.0)
Onto Lab1-CA Normal(3.0)

0

10

20

30

40

50

60

70

2 3 4 5 6 7 8 9 10
#of matching attributes

M
et

ri
c

 v
al

ue

NY-CA Normal(1.0)
NY-CA Normal(4.0)
NY-CA Normal(7.0)
Lab1-CA Normal(1.0)
Lab1-CA Normal(4.0)
Lab1-CA Normal(7.0)

a) Euclidean distance metric values of one-
to-one and onto mapping results

b) Normal distance metric values of one-to-
one and onto mapping results

c) Normal distance metric values of
partial mapping results

Figure 8. Distance metric values of matching results. Matching results of two schema instance pairs are compared: NY-CA and Lab1-
CA.

based on un-interpreted matching, it can complement existing
techniques and can be combined with traditional schema matching
systems.

Some proposed techniques employ machine learning. Li and
Clifton proposed a neural network-based schema matching
prototype called SemInt [13][14]. Berlin and Motro proposed
Automatch, a technique based on machine learning with feature
selection [2]. Another machine learning approach, LSD, was
proposed by Doan et al. [6][7] LSD employs multi-strategy
learning with three-level architecture. Although these systems are
flexible, they need to be re-trained before being able to be used in
a new application domain. More importantly, learners rely on data
interpretation and therefore it is not applicable to our problem
domain.

Other work has considered rule-based schema matching. These
include TranScm [18] and ARTEMIS [4]. Both TranScm and
ARTEMIS are schema-based matching techniques and our un-
interpreted instance-based technique can be combined with them
to improve the accuracy of matching. Some other techniques
represent a schema in a graph format and perform matching based
on the structural similarity of the two graph representations.
Cupid [15] and Similarity Flooding [16] fall into this category.
Unlike our scheme, both Cupid and Similarity Flooding rely on
schema-based structural similarity and therefore it is not
applicable to our problem domain.

Meanwhile, though they are not targeted to schema matching,
many generic graph matching algorithms have been developed in
the theoretical computer science literature. One example is the
Graduated Assignment Algorithm developed by Gold and
Rangarajan [9]. These algorithms can be tuned to match our
dependency graphs and replace the exhaustive search algorithm
used in our experiments.

At another end of the spectrum, the schema mapping system
called Clio [12][17][23] creates a mapping between two input
schemas in an interactive fashion using user feedback. It produces
as a mapping a view definition (mapping query) over the target
schema so that a meta query engine can execute the mapping
query and as a result, translate the data from the original schema
into the target schema. Our un-interpreted matching and Clio can
be combined because Clio focuses on finding correspondences

between data instances while un-interpreted matching focuses on
finding mappings between schema elements.

In our work, we used mutual information and entropy to represent
interaction between attributes. These concepts are popular in the
information theory community and have been well accepted in
other domains as well [5]. Although we found that mutual
information is an effective tool for capturing dependencies in an
un-interpreted manner, there exist other ways that this could be
accomplished. One interesting approach would be to use
Bayesian network structure learning [8][10][11]. Bayesian
networks capture dependency (or sometimes causal) relations
between attributes in the form of conditional probability
distributions. Among many others, [8] and [10] caught our
attention because they use mutual information to limit potentially
intractable search spaces of possible structures.

Finally, Bernstein et al. presented model management scenarios in
their vision paper [3]. They proposed a unified framework for
applications to access underlying models using high level
operators such as Match, Merge, ApplyFunction and Compose.
The schema matching technique reported in this paper works as a
Match operator in model management. Developing remaining
operators using our un-interpreted method would be an interesting
area for future work.

5. CONCLUSION
In this paper we investigated schema matching techniques that
work in the presence of opaque column names and data values.
We proposed a two-step technique that does not rely on the
interpretation of data elements or schema elements. To our
knowledge our paper is the first to introduce an un-interpreted
matching technique utilizing inter-attribute dependency relations.
We have shown that while a single column un-interpreted
matching such as entropy-only matching can be somewhat
effective alone, further improvement were possible by exploiting
inter-attribute correlations. The improvement obtained was in the
range of 9% to 31% depending on the cardinality constraints for
the mapping problem and the data sets used in the experiments.

A good deal of room for future work exists. In our work, we have
only tested two simple distance metrics, Euclidean and normal. It
is possible that more sophisticated distance metrics could produce
better results. An interesting and important direction would be to

80%
82%
84%
86%
88%
90%
92%
94%
96%
98%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Schema size (#of attributes)

Pr
ec

is
io

n

MI Euc 10K
MI Euc 5K
MI Euc 1K

a) Thrombosis lab exam one-to-one matching

80%
82%
84%
86%
88%
90%
92%
94%
96%
98%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Schema size (#of attributes)

Pr
ec

is
io

n

MI Euc 10K
MI Euc 5K
MI Euc 1K

b) Census data one-to-one matching

Figure 9. Effects of sample size in match results. One-to-one mapping precisions with 1K, 5K and 10K samples are presented.

search for metrics that specialize in the task of finding correct
subset of attributes from target schemas. Another potentially
interesting direction would be to find an accurate yet
computationally efficient approximation algorithm for the
instances of the graph matching problem generated by our
approach to the schema mapping problem. It would also be
interesting to evaluate other dependency models using different
un-interpreted methods. In this work, we focused only on
matching flat tables. Extending the technique to nested structures
(for example, XML or object-oriented schemas) would be another
interesting direction for future work. Furthermore, in our
experiments, we only tested our matching techniques against the
tables that are produced by the same organization. It would be
interesting to apply our algorithm to tables generated
independently by two organizations, and to explore when data sets
are likely to exhibit properties that make them amenable to our
un-interpreted instance-based approach.

Finally, the schema matching problem we considered in this paper
is only one small subpart of a larger problem. A more complete
solution to the data integration problem requires the additional
steps (at the very least) of identifying which tables are candidates
for matching and handling cases in which the tables in the two
schemas do not have a one-to-one correspondence. It is our hope
that the un-interpreted matching approach we present here can be
useful as a piece of the solution to this larger problem. We are
encouraged by the results we present in this paper, since they
show that our technique, which does not rely on any interpretation
of the schemas or data instances in the matching problem, can
distinguish schemas that “make sense” to integrate from those that
do not, and can propose good matchings for schemas that do make
sense to integrate.

Acknowledgements

We would like to thank anonymous reviewers for their valuable
comments. This research was supported by NSF grants CSA-
9623632 and ITR 0086002.

REFERENCES
[1] Domenico Beneventano, Sonia Bergamaschi, Silvana

Castano, Alberto Corni, R. Guidetti, G. Malvezzi, Michele
Melchiori, Maurizio Vincini: Information Integration: The
MOMIS Project Demonstration. VLDB 2000: 611-614

[2] Jacob Berlin, Amihai Motro: Database Schema Matching
Using Machine Learning with Feature Selection. CAiSE
2002: 452-466

[3] Philip A. Bernstein, Alon Y. Halevy, Rachel Pottinger: A
Vision of Management of Complex Models. SIGMOD
Record 29(4) 2000

[4] Silvana Castano, Valeria De Antonellis, Sabrina De Capitani
di Vimercati: Global Viewing of Heterogeneous Data
Sources. TKDE 13(2): 277-297 (2001)

[5] Thomas M. Cover and Joy A. Thomas. Elements of
Information Theory. John Wiley & Sons, Inc., New York,
1991.

[6] AnHai Doan, Pedro Domingos, Alon Y. Halevy: Reconciling
Schemas of Disparate Data Sources: A Machine-Learning
Approach. SIGMOD Conference 2001

[7] AnHai Doan, Pedro Domingos, Alon Y. Levy: Learning
Source Description for Data Integration. WebDB (Informal
Proceedings) 2000: 81-86

[8] Nir Friedman, Iftach Nachman, Dana Peer: Learning
Bayesian Network Structure from Massive Datasets: The
"Sparse Candidate" Algorithm. UAI 1999: 206-215

[9] Steve Gold and Anand Rangarajan. A graduated assignment
algorithm for graph matching. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 18(4), April 1996.

[10] Lise Getoor, Benjamin Taskar, Daphne Koller: Selectivity
Estimation using Probabilistic Models. SIGMOD Conference
2001

[11] D. Heckerman. A tutorial on learning with Bayesian
networks. Technical Report MSR-TR-95-06, Microsoft
Research, March, 1995 (revised November, 1996)

[12] Mauricio A. Hernández, Renée J. Miller, Laura M. Haas:
Clio: A Semi-Automatic Tool For Schema Mapping.
SIGMOD Conference 2001

[13] Wen-Syan Li, Chris Clifton: SEMINT: A tool for identifying
attribute correspondences in heterogeneous databases using
neural networks. DKE 33(1): 49-84 (2000)

[14] Wen-Syan Li, Chris Clifton: Semantic Integration in
Heterogeneous Databases Using Neural Networks. VLDB
1994: 1-12

[15] Jayant Madhavan, Philip A. Bernstein, Erhard Rahm:
Generic Schema Matching with Cupid. VLDB 2001: 49-58

[16] Sergey Melnik, Hector Garcia-Molina, Erhard Rahm:
Similarity Flooding: A Versatile Graph Matching Algorithm.
ICDE 2002

[17] Renée J. Miller, Laura M. Haas, Mauricio A. Hernández:
Schema Mapping as Query Discovery. VLDB 2000: 77-88

[18] Tova Milo, Sagit Zohar: Using Schema Matching to Simplify
Heterogeneous Data Translation. VLDB 1998: 122-133

[19] PKDD 2001 Discovery Challenge on Thrombosis Data.
http://lisp.vse.cz/challenge/pkdd2001/

[20] Erhard Rahm, Philip A. Bernstein: A survey of approaches to
automatic schema matching. VLDB Journal 10(4) (2001)

[21] Triada, Ltd. http://www.triada.com/

[22] U.S. Census Bureau. Census data file ftp site.
ftp://ftp2.census.gov/census_2000/datasets/

[23] Ling-Ling Yan, Renée J. Miller, Laura M. Haas, Ronald
Fagin: Data-Driven Understanding and Refinement of
Schema Mappings. SIGMOD Conference 2000

