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ABSTRACT 
Most previous solutions to the schema matching problem rely in 
some fashion upon identifying "similar" column names in the 
schemas to be matched, or by recognizing common domains in the 
data stored in the schemas.  While each of these approaches is 
valuable in many cases, they are not infallible, and there exist 
instances of the schema matching problem for which they do not 
even apply.   Such problem instances typically arise when the 
column names in the schemas and the data in the columns are 
"opaque" or very difficult to interpret.  In this paper we propose a 
two-step technique that works even in the presence of opaque 
column names and data values.  In the first step, we measure the 
pair-wise attribute correlations in the tables to be matched and 
construct a dependency graph using mutual information as a 
measure of the dependency between attributes.  In the second 
stage, we find matching node pairs in the dependency graphs by 
running a graph matching algorithm.  We validate our approach 
with an experimental study, the results of which suggest that such 
an approach can be a useful addition to a set of (semi) automatic 
schema matching techniques.   

1. INTRODUCTION 
The schema matching problem at the most basic level refers to the 
problem of mapping schema elements (for example, columns in a 
relational database schema) in one information repository to 
corresponding elements in a second repository.  While schema 
matching has always been a problematic and interesting aspect of 
information integration, the problem is exacerbated as the number 
of information sources to be integrated, and hence the number of 
integration problems that must be solved, grows.  Such schema 
matching problems arise both in “classical” scenarios such as 
company mergers, and in “new” scenarios such as the integration 
of diverse sets of queryable information sources over the web.   

Purely manual solutions to the schema matching problem are too 
labor intensive to be scalable; as a result, there has been a great 
deal of research into automated techniques that can speed this 
process by either automatically discovering good mappings, or by 

proposing likely matches that are then verified by some human 
expert.  In this paper we present such an automated technique that 
is designed to be of assistance in the particularly difficult cases in 
which the column names and data values are “opaque,” and/or 
cases in which the column names are opaque and the data values 
in multiple columns are drawn from the same domain.  Our 
approach works by computing the “mutual information” between 
pairs of columns within each schema, and then using this 
statistical characterization of pairs of columns in one schema to 
propose matching pairs of columns in the other schema. 

To clarify our aims and provide some context, consider a classical 
schema mapping problem that arises in a corporate merger. To 
complete the merger, we have to integrate the databases of the two 
companies. How should we determine which attributes in one 
company’s tables should be mapped to which attributes in the 
other’s tables?  First, one logical approach is to compare attribute 
names across the tables. Some of the attribute names will be clear 
candidates for matching, due to common names or common parts 
of names. Using the classification given in [20], such an approach 
is an example of schema-based matching [4][18]. However, for 
many columns schema-based matching will not be effective, 
because different institutions may use different terms or encodings 
for semantically identical attributes, or use similar names for 
semantically different attributes.   

When schema-based matching fails, the next logical approach is 
to look at the data values stored in the schemas.  Again referring 
to the classification from [20], this approach is called instance-
based matching [6][12][13].  Instance-based matching also will 
work in many cases. For example, if we are deciding whether to 
match Dept in one schema to either DeptName or DeptID in the 
other, by looking at the column instances one may easily find the 
mapping, because DeptName and DeptID are likely to be drawn 
from different domains, e.g., names and alpha-numeric codes. 
Unfortunately, however, instance-based matching is also not 
always successful.   

When instance-based mapping fails, it is often because of its 
inability to distinguish different columns over the same data 
domain and, similarly, its inability to find matching columns over 
different encodings of logically similar domains.  For example, 
EmployeeID and CustomerID columns in a table are unlikely to 
be distinguished if both the columns are of numeric data types and 
the ranges of the IDs are identical.  Similarly, if one company uses 
numeric values for the EmployeeID while the other company uses 
a formatted text for what is logically the same column, the 
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traditional instance-based approach will fail to identify the 
correspondence between the two EmployeeID columns.   

The technique we propose in this paper is also an instance-based 
technique.  However, it applies in cases where previously 
proposed techniques do not apply because 1) it does not rely on 
any interpretation of data values, and 2) it considers correlations 
among the columns in each table.  We emphasize that our claim is 
not that our technique dominates previously proposed techniques 
(it doesn’t); rather, since it applies where previous techniques do 
not apply, it is a useful addition to a suite of automated schema 
mapping tools. 

To gain insight into our approach, consider the example tables in 
Figure 1. Suppose these tables are from two automobile plants in 
different companies or divisions of a large company.  Imagine that 
the column names of the second table and data instances in 
columns B and C are some plant specific codes that are 
incomprehensible to the schema matching tools. Conventional 
instance-based matchers may find correspondence between the 
columns Model and A due to their syntactic similarity.  However, 
no further matches are likely to be found because the two columns 
B and C cannot be interpreted and they share exactly same 
statistical characteristics; that is, they have the same number of 
unique values, similar distributions, and so forth.   

To make progress in such a difficult situation, our technique 
exploits dependency relationships between the attributes in each 
table.  For instance, in the first table in Figure 1, there will exist 
some degree of dependency between Model and Tire if model 
partially determines the kinds of tires a car can use. On the other 
hand, perhaps Model and Color are likely to have very little 
interdependency.  If we can measure the dependency between 
columns A and B and columns A and C, and compare them with 
the dependency measured from the first table, it may be possible 
to find the remaining correspondences.   

As we can see, an advantage of using dependency relations in 
schema matching is that this approach does not require data 
interpretation; that is, even if the data sets in the schemas to be 
matched use different encodings, we can still measure the 
dependency relations.  As a result, our proposed matching 
technique can be applied to multiple unrelated domains without 
retraining or customization.  We refer to matching techniques that 
are not dependent of data interpretation as un-interpreted 
matching, and make this precise in the next definition. 

Definition 1.1 Interpreted vs. Un-Interpreted Matching   Let 
M1 = match(R(r1, r2, .., rn), S(s1, s2, .., sm)) and M2 = match(R(r1, 
r2, .., rn), S(f1(s1), f2(s2), .., fm(sm)) where Mi is a match result, 
match is a schema matching algorithm, R is a source schema of 
size n, S is a target schema of size m, and finally fi is an arbitrary 
one-to-one function applied to the values of column i in the target 
schema. We call the given matching algorithm, match, an un-
interpreted matching if and only if the two match results M1 and 

M2 are identical regardless of the function fi. Conversely, it is 
called an interpreted matching if the two results are different. 

In the following it will also be useful to have the following 
definition, which captures the notion of whether the matching 
algorithm considers data elements in isolation or their relationship 
to other data elements. 

Definition 1.2 Element vs. Structure Matching   Structure 
Matching algorithms utilize the relationship between columns in 
a table, while element matching algorithms only consider 
properties of single columns. 

Figure 2 illustrates classification of schema matching techniques 
based on the use of data interpretation and structural similarity.  
While all four classes of techniques are valuable in different 
domains, we focus in this paper on un-interpreted structure 
matching. We propose a two-step technique that works in the 
presence of opaque attribute names and values. In the first stage, 
we measure the pair-wise attribute correlations in the tables to be 
matched and construct a dependency graph using mutual 
information [5] (a measure of the dependency between attributes.) 
In the second stage, we find matching node pairs in the 
dependency graphs by running a graph matching algorithm. In 
this paper we are making the following contributions: 

•  We introduce a new criterion, data interpretation, in 
classifying schema matching techniques. Along with 
structural similarity we classify schema matching techniques 
into four categories. Using this classification, we identify a 
new problem class that has not been addressed by existing 
techniques.  

•  We introduce a new two-step schema matching technique 
that takes into account the dependency relations among the 
attributes.  

•  We reduce a schema matching problem to a traditional graph 
matching problem by capturing hidden dependencies 
between attributes and structuring them as a labeled graph.  

•  We validate our approach with an experimental study, the 
results of which suggest that such an approach can be a 
useful addition to a set of (semi) automatic schema matching 
techniques. Our experiments also show by exploiting 
relationships between columns our techniques can do much 
better than a technique that only considers statistical 
properties of individual columns. 

Model Color Tire 

XLE White P2R6 

XG2.5 Silver XR5 

LE Red GM6 
 

A B C 

GL3.5 b1 c1 

XGL b2 c2 

XE b3 c3 
 

Figure 1. Two tables from car part databases 
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Figure 2. Schema matching technique classification 



The rest of the paper is organized as follows: Section 2 describes 
the two-step un-interpreted structure matching technique. Section 
3 validates the framework with an experimental study. Section 4 
presents related work. Lastly, Section 5 concludes the paper and 
identifies future work.  

2. UN-INTERPRETED MATCHING 
In this section we describe in detail our un-interpreted structure 
matching technique.  The algorithm takes two table instances as 
input and produces a set of matching node pairs. Our approach 
works in two main steps as shown below. The function 
Table2DepGraph() in the first step transforms an input table like 
the one shown in Figure 3(a) into a dependency graph shown in 
Figure 3(c).  The function GraphMatch() in the second step takes 
as input the two dependency graphs generated in the first step and 
produces a mapping between corresponding nodes in the two 
graphs.   

1. G1 = Table2DepGraph(S1);  
G2 = Table2DepGraph(S2); 

2. {(G1(a), G2(b))} = GraphMatch(G1, G2); 

where Si = input table, Gi = dependency graph,  
(G1(a), G2(b)) = matching node pair. 

The two steps are described in detail later in this section.   

2.1 Preliminaries 
To construct a dependency graph, we use mutual information and 
entropy, which are defined as follows (these definitions are from 
“Elements of Information Theory” by Cover and Thomas [5]): 

Definition 2.1 Mutual Information  Let X and Y be two 
attributes with alphabets X and Y, respectively. Consider some 

joint probability distribution p(x, y) and marginal probability 
distributions p(x) and p(y) over two attributes. We define the 
mutual information of X and Y as: 

( , )
( ; ) ( , ) log

( ) ( )x y

p x y
MI X Y p x y

p x p y∈ ∈
= ∑ ∑

X Y

 

Definition 2.2 Entropy  Let X be an attribute with alphabet X, 

and consider some probability distribution p(x) of X.  We define 
the entropy H(X) by: 

( ) ( ) log ( )
x

H X p x p x
∈

= −∑
X

 

Note that both entropy and mutual information are functions of 
probability distributions and thus are independent of the actual 
values of attributes. This property allows them to be used in un-
interpreted matching. One interesting question we explore in our 
performance section is whether we need to compute mutual 
information, or whether entropy alone suffices.  Our results show 
that mutual information can substantially improve the matching 
algorithm in many cases. 

Entropy describes the uncertainty of values in an attribute with a 
non-negative real number.  Similarly, mutual information 
describes the correlation between the two attributes’ probability 
distributions, also using a non-negative real number. In other 
words, it measures the amount of information captured in one 
attribute about the other.  This becomes more intuitive when we 

consider the relationship between mutual information and 
entropy. To explain this relationship we need one more basic 
definition, that of conditional entropy [5]. 

Definition 2.3 Conditional Entropy  Let X and Y be two 
attributes with alphabets X and Y, respectively. We define the 

conditional entropy of X and Y as: 

( | ) ( , ) log ( | )
x y

H X Y p x y p x y
∈ ∈

= −∑ ∑
X Y

 

Conditional entropy H(X|Y) measures the uncertainty of attribute 
X given knowledge of attribute Y.  It is a non-negative real 
number and becomes zero when X=Y or when there exists a 
functional dependency from Y to X, because in these cases, no 
uncertainty exists for attribute X.  On the other hand, if the two 
attributes X and Y are independent, the conditional entropy H(X|Y) 
equals H(X).  We can now redefine the mutual information 
formula using entropy and conditional entropy. 
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As we can see in the equation, mutual information measures the 
reduction in uncertainty of one attribute due to the knowledge of 
the other attribute. In other words, it measures the amount of 
information that one attribute contains about the other. It is zero 
when two attributes are independent, and increases as the 
dependency between the two attributes grows. Note that mutual 
information of an attribute with itself (called self information), 
MI(X; X), is equivalent to the entropy of X, i.e. H(X).   

2.2 Modeling Dependency Relation 
Consider the example illustrated in Figure 3. Figure 3(a) and 3(b) 
show two four-column input tables and 3(c) and 3(d) show the 
corresponding dependency graphs. The Table2DepGraph() 
function produces such dependency graphs by calculating the 
pair-wise mutual information over all pairs of attributes in a table 
and structuring them in an undirected labeled graph. For instance, 
each edge in the dependency graph G1 (Figure 3(c)) has a label 
indicating mutual information between the two adjacent nodes; 
for example, the mutual information between nodes A and B is 
1.5, and so on.  The label on a node represents the entropy of the 
attribute, which is equivalent to its mutual information with itself 
or self information. Hence we can model our dependency graph in 
a simple symmetric square matrix of mutual information, which is 
defined as follows: 

Definition 2.4 Dependency Graph   Let S be a schema instance 
with n attributes and ai (1≤ i≤ n) be its ith attribute.  We define 
dependency graph of schema S using square matrix M by: 

( ) ,   where   ( ; ),   1 ,ij ij i jM m m MI a a i j n= = ≤ ≤  

The intuition behind using mutual information as a dependency 
measure is twofold: 1) it is value independent; hence it can be 



used in un-interpreted matching 2) it captures complex 
correlations between two probability distributions in single 
number, which simplifies the matching task in the second stage of 
our algorithm.  

2.3 Matching Strategies 
In this subsection, we focus on the second half of the schema 
matching process: GraphMatch(). Before we delve into the main 
discussion, let us first examine the types of cardinality constraints 
that we need to consider in schema matching. Let A and B be two 
input schemas that we are trying to match. We consider three 
types of cardinality constraints.  

 One-to-one mapping ([1,1] – [1,1], in UML notation):  Each 
attribute in A has a unique match in B, and vice versa.  This 
corresponds to a case in which we know that the tables that 
we are trying to map have the same number of attributes, so 
the problem is just finding a correspondence between the 
attributes. 

 Onto mapping ([0,1] – [1,1]):  Each attribute in A has a 
unique match in B while each attribute in B either has a 
unique match in A or remains unmatched.  This corresponds 
to a case in which we know that table A’s attributes are a 
subset of table B’s, so we have to discover this subset and 
then decide how to map attributes within this subset. 

 Partial mapping ([0,1] – [0,1]): Each attribute in A either has 
a unique match in B or remains unmatched, and vice versa.  
This corresponds to the most general and difficult case in 
which we do not know which attributes of A map to B, nor 
do we even know how many attributes of A map to B.  In 
this case we need to find the best subset of attributes of A to 
map to B, and also need to find how this subset of A should 
be mapped. 

In the following, we will use distance metrics to evaluate the 
quality of matching. A distance is assigned to each instance of 
mapping between schema elements, and the goal is to find a 
mapping that optimize the distance, i.e., minimize it or maximize 
it, depending on how the distance metric is defined. One-to-one 

mappings and onto mappings both guarantee that all attributes in 
schema A will find matches in schema B, whereas partial 
mappings do not. Because of this, some distance metrics that work 
for one-to-one and onto mappings do not work for partial 
mappings.  Let us formally define the class of such metrics: 

Definition 2.5 Monotonic of Distance Metrics   Let A and B be 
two dependency graphs with sizes (#of nodes) n and m, 
respectively, where n ≤ m.  Let Dp(A,B) be the distance of best 
matching for two p node sub-graphs of A and B.  The distance 
metric Dp(A,B) is monotonic if and only if Dp(A,B) ≥ (or ≤) 
Dp+1(A,B) for all graphs A and B, and for all p in 1≤p≤n-1. 

Monotonic metrics are not suitable for partial mapping because 
they reach their best score after either one attribute has been 
matched or all attributes have been fully matched depending on 
their direction of monotonicity, hence they will never produce a 
mapping in between (this problem doesn’t arise with the one-to-
one and onto mapping problems, because the problem statement 
enforces the number of columns to be matched.) To see this, 
suppose we are matching two schemas R(r1, r2, .., rn), S(s1, s2, .., 
sm). With a metric cost (or distance) of which increases 
monotonically as the size of matching grows, some pair of 
columns will be chosen first as being the best match; suppose this 
is ri matched to sj, and that the cost of this match is c. With such 
metric, we can never improve upon c, and the matching algorithm 
will just return that the "best" match is ri and sj, in effect not even 
considering matchings for additional columns. This is not 
appropriate for the partial mapping problem. Therefore, we need 
to be careful with metric selection in case of partial mapping.  In 
this paper we consider two basic distance metrics, one monotonic, 
the other not monotonic.  Clearly these are not the only possible 
metrics, and finding better metrics is an interesting area for future 
research.  However, as we will see in the experimental section, 
these simple metrics perform surprisingly well. Consider the 
following basic distance metric: 

Definition 2.6 Euclidean Distance Metric   Let A and B be two 
equal size dependency graphs and aij and bij be the mutual 
information between the node i and j in graph A and B, 
respectively. Let m be an index that maps a node in graph A to the 
matching node in graph B  (i.e., m(node in A) = matching node in 
B). We define the Euclidean distance metric for graph A and B 
as: 

2
( ) ( )
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ij m i m jM i j
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As we can see in the definition, the Euclidean distance metric is 
monotonic; that is, the distance between two input graphs 
increases monotonically as the number of matches increases. The 
minimum distance we get from the metric is always the distance 
of a single best matching node pair.  Hence, we can not use the 
metric on partial mapping problems. As we pointed out, we need a 
non-monotonic distance metric for partial mapping.  Here is one 
such metric: 

Definition 2.7 Normal Distance Metric   Let α be some positive 
constant. Similarly, we can define the normal distance metric for 
graph A and B as: 

( ) ( )

,
( ) ( )

( , ) (1 )
ij m i m jN

M i j
ij m i m j

a b
D A B

a b
α −

= −
+∑   

A B C D 
a1 b2 c1 d1 
a3 b4 c2 d2 
a1 b1 c1 d2 
a4 b3 c2 d3  

W X Y Z 
w2 x1 y1 z2 
w4 x2 y3 z3 
w3 x3 y3 z1 
w1 x2 y1 z2 

a) Example Table S1 b) Example Table S2 

  

c) Dependency Graph (G1) of 
Table S1 

d) Dependency Graph (G2) of 
Table S2 

Figure 3. Two input table examples and their dependency 
graphs.   A weight on an edge represents mutual information 
between the two adjacent attributes and a weight on a node 
represents entropy of the attribute (or equivalently, self-
information MI(A;A)). 



In the second term of the subtraction, we normalized the 
difference of two pairing mutual information values by dividing 
by the sum of the two values. The intuition behind this 
normalization is that, for example, mutual information values 8 
and 9 are likely to indicate a better match than the pair 1 and 2 
because the relative error in the latter is much greater than it is in 
the former. We refer to this normalized term, 

( )( ) ( ) ( ) ( )ij m i m j ij m i m ja b a b− + , as normal distance. The normal 

distance falls in the range of [0, 1] because the mutual information 
is non-negative real number.  If we assume the mutual information 
values are uniformly distributed and we randomly choose two of 
them, the expected value of normal distance is 1/3.  Now consider 
the control parameter α. In case of α =3, the expected value of 
whole distance metric becomes 0 with the normal distribution / 
random selection assumption.  In such cases, the mapping of 
randomly chosen two attributes will not contribute to the distance 
metric. Conversely, if the two attributes map correctly the 
mapping will positively contribute to the distance metric.  

By changing the parameter α, we can control the behavior of the 
distance metric.  As we increase the α gradually from the original 
value, say 3, we will see the random mapping assignments start to 
contribute negatively to the distance metric.  As a result, the 
matching returned from the normal distance metric with large α is 
likely to be more conservative than that with small α. That is, 
metric with large α returns smaller but high confidence candidate 
matches while the metric with small α returns larger but less 
confident candidates. 

So far, we have discussed two distance metrics: one for 
monotonic and one for non-monotonic tasks.  Let us now examine 
the search (or graph matching) algorithms we will use.  In terms 
of complexity, the search for a one-to-one mapping is the easiest 
among the three cardinality types.  Let n and m be the number of 
attributes in schemas A and B, respectively, and suppose that we 
are finding mappings from A to B. Then, the size of search space 
for one-to-one mapping is O(n!).  The search space of onto 
mapping is factor of mCn bigger than that of one-to-one mapping, 
which is O(m!/(m-n)!).  Finally, partial mapping is the one with 
the most flexible cardinality constraints and its complexity is 

asymptotically 
1

! ( )!
n

n k
k

C m m k= −∑ .  It is obvious that a naïve 

exhaustive search will be impractical for schemas with large 
numbers of attributes.  

In practice, however, we can use instead an approximate search 
algorithm that trades off the accuracy of matching and the 
computational complexity. A large volume of literature has been 
devoted to finding such efficient, yet accurate graph matching 
approximations.  In our experiments, however, we used a simple 
exhaustive search and did not explore the options of using 
approximations, because we wanted to measure the accuracy of 
un-interpreted matching precisely and the use of approximation 
might affect the measurement to some degree, due to the 
algorithm’s own approximation error. 

To improve upon a naïve exhaustive search and reduce the 
complexity at least to a tractable range (for example, hours not 
days), in our experiments in Section 4, we used simple heuristics 
to limit the search space. We set an upper bound for the number 
of match candidates that a search algorithm considers for each 
attribute.  In our experiments, the match algorithm compares the 
entropies of attributes across the two input tables and chooses, for 

each source attribute, the closest p target attributes from the target 
table.  We used three as the upper bound, p, in our experiments.  

The match algorithm matches the two input graphs by finding the 
mapping that optimizes the distance metric. We can optimize 
different metrics in different ways. For example, if the Euclidean 
distance metric is used, the match algorithm must minimize the 
metric to find the best mapping. On the other hand, the match 
algorithm must maximize it if the normal distance metric is used.  

Now, recall that one of our goals was to determine if mutual 
information matching is necessary, or whether entropy-only 
mapping was sufficient. To address this issue, we need an 
entropy-only version of the two distance metrics.  

Definition 2.8 Entropy-only Euclidean Distance Metric   Let A 
and B be two tables with equal number of attributes and ai and bi 
be the entropies of attribute i in table A and B, respectively. Let m 
be an index that maps an attribute in table A to the matching 
attribute in table B. We define the entropy-only Euclidean 
distance metric for table A and B as: 

2
( )( , ) ( )U

i m iE i
D A B a b= −∑  

Definition 2.9 Entropy-only Normal Distance Metric  Similarly, 
we can define the entropy-only normal distance metric for graph 
A and B as: 

( )
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= −
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The entropy-only matching works mainly in the same way as the 
mutual information based matching. It matches the attributes 
across the two input tables by finding the mapping that optimizes 
the entropy-only metric.  

Let us now turn to a metric that we use to measure the accuracy of 
match result. We use Precision and Recall, which is a measure for 
answer quality widely used in the text retrieval community. Let n 
be the number of matches produced by a schema matching 
algorithm; m be the total number of true matches in two input 
schemas; and c be the number of correct matches in the produced 
match results. Given that, we can define Precision and Recall as 
follows: 

•  Precision =  c / n 

•  Recall  =  c / m 

Note that Precision and Recall are identical if we are considering 
one-to-one mapping or onto mapping, because the number of 
produced matches and true matches are always same due to the 
cardinality constraints.  

3. VALIDATING THE FRAMEWORK 
In this section, we present the results of some schema matching 
experiments using our proposed approach.  We ran experiments 
over two real-world data sets from different domains. We 
conducted several different types of experiments. For each type of 
cardinality constraint, we performed a set of experiments on 
different input sizes (or sizes of the overlap between two input 
schemas, in case of partial mapping) and different sample (data 
instance) sizes.  

Testbed Implementation 



We implemented our two-step matching algorithm using Java 1.4. 
The first step of our algorithm uses a data loader and analyzer.  
The data loader/analyzer component loads data tables from text 
files; analyzes the loaded tables; and constructs dependency 
graphs. Then, the graph matching algorithm takes over and 
performs graph matching over the two dependency graphs.  We 
implemented a naïve exhaustive search algorithm with simple 
filtering (considering in all cases only the n candidates with 
closest entropy values) to limit the search space.  Although the 
filters we applied reduce the search space for the algorithms, the 
remaining search space is still very large.  To run such expensive 
experiments, we divided the experiment runs to multiple sub-runs 
and executed them in parallel on multiple workstations.  The full 
set of experiments with 50 iterations took approximately 5 hours 
to finish.  

Data Sets 

We used real-world data sets from two different data domains: 
medical data and census data.  The medical data set we used in 
our experiments contains patients’ lab exam results for diagnosing 
thrombosis [19]. Figure 4(a) shows the measured entropies of 30 
randomly chosen attributes of the thrombosis lab exam data and 
Figure 4(c) shows a fragment of the first 10 (out of the 30) 
attributes’ data values. The original table contains 12 years worth 
of patient exam records, which is approximately 50K tuples, and 
each tuple consists of 44 attributes representing test types.  The 
column data types are mostly numeric, and a significant portion of 
the table is left blank (see attributes 15 – 30 in Figure 4(a).)  Our 
basic experimental technique with the medical data set was to 
range partition the original table into two sub-tables based on 
exam dates (column 1) and to use these two sub-tables for 
experiments. We “pretended” that these sub-tables were two 
different tables that needed to have their schemas mapped. 

Obviously, we “knew” the correct answer for the mapping; but the 
mapping algorithm did not.   

For our second data set, we used census data.  Figure 4(b) and 
4(d) show attribute entropies and a table fragment from the census 
data set, respectively. We used two state census data files, CA and 
NY, in our experiments [22]. Each table consists of 240 attributes. 
We ran the experiments over a randomly chosen set of 30 
attributes.  

Note that in Figure 4(d), attributes 8 and 9 are duplicated. The 
original census data files have some number of duplicate columns 
and two of them happened to be in the 30 attributes randomly 
chosen for our experiments. Evaluating the match results, we 
didn’t count mappings like NY9 to CA8 a correct match; therefore 
the accuracy of matching was somewhat reduced degree by these 
duplicate columns.  

As we can see in Figure 4(a) and 4(c), even entropy-only 
matching gives a fair number of matches when the number of 
attributes to match is small and the attribute entropies differ by a 
substantial amount.  However, the entropy-only approach fails 
when two or more attributes have close entropies. For example, in 
Figure 4(a), attributes 21 and 24 are likely to be cross-matched 
because the entropies of the two attributes are reversely ordered in 
the two tables.  In our experiments below, we will continue to 
compare the entropy-only approach with our mutual information-
based matching, to see if and when the additional complexity of 
considering mutual information is useful.  

One-to-one mapping 

Figure 5 presents the results of one-to-one schema matching. We 
ran the experiment while increasing the number of attributes in 
two input tables to be matched.  For each table width, two to 20, 
we iterated the measurement 50 times with randomly chosen 
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b) Census data 10K samples 

1 2 3 4 5 6 7 8 9 10 
97070 23 53 10 6. 4 14 0.5 23 10
97102 26 56 10 6. 5. 13 0.5 25 10
97122 25 48 90 6. 5. 15 0.6   
98012 26 57 10 7 4. 16 0.4 22 93 
98021 34 52 98  5. 10 0.6 23 11
98031 35 54 95 6. 5. 13 0.5 24 11
98051 30 54 10 6. 5. 14 0.5 23 19
98063 26 55 10 6. 5 13 0.5 24 89 
98082 26 22 20 6. 5. 9.8 0.6 20 18
98092 32 23 19 7. 5. 13. 0.6 27 15

c) First ten columns of Lab Exam 1 fragment 

1 2 3 4 5 6 7 8 9 10 
18091 1063 10 9 9 41 15 368 368 288 
17511 3281 25 21 40 89 59 1211 1211 796 

609 3424 29 13 15 148 26 1055 1055 861 
3861 2884 18 7 4 114 11 670 670 568 

18614 1478 12 10 15 40 16 630 630 459 
3999 2414 29 16 27 87 21 967 967 753 
5283 2385 42 17 39 46 40 968 968 622 

21892 3053 28 17 16 99 33 1400 1400 1130 
18554 14506 160 131 92 499 170 5084 5084 3965 
12491 823 2 0 1 39 4 240 240 226 

d) First ten columns of Census CA fragment 

Figure 4. Attribute entropies of two data sets. 



subsets of attributes and averaged the results. Entropy-only 
matching results (labeled ET) are also presented to show the 
improvements obtained by taking into accounts of correlations 
between the attributes, which is given in the results of mutual 
information based matching (labeled MI). Furthermore, we tested 
both Euclidean and normal distance metrics in both entropy only 
and mutual information matching.   

Figure 5(a) shows the precision of match results using thrombosis 
lab exam 10K tuple samples.  As we see in Figure 5(a), match 
results obtained from narrow tables are better than that from wider 
tables. As the tables get wider, the precision of matching 
deteriorates. Comparing the two matching techniques, the entropy 
only matching combination shows much faster deterioration than 
mutual information matching. The best performer was the mutual 
information matching using the Euclidean distance metric, and the 
worst was entropy only matching using the normal distance 
metric. Comparing two metrics, the Euclidean distance metric 
works better than the normal distance metric in both the entropy 
only and mutual information matching. We used 3.0 for the 
normal distance metric’s control parameter α.  However, the value 
of the control parameter, α, has no effect in the match results in 
this case. As we mentioned in Section 3, the control parameter α 
balances the precision and recall of the match results. Both 
precision and recall are, however, always the same in one-to-one 
mapping and onto mapping. 

Figure 5(b) shows the match results using the census data set 10K 
tuple samples.  Although the overall precision is slightly better, 
the results look quite similar to those presented in Figure 5(a).  
Similarly, in Figure 5(b), mutual information matching yielded 
superior results to entropy only matching and the Euclidean 
distance metric performed better that the normal distance metric.  
Mutual information matching with the Euclidean metric produced 
a matching of approximately 93% accuracy when two 20 column 
tables were matched, in which on average, more than 18 attributes 
were correctly matched while only two mismatched.  On the other 
hand, 85% accuracy was achieved by entropy only matching using 
the same metric.  In Figure 5(a) with the lab exam data set, we had 
86% and 74% accuracy for mutual information and entropy only 
matching, respectively, which can be interpreted as 3 misses and 5 
misses out of 20 true matches.   

The results from census data were slightly better than those of the 
lab exam data. One explanation for this can be found in the 

entropy signature of the two data sets shown in Figure 4.  In 
Figure 4(a), we can see that the last six attributes, from 25 to 30, 
have very low entropy values. These are the columns in the 
original data that have mostly null values.  Because of the lack of 
information in them, these columns do not contribute much to the 
match results.  By contrast, in the census data, only one such 
attribute exists, which is attribute 14 in Figure 4(b).  

Turning to the issue of deterioration, one plausible explanation is 
that the search space (or the number of match candidates) grows 
super exponentially as the size of matching schema increases.  For 
instance, matching two schemas of size two has only two match 
candidates; that is, for schemas S1(a1, b1) and S2(a2, b2), we can 
match either a1-a2 and b1-b2 or a1-b2 and b1-a2.  By contrast, 
for schemas of size 20, we have 20! candidates to search. 
Considering the super exponential growth of search space, the 
deterioration of mutual information matching precision is 
relatively small.  

Onto mapping 

Figure 6 illustrates the results of schema matching with the onto 
cardinality constraint. Figure 6(a) shows the results from 
thrombosis lab exam data and Figure 6(b) shows census data.  In 
this experiment, we kept the target schema size constant at 22 
attributes while increasing the source schema size from two to 20 
attributes.  In each step, as was done in our one-to-one mapping 
experiments, we iterated the measurement 50 times with randomly 
chosen subsets of attributes and averaged the results.  

As was the case in the one-to-one mapping experiments, the 
census data match result is slightly better than that of the lab exam 
data.  For example, with census data, the precision of the match 
result reached 81% when matching 11 attributes out of 22, while 
it was 75% with lab exam data.  The performance gap between the 
two data sets widened as the source schema size increased from 
there; e.g., when the schema size reached 20, census data yielded 
91% precision while lab exam data turned out only 80%. The 
performance gap phenomenon is consistent with what we 
observed in the one-to-one mapping results shown in Figure 5 and 
has a similar explanation.  

In both data sets, mutual information matching outperformed 
entropy only matching. The precision of lab exam data matching 
was improved approximately 31% (from 61% in entropy only to 
80% with mutual information) while precision in census data 
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Figure 5. One-to-one mapping results.   



improved 12% (from 81% in entropy only to 91% for mutual 
information).  We see that mutual information was more helpful 
for the lab exam data than it was for the census data.  This is 
because in the lab exam data, more attributes had similar entropy, 
so that entropy-only mapping was more likely to get “confused.” 
Turning now to compare our two metrics, Euclidean and normal, 
the Euclidean distance metric yielded better results overall in both 
data sets, which is consistent with our observations in the one-to-
one mapping results.   

To summarize the situation up to this point, we have considered 
the performance of two matching methods and two distance 
metrics, and the results have been consistent with those in the 
one-to-one mapping case.   

However, there is a notable difference: the precision of matching 
in the onto case improves as the size of source schema increases, 
which is the opposite of what we saw in the one-to-one mapping 
case.  We turn now to explain this phenomenon. 

Let us consider the matching as two step process: selecting a 
subset of attributes from the target schema, and searching for the 
correct permutation of this selected subset. The reason that the 
onto experiments had better performance with a larger source 
schema is that the first step is harder than the second.  If the first 
step were easy, the result of the onto mapping experiments should 
have looked similar to that of the one-to-one experiments.  To 
illustrate this, let us consider an extreme case where the first step 
always returns the correct attribute subset.  With this assumption, 
the onto mapping problem reduces to the one-to-one mapping 
problem. However, the result of the onto mapping is opposite to 
that of the one-to-one mapping; that is, as the schema size 
increases, the onto mapping precision improves while one-to-one 
mapping precision deteriorates.   

Now suppose that the second step always returned the correct 
permutation. Then the onto matching problem reduces to 
choosing the correct attribute subset from the target schema.  In 
fact, this assumption is not too far from the real situation, because 
as shown in the one-to-one mapping results, the second step 
indeed produces almost perfect results, especially when the 
number of attributes is small. For example, consider the case of 
finding two attributes out of 22 attributes.  The total number of 
possible selections is 231, and one of them is the correct selection 
and 40 others have only one correct attribute (50% precision). The 
remaining 190 selections yield no match (therefore 0% precision).  

Whereas, in case of finding 20 attributes out of 22, the maximum 
mismatch number is two; therefore, it will achieve 90% precision 
in the worst case. Considering this, it is easy to see why the 
precision improves in spite of the fast growing search space.  

Partial mapping 

Figure 7 illustrates the results of schema matching with the partial 
mapping cardinality constraint. Figure 7(a) and 7(c) show the 
precision and recall of the thrombosis lab exam data results and 
Figure 7(b) and 7(d) shows the precision and recall of the census 
data results, respectively.  In this experiment, we keep the size of 
both source and target schema constant at 12 attributes while 
varying the number of correct matches from two to 10 attributes.  
In each step, as was done in the previous experiments, we iterated 
the measurement 50 times with randomly chosen subsets of 
attributes and averaged the results. Unlike previous two cases, 
partial mapping requires a non-monotonic distance metric because 
in this case, the size of source schema and the number of correct 
matches are not necessarily same. For the same reason, both 
precision and recall should be examined.  

In this experiment, we used the normal distance metric with three 
different control parameter values: 1, 4, and 7. In Figure 7(a), MI 
Normal(1.0) represents mutual information matching using 
normal distance metric with control parameter α=1, and similarly 
others.  Unlike the previous two cases, it is not easy to tell which 
approach dominates from the experiments.  In fact, the choice of α 
is dependent on the application semantics.  If an application 
prefers a small number of candidates with high confidence, then a 
larger α is going to be more suitable. In contrast, if the application 
is willing to accept relatively low confidence in match candidates 
but wants as many probable matches retrieved as possible, then 
smaller α should work better.  

For instance, in Figure 7(a), MI Normal(7.0) achieved 75% 
precision where the two input schemas contain ten true matches, 
while the same metric turned out only 45% recall at the same 
point in Figure 7(c). In other words, it produced candidate 
matches, 75% of which were correct, and the number of correct 
matches in the candidates was 45% of the number of total true 
matches. On the other hand, MI Normal(1.0) achieved 
approximately 67% precision, while it turned out 75% recall at 
the same point in the graph.  It is intuitively clear that the normal 
distance metric with α=1.0 returned a larger number of candidates 
than the metric with α=7.0.  In fact, we can calculate the average 
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b) Census data 10K samples 

Figure 6. Onto mapping results.  Target schema size is kept constant at 22 attributes while source schema size varying. 



number of candidates returned by the two metrics using the 
definition of precision and recall given in Section 3. The normal 
distance metric with α=7.0 (where #of matching attributes=10) 
returned on average six candidates while the metric with α=1.0 
returned more than 11 candidates. 

As was the case in the previous two scenarios, the performance on 
the census data set is slightly better than that of lab exam data. In 
Figure 7(b) and 7(d), MI Normal(4.0) achieved approximately 
75% precision and 79% recall, where the number of matching 
attributes is ten.  Comparing two matching methods, in the lab 
exam data set, mutual information matching improved entropy 
only matching results by approximately 24% in both precision and 
recall, where the number of matching attributes was ten and α was 
1.0.  In case of census data set, the improvement was 19% and 
16% for precision and recall, respectively, at the same data point 
in Figure 7(b) and 7(d) (i.e., #of matching attributes=10) using α 
= 4.0.  

Unlike previous two scenarios, the search space for partial 
mapping remains same throughout the experiments with varying 
numbers of matching attributes.  The search space in our 
experiment in Figure 7 (i.e., 12 attribute to 12 attribute schema 
matching) was over 53 billion possible matches.  Although the 
search space did not change, the accuracy of results improved as 
the number of matching attributes increased. The explanation we 
gave for the onto mapping scenario applies here as well.  It is 
easier to find more matches when the number of true matches is 

greater. Compared to the onto mapping experiments, however, the 
accuracy of results is significantly dampened when the number of 
true matches is small.  

For example, in Figure 7(a) and 7(c) where only two true matches 
exist, the precision of the results was around 10% with the recall 
of 46% (using α = 1.0). In experiments with the onto mapping, the 
precision was over 50% with the same data set.  One reason for 
this discrepancy is that the search space for partial mapping is 
significantly larger than that for the onto mapping, and the 
difference is more striking in cases with a small number of 
matches.  Another possible reason is that we were using normal 
distance metrics in the partial mapping scenario, which was 
shown to be inferior to the Euclidean distance metrics in the 
previous two matching scenarios.  As pointed out earlier, the 
Euclidean metric is monotonic and therefore is not applicable to 
the partial mapping scenarios. 

On the Result of Unrelated Schema Matching 

So far we have examined the cases of matching where we know 
matches exist. In this subsection, we consider the matching of 
unrelated schema instances. We examine how our matching 
algorithm reacts to the matching of such schema pairs. The ability 
of identifying relevant/irrelevant schema instances from many 
others is an important aspect of schema matching technique. 
Consider a scenario of Web-source integration.  The number of 
sources on the Web grows daily, and, to make matters worse, 
sources are added and removed in an uncontrolled fashion.  

0%

10%

20%

30%

40%

50%

60%

70%

80%

2 3 4 5 6 7 8 9 10

#of matching attributes

Pr
ec

is
io

n

MI Normal(1.0)
MI Normal(4.0)
MI Normal(7.0)
ET Normal(1.0)
ET Normal(4.0)
ET Normal(7.0)

   
a) Precision of lab exam mapping results (10K samples) 

0%

10%

20%

30%

40%

50%

60%

70%

80%

2 3 4 5 6 7 8 9 10

#of matching attributes

Pr
ec

is
io

n

MI Normal(1.0)
MI Normal(4.0)
MI Normal(7.0)
ET Normal(1.0)
ET Normal(4.0)
ET Normal(7.0)

  
b) Precision of census data mapping results (10K samples) 

20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%

2 3 4 5 6 7 8 9 10

#of matching attributes

R
ec

al
l

MI Normal(1.0)
MI Normal(4.0)
MI Normal(7.0)
ET Normal(1.0)
ET Normal(4.0)
ET Normal(7.0)

 
c) Recall of lab exam mapping results  

20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%

2 3 4 5 6 7 8 9 10

#of matching attributes

R
ec

al
l

MI Normal(1.0)
MI Normal(4.0)
MI Normal(7.0)
ET Normal(1.0)
ET Normal(4.0)
ET Normal(7.0)

 
d) Recall of census data mapping results 

Figure 7. Partial mapping results.  The size of both source schema and target schema is set to 12 attributes, while the number of correct 
matches varies.  



Without automated tool support, the task of building and 
maintaining Web-source information integration systems will be 
very human-labor intensive. Considering this, at the very least, the 
ability of classifying or clustering schemas is a desirable feature 
for a (semi) automatic schema matching tool.  Therefore, as a first 
step, we would like to investigate if our matching techniques can 
distinguish “good” or “bad” candidates for matchings of schemas. 

Turning to our schema matching algorithm, ideally, we will see 
that the algorithm turns out much worse metric values in “bad” 
cases (where the two tables being considered are really distinct) 
than it does on the “good” cases (where the two tables logically 
should be integrated).  One such example is shown in Figure 8(a).  
We tried matching the Census data for California to the Lab 
exam1 (henceforth Lab1-CA) data set and compared the results to 
the case of a correct matching (matching New York’s census data 
to California’s census data.) Figure 8(a) shows the Euclidean 
metric values of one-to-one and onto mapping results. As we 
expected, NY-CA's Euclidean distance grows in much lower rate 
than Lab1-CA's distance as the size of source schema increases. 
Note that with the Euclidean distance metric, the smaller the 
distance between two schemas, the closer the matching tool thinks 
the schemas are.  On the other hand, with the normal distance 
metric, larger metric values mean closer matching. Figure 8(b) 
shows the normal distance metric values of the same set of test 
shown in Figure 8(a). Unlike the previous case, Lab1-CA’s 
normal metric value declines while NY-CA's normal metric grows, 
for both one-to-one and onto mapping.   

Figure 8(c) shows the results of partial mapping using normal 
metric with three different control parameters (α): 1.0, 4.0, and 
7.0. In all three cases, NY-CA's normal metric (Figure 8(c)) grows 
in a similar fashion as the normal metric of one-to-one and onto 
mapping cases (i.e., Figure 8(b) NY-CA.) On the other hand, 
Lab1-CA's normal metric values are virtually unchanged. The 
reason for this is that in partial mapping, there is no cardinality 
constraint and because of that, the mapping always turns out the 
smallest possible matches (in case with α of 4.0 and 7.0) for all 
range in x-axis of the graph because there is no true match 
between Lab1 and CA.  In case of α ≤ 1.0, the normal distance 
metric becomes a monotonic metric because the subtraction inside 
of summation is always greater than or equal to zero; as a result, 
the metric always turns out maximum matches. Because of this, 
the Lab1-CA’s Normal(1.0) shows relatively high values 

compared to the metric with two other α values. Despite that, the 
metric values are virtually unchanged throughout the range as no 
matches can be found.  

Considering the results in Figure 8, our technique shows promise 
in that it clearly distinguishes the case of being applied to two 
tables that should be integrated and being applied to two tables 
that are logically disjoint.  

Summary of Experimental Results 

In summary, the accuracy of matching results is generally better 
when the two schemas to be matched have a larger overlap (in 
relative terms; i.e., five out of ten is better than five out of 20). 
Accuracy in the one-to-one mapping scenario (100% overlap) was 
in the range of 85% to 95%; in the onto mapping scenario (approx. 
90% overlap, where source schema size=20) this dropped to 80% 
to 90% accuracy; and in the partial mapping scenario (83% 
overlap, where #of matching attributes=10) achieved around 70% 
precision and 75% recall on both data sets.  

One of the reasons for worse results in smaller overlap cases is 
that at least in our experiments, the task of finding a correct 
attribute subset to which to map is much more difficult than the 
task of finding the right permutation once the subset has been 
identified.  

For both data sets, lab exam and census data, we used 10K tuple 
samples throughout the experiments.  Figure 9 shows the effects 
of sample size in schema matching accuracy.  Figure 9(a) presents 
the results of lab exam data and Figure 9(b), that of census data.  
As we expected, the larger sample produced the better accuracy in 
both data sets.  However, the effect of sample size was much 
greater in census data set.  One reason for this is that census data 
is denser than the lab exam data in that census data has no nulls 
whereas lab data has large number of empty fields and therefore, 
the contribution to the matching results per tuple units is much 
greater with census data than with lab exam data.   

4. RELATED WORK  
Most previously proposed work on schema matching has focused 
on developing interpreted matching techniques (see [20] for 
survey).  Such techniques are largely dependent on identifying 
similarity in schema element names, common data representation 
formats, or common data domains.  Because our technique is 
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Figure 8. Distance metric values of matching results.   Matching results of two schema instance pairs are compared: NY-CA and Lab1-
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based on un-interpreted matching, it can complement existing 
techniques and can be combined with traditional schema matching 
systems. 

Some proposed techniques employ machine learning. Li and 
Clifton proposed a neural network-based schema matching 
prototype called SemInt [13][14]. Berlin and Motro proposed 
Automatch, a technique based on machine learning with feature 
selection [2].  Another machine learning approach, LSD, was 
proposed by Doan et al. [6][7] LSD employs multi-strategy 
learning with three-level architecture. Although these systems are 
flexible, they need to be re-trained before being able to be used in 
a new application domain. More importantly, learners rely on data 
interpretation and therefore it is not applicable to our problem 
domain.  

Other work has considered rule-based schema matching. These 
include TranScm [18] and ARTEMIS [4]. Both TranScm and 
ARTEMIS are schema-based matching techniques and our un-
interpreted instance-based technique can be combined with them 
to improve the accuracy of matching. Some other techniques 
represent a schema in a graph format and perform matching based 
on the structural similarity of the two graph representations. 
Cupid [15] and Similarity Flooding [16] fall into this category. 
Unlike our scheme, both Cupid and Similarity Flooding rely on 
schema-based structural similarity and therefore it is not 
applicable to our problem domain.  

Meanwhile, though they are not targeted to schema matching, 
many generic graph matching algorithms have been developed in 
the theoretical computer science literature.  One example is the 
Graduated Assignment Algorithm developed by Gold and 
Rangarajan [9].  These algorithms can be tuned to match our 
dependency graphs and replace the exhaustive search algorithm 
used in our experiments.  

At another end of the spectrum, the schema mapping system 
called Clio [12][17][23] creates a mapping between two input 
schemas in an interactive fashion using user feedback. It produces 
as a mapping a view definition (mapping query) over the target 
schema so that a meta query engine can execute the mapping 
query and as a result, translate the data from the original schema 
into the target schema. Our un-interpreted matching and Clio can 
be combined because Clio focuses on finding correspondences 

between data instances while un-interpreted matching focuses on 
finding mappings between schema elements.   

In our work, we used mutual information and entropy to represent 
interaction between attributes. These concepts are popular in the 
information theory community and have been well accepted in 
other domains as well [5]. Although we found that mutual 
information is an effective tool for capturing dependencies in an 
un-interpreted manner, there exist other ways that this could be 
accomplished.  One interesting approach would be to use 
Bayesian network structure learning [8][10][11]. Bayesian 
networks capture dependency (or sometimes causal) relations 
between attributes in the form of conditional probability 
distributions.  Among many others, [8] and [10] caught our 
attention because they use mutual information to limit potentially 
intractable search spaces of possible structures.   

Finally, Bernstein et al. presented model management scenarios in 
their vision paper [3]. They proposed a unified framework for 
applications to access underlying models using high level 
operators such as Match, Merge, ApplyFunction and Compose.  
The schema matching technique reported in this paper works as a  
Match operator in model management. Developing remaining 
operators using our un-interpreted method would be an interesting 
area for future work.  

5. CONCLUSION 
In this paper we investigated schema matching techniques that 
work in the presence of opaque column names and data values.  
We proposed a two-step technique that does not rely on the 
interpretation of data elements or schema elements. To our 
knowledge our paper is the first to introduce an un-interpreted 
matching technique utilizing inter-attribute dependency relations.  
We have shown that while a single column un-interpreted 
matching such as entropy-only matching can be somewhat 
effective alone, further improvement were possible by exploiting 
inter-attribute correlations.  The improvement obtained was in the 
range of 9% to 31% depending on the cardinality constraints for 
the mapping problem and the data sets used in the experiments.  

A good deal of room for future work exists. In our work, we have 
only tested two simple distance metrics, Euclidean and normal.  It 
is possible that more sophisticated distance metrics could produce 
better results. An interesting and important direction would be to 
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Figure 9. Effects of sample size in match results.  One-to-one mapping precisions with 1K, 5K and 10K samples are presented. 



search for metrics that specialize in the task of finding correct 
subset of attributes from target schemas. Another potentially 
interesting direction would be to find an accurate yet 
computationally efficient approximation algorithm for the 
instances of the graph matching problem generated by our 
approach to the schema mapping problem.  It would also be 
interesting to evaluate other dependency models using different 
un-interpreted methods.  In this work, we focused only on 
matching flat tables. Extending the technique to nested structures 
(for example, XML or object-oriented schemas) would be another 
interesting direction for future work.  Furthermore, in our 
experiments, we only tested our matching techniques against the 
tables that are produced by the same organization.  It would be 
interesting to apply our algorithm to tables generated 
independently by two organizations, and to explore when data sets 
are likely to exhibit properties that make them amenable to our 
un-interpreted instance-based approach. 

Finally, the schema matching problem we considered in this paper 
is only one small subpart of a larger problem.  A more complete 
solution to the data integration problem requires the additional 
steps (at the very least) of identifying which tables are candidates 
for matching and handling cases in which the tables in the two 
schemas do not have a one-to-one correspondence.  It is our hope 
that the un-interpreted matching approach we present here can be 
useful as a piece of the solution to this larger problem.  We are 
encouraged by the results we present in this paper, since they 
show that our technique, which does not rely on any interpretation 
of the schemas or data instances in the matching problem, can 
distinguish schemas that “make sense” to integrate from those that 
do not, and can propose good matchings for schemas that do make 
sense to integrate. 
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