
Database Schema Matching Using Machine
Learning with Feature Selection

Jacob Berlin and Amihai Motro

Information and Software Engineering Department
George Mason University, Fairfax, VA 22030

{jberlin, ami}@gmu.edu

Abstract. Schema matching, the problem of finding mappings between
the attributes of two semantically related database schemas, is an im-
portant aspect of many database applications such as schema integra-
tion, data warehousing, and electronic commerce. Unfortunately, schema
matching remains largely a manual, labor-intensive process. Further-
more, the effort required is typically linear in the number of schemas
to be matched; the next pair of schemas to match is not any easier than
the previous pair. In this paper we describe a system, called Automatch,
that uses machine learning techniques to automate schema matching.
Based primarily on Bayesian learning, the system acquires probabilistic
knowledge from examples that have been provided by domain experts.
This knowledge is stored in a knowledge base called the attribute dic-
tionary. When presented with a pair of new schemas that need to be
matched (and their corresponding database instances), Automatch uses
the attribute dictionary to find an optimal matching. We also report
initial results from the Automatch project.

1 Introduction

Schema matching is the problem of finding mappings between the attributes of
two semantically related database schemas. The schema matching problem is an
important, current issue for many database applications such as schema integra-
tion, data warehousing, and electronic commerce [12, 15]. Unfortunately, schema
matching remains largely a manual, labor-intensive process. Furthermore, the
effort required is typically linear in the number of schemas to be matched; the
next pair of schemas to match is not any easier than the previous pair. Thus,
database applications that require schema matching are limited to environments
in which the set of member information sources is small and stable. These ap-
plications would scale-up to much larger communities of member sources if the
schema matching “bottleneck” was broken by automating the matching process.

In this paper we discuss such a system, called Automatch, for automating
the schema matching process. Based primarily on Bayesian learning, the sys-
tem acquires probabilistic knowledge from examples of schemas that have been
“mapped” by domain experts into a knowledge base of database attributes called
the attribute dictionary. Roughly speaking, this dictionary characterizes different

attributes by means of their possible values and the probability estimates of these
values. Furthermore, the dictionary may be extended to contain any attribute
metadata that has a probabilistic interpretation (e.g. attribute names or string
patterns).

When presented with a pair of “client” schemas that need to be matched (and
their corresponding database instances), Automatch matches them “through” its
dictionary. Using probabilistic methods, an attempt is made to match every at-
tribute of one client schema with every attribute of the other client schema,
resulting in individual “scores.” An optimization process based on a Minimum
Cost Maximum Flow network algorithm finds the overall optimal matching be-
tween the two client schemas, with respect to the sum of the individual attribute
matching scores.

To overcome the problem of very large dictionaries caused by very large
attribute domains, Automatch employs statistical feature selection techniques
to learn an efficient representation of the examples. That is, each attribute is
represented with a minimal set of most informative values. Thus the attribute
dictionary is made human understandable through aggressive reduction in the
number of values. Although the example schemas may contain many thousands
of values, we are able to focus learning on a very small subset, consisting of as
few as 10% of the initial values.

The results of our initial experimentation with Automatch are encouraging
as they show performance that exceeds 70% (measured as the harmonic mean
of the soundness and the completeness of the matching process). Although the
attribute dictionary was built for Automatch, we conjecture that it could be
employed as a knowledge asset in other schema matching systems.

The remainder of this paper is organized as follows. Section 3 describes the
basic methodology of Automatch; in particular, the probabilistic information
in the acquired knowledge base and how it is used to infer optimal matchings
between “client” schemas. Section 4 describes alternative methods for reducing
the size of the knowledge base through feature selection. Section 5 explains
the experiment and its conclusions. Section 6 summarizes the contributions and
suggests future research directions. We begin with a brief discussion of other
published approaches and how they are related to Automatch.

2 Related Work

A thorough discussion of schema matching techniques and implementations can
be found in [6, 11, 15]. Here we mention two such approaches and compare them
to Automatch. Automated schema matching can be classified as rule based and
learner based [6].

The Artemis system [5] is a rule-based approach for schema integration. This
system determines the affinity of attributes from two schemas in a pair-wise fash-
ion. Affinity is based on comparisons of attribute names, structure, and domain
types and is scored on a [0,1] interval. The process relies on thesauri to deter-
mine semantic relationships. The system uses hierarchical clustering based on

affinity values to group together related attributes. Finally, a set of unification
rules are employed to interactively guide a user through the construction of an
integrated schema. In contrast with Automatch, Artemis considers schema in-
formation; Automatch considers instance information. Furthermore, knowledge
in Artemis is “pre-coded” in the thesaurus and unification rules; knowledge in
Automatch is learned from examples.

SemInt [9, 10] is a learner-based system that uses neural networks to identify
similar attributes from different schemas. This system uses a combination of
schema and instance information. Schema information includes such information
as data types, field length, and constraint information. Instance information
includes such information as value distributions, character ratios, numeric mean
and variance.

For each type of information the system exploits, it determines a numerical
value on a [0, 1] interval. A tuple of these numerical values for one attribute
is the signature of the attribute. The system uses these signatures to cluster
similar attributes within the same schema. The system then uses the signatures
of the cluster centers to train a neural network to output an attribute category
based on the input signatures. Given a new schema, the system determines the
signature of each schema attribute using the same type of schema and instance
information used for training. These signatures are then applied to the neural
network to determine the category of the respective attributes. In contrast with
Automatch, SemInt uses a fixed set of features for learning; Automatch combines
feature selection with learning to find an optimal set of features for a given
problem domain. Furthermore, SemInt discovers matches to attribute clusters;
Automatch discovers matches to individual attributes.

3 Methodology

This section describes the basic methodology of Automatch, providing details of
its data structures and algorithms. It begins with an intuitive description of the
approach and a formal description of the problem.

3.1 The Overall Approach

Automatch is based on a knowledge base about schema attributes which is con-
structed from examples. When presented with two new “client” schemas that
need to be matched (and their corresponding database instances), Automatch
checks every client attribute against its attribute dictionary, obtaining individual
“matching scores” for each pair of client attribute and dictionary attribute.

These client-dictionary attribute scores are combined to generate client-client
attribute scores. To illustrate, assume B is an attribute of one client scheme, C
is an attribute of the other client scheme, and A is an attribute of the dictionary,
and assume that the matching of B to A is scored w1 and the matching of C to
A is scored w2; then the matching B ↔ C receives the score w1 + w2.1

1 We combine the individual scores by their sum, but other combinations are also
possible; for example, their product.

In turn, these individual client-client attribute scores are combined to gen-
erate overall schema-schema matching scores. To illustrate, assume schemas
R1 = {B1, B2} and R2 = {C1, C2} and assume the client-client attribute scores:
w1 : B1 ↔ C1, w2 : B1 ↔ C2, w3 : B2 ↔ C1, and w4 : B2 ↔ C2. The schema
matching {B1 ↔ C2, B2 ↔ C1} is then scored w2+w3. Other schema matchings
are scored similarly.

In a subsequent optimization process, Automatch finds the schema matching
with the highest schema-schema score.

3.2 Formalization of the Problem

Our formalization is based on the relational model. However, we are confident
that the methods can be extended to other models, such as the object-oriented
or the semi-structured models. A database schema is simply a finite set of at-
tributes {A1, . . . , An}. Given two database schemas R1 = {B1, . . . , Bp} and
R2 = {C1, . . . , Cq}, a matching is a mapping between a subset of R1 and a
subset of R2.

We assume a knowledge base about database attributes, called the attribute
dictionary and denoted D. In this knowledge base, each attribute is characterized
by a select set of possible values and their probability estimates.

In addition, we assume a scoring function f that, given (1) the attribute dic-
tionary D, (2) a pair of database schemas R1 and R2, (3) a pair of corresponding
database instances r1 and r2, and (4) a matching between R1 and R2, issues a
value (a real number), that indicates the “goodness” of the matching.

The problem is then to find the best matching for two given schemas R1 and
R2. This abstract description leaves two major issues to be discussed in detail:

1. The nature of the attribute dictionary D and the scoring function f .
2. The optimization of f (i.e., finding the best schema matching).

These two issues are discussed in the next two subsections.

3.3 The Attribute Dictionary and the Scoring Function

The attribute dictionary D consists of a finite set of schema attributes {A1, . . . , Ar}.
Each attribute in the attribute dictionary is characterized by a set of possible
values and their probability estimates. The attribute dictionary serves as a knowl-
edge base that accumulates information about attributes. All attempts to match
attributes of client schemas refer to this knowledge base. We use Bayesian learn-
ing to populate the attribute dictionary with example values provided by domain
experts.

Recall from the intuitive description in Section 3.1 that the first task is to
determine client-dictionary attribute scores.

Let X be a client attribute, let A denote a dictionary attribute, and let V
denote a set of values that are observed in X (these values are derived from the
instance of the client schema to which X belongs).

Let P (A) be the prior probability that X maps to A (before observing any
values of X), let P (V) represent the unconditional probability of observing values
V in X, and let P (V |A) represent the conditional probability of observing the
values V , given that X maps to A. Bayes Theorem states that

P (A|V) =
P (V |A) · P (A)

P (V)
. (1)

P (A|V) is referred to as the posterior probability that X maps to A, because
it reflects the probability that a mapping of X to A holds after the values V
have been observed. This posterior probability serves as the score of the client
attribute X and the dictionary attribute A.

Letting V be a sequence of values (v1, . . . , vn), and assuming conditional
independence of values given the mapping, the client-dictionary attribute score
is

M(X, A) =
P (A)
P (V)

·
n∏

k=1

P (vk|A) . (2)

Although the attribute values may not be conditionally independent, such an
assumption has been shown to be an acceptable approach, aimed at reducing the
number of probabilities to a tractable amount while not sacrificing optimality [7,
8, 13].

To build the attribute dictionary for each attribute A we must learn and store
the probability estimates P (A), P (¬A), P (v|A), and P (v|¬A) for all dictionary
attributes A and values v. Note that we do not need to learn P (V) because this
term is determined by the requirement that M(X, A) + M(X,¬A) = 1.

P (A), the probability that a client attribute X maps to A, is estimated by the
proportion of examples provided by the domain expert that have been mapped
to A. P (v|A), the probability that attribute value v occurs given that a mapping
to A holds, is estimated by counting the occurrences of v in the set of examples
provided by the domain expert. The remaining terms are learned in a similar
fashion. For numeric data values, we assume a normal distribution and use the
normal probability density function to estimate the conditional probabilities.
A thorough discussion of the algorithms for estimating these terms is reported
in [4]. A critical selection process that reduces the number of values v that are
maintained for each attribute A is discussed in Section 4.

3.4 Optimal Schema Matching

Assume now two given schemas R1 and R2 with their corresponding instances
r1 and r2, and let D denote the attribute dictionary.

The scores M(X,A) from Equation 2 are calculated for each attribute X in
the given schema and for each attribute A of the dictionary. A threshold is then
adopted, and scores that are below this threshold are interpreted as evidence that
X should not be mapped to A. These results may be represented in a weighted
tripartite graph in which nodes correspond to attributes, edges correspond to
matches, and edge weights correspond to the posterior probabilities.

Figure 1 shows such a graph for a simple case in which R1 = {B1, B2},
R2 = {C1, C2}, and D = {A1, A2, A3}. This example shows a full tripartite
graph (every node in the left or right partitions is connected to every node in
the center partition), but the use of a threshold implies that in general the graph
need not be full.

Fig. 1. Weighted tripartite graph for representing individual attribute-attribute scores.

Recall from the intuitive description in Section 3.1, that the client-dictionary
attribute scores wi are combined to generate client-client attribute scores. Note,
however, that every two client attributes may be matched through every dictio-
nary attribute. In the example, B1 and C1 may be matched through A1 (with
score w1 + w7), through A2 (with score w3 + w9) and through A3 (with score
w5 + w11). Note that associating a dictionary attribute with every attribute
match is like providing a common type for the matching attribute pair.

In turn, client-client attribute scores are used in generating overall schema-
schema scores. In the example, the schema matching comprising of B1

A1↔ C2

and B2
A3↔ C1 receives the score w1 + w8 + w6 + w11. Obviously, the number

of possible matchings between R1 and R2 is too high for a simple process that
enumerates all the matchings and scores each.

One obvious approach for matching R1 and R2 is to choose for each client
attribute the most probable dictionary attribute. For instance, in the example,
the highest of w1, w3 and w5 will determine whether B1 is mapped to A1, A2

or A3. Then a mapping can be established between those schema attributes
that share a node in the attribute dictionary. In the example, assume that the
highest of w1, w3 and w5 is w3; (i.e., B1 is best mapped to A2), and assume
that the highest of w8, w10 and w12 is w10 (i.e., C2 is best mapped to A2); the
conclusion would then be that B1 is best matched with C2. The problem with
such an approach is that it easily leads to ambiguity. In the example, if the
optimal mappings correspond to the edges with weights w3, w4, w9 and w10,
we have established a match between the schemas, but the attribute mapping
is ambiguous. Furthermore, the approach easily leads to no match; e.g., if the
optimal mappings correspond to the edges with weights w1, w6, w9, and w10.

To avoid these pitfalls, we impose an additional constraint on the matching
of R1 and R2. Specifically, we limit our search to schema mappings in which the
paths between attributes in R1 and R2 are free of intersections. That is, two
attributes of a client scheme never map to the same dictionary attribute. The
resulting problem can then be solved using efficient flow network techniques.
Towards this, we must first extend the tripartite graph in several ways.

First, we add two nodes to the graph: a source node S on the left, which is
then connected to all the R1 nodes, and a target node T on the right, which
is then connected to all the R2 nodes. Next, we split each attribute dictionary
node A into two nodes, Ain and Aout. Each Ain

i is connected to its corresponding
Aout

i node. Next, we reconnect the edges from R1 and R2 to the appropriate Ain

or Aout node. Finally, each edge is given direction, capacity, and cost. All edges
are directed away from the source node S and towards the target node T . The
capacity for each edge is 1 (thus, the flow through an edge will be either 0 or 1).
The cost of each of the new edges added to the graph is 0. The cost of each of
the old edges is the negation of the edge weight. Figure 2 shows the new graph
for the example of Figure 1. Edge capacities and costs were omitted for clarity.

The reason for the negation of the weights is that we will be using an algo-
rithm that searches for a minimum when we actually wish to find the maximum
(finding a maximum is equivalent to finding the minimum of the negation). With
these modifications, we can now find a matching between the schemas R1 and
R2 that conforms to our constraints by using a Minimum Cost Maximum Flow
network algorithm [1]. In the current implementation of Automatch, we use the
LEDA software package for this purpose [2].

Specifically for Figure 2, since the source has two outgoing edges of capacity
1 and the target has two incoming edges of capacity 1 (i.e., two attributes are
matched on each side), the maximum flow is 2. Thus, we seek to find the edges
in the graph that have the minimum cost while supporting a maximum flow of
2. The edges in this set correspond to the optimal mapping of attributes of R1

to R2.
Note that when the client schemas do not have the same number of attributes,

some of the attributes of the larger schema will be matchless. Moreover, since

Fig. 2. Minimum-Cost-Maximum-Flow graph for finding optimal schema matching.

the tripartite is not necessarily full, the optimal matching may leave attributes
in the smaller schema matchless as well. This is not an undesirable consequence,
as it simply indicates that the client schemas include attributes that are unique
to their schemas.

4 Optimal Selection of Dictionary Values

Recall that the attribute dictionary of Automatch represents each attribute with
a set of possible values and their probability estimates. For schema attributes
that contain text, the number of needed probabilities is proportional to the num-
ber of unique values of this attribute. An attribute such as CustomerName could
assume thousands of values, thus imposing considerable space and processing re-
quirements. Furthermore, not all of these probabilities are equally informative.
Indeed, many of them are either uninformative (irrelevant) or misleading (noise).

A critical consideration in our methods is to reduce the dictionary repre-
sentation of attributes while retaining the most informative values. In machine
learning terminology these values are called features and the reduction process
is called feature selection. To reduce the size of the Automatch dictionary, we
have tested and compared three statistical feature selection strategies: Mutual
Information, Information Gain, and Likelihood Ratio. The former two strategies

are commonly used for feature selection; to our knowledge the latter strategy
has not been used for this purpose.

We will discuss each feature selection strategy in turn. Common to all these
approaches is that each feature is assigned a “score.” These feature scores can
be calculated from the probability estimates in the attribute dictionary. In all
of these approaches, higher scores are better. Once these scores have been cal-
culated for a given approach, a percentage of the highest scoring features is
retained with ties broken arbitrarily.

Finally, we must normalize the probabilities of the remaining features to sum
to unity. Thus, statistical feature selection imposes very little overhead in our
approach. In contrast, other machine learning approaches (e.g. neural networks,
rule learners, etc.) must execute their respective learning algorithms after feature
selection is completed.

4.1 Mutual Information

Mutual information has been used previously as a feature selection strategy in
information retrieval tasks such as [16]. The mutual information of a value v and
an attribute A is defined as

MI(v,A) = log
P (v ∧A)

P (v) · P (A)
. (3)

When v and A are independent, the mutual information of v and A is zero.
Intuitively, P (v) is a measure of the event that a value v occurs in the client at-
tribute X, and P (A) is a measure of the event the client attribute X is mapped to
the dictionary attribute A. Hence, MI(v, A) is a measure of the co-occurrence of
these two events. For example, if the events are independent (their co-occurrence
is unbiased), then the mutual information is 0.

For the purpose of characterizing dictionary attributes, we wish to retain the
values that have the greatest score regardless of whether they favor A or ¬A.
Therefore, we score values in the MI approach using this formula:

MImax(v, A) = max
{

log
P (v ∧A)

P (v) · P (A)
, log

P (v ∧ ¬A)
P (v) · P (¬A)

}
. (4)

The values v with the highest MImax(v,A) are chosen as the characterization
of attribute A. The actual number of values chosen is discussed in Section 5.2.

4.2 Information Gain

Information gain is often used in machine learning to determine the value of
a particular feature [13]. Given a client attribute X and a dictionary attribute
A, the issue is whether X maps to A or not. This issue may be formatted as a
binary message: 1 if yes, 0 if no.

Denote P (A) the probability that X maps to A. Assume first that our only
knowledge is the proportion of attributes that are mapped to A (how “popular”

A is as a target of mappings). The entropy (information content) of the message
is then

H = −(P (A) · log P (A) + P (¬A) · log P (¬A)) . (5)

Assume now that we know a new fact: v ∈ X. The new entropy (information
content) of the message is

H1 = −(P (A | v) · log P (A | v) + P (¬A | v) · log P (¬A | v)) . (6)

Assume now that we know an alternative fact: v 6∈ X. The new entropy
(information content) of the message is

H2 = −(P (A | ¬v) · log P (A | ¬v) + P (¬A | ¬v) · log P (¬A | ¬v)) . (7)

H1 and H2 may be combined using P (v), the probability that v is in X.
Then the entropy (information content) of the message is

H ′ = P (v) ·H1 + p(¬v) ·H2 . (8)

The information gained by knowing the presence or absence of v is

IG(v, A) = H −H ′ . (9)

4.3 Likelihood Ratio

The likelihood ratio for a value v and attribute A, defined as P (v|A)/P (v|¬A),
measures the retrospective support given to A by the occurrence of v [14]. The
likelihood ratio produces scores on the interval (0,∞). It has a value of 1 if
the feature provides no support. Likelihood ratios greater than 1 indicate that
the feature supports A; likelihood ratios less than 1 indicate that the feature
supports ¬A.

For the task at hand, we wish to retain the features that provide the most
support regardless of whether they favor A or ¬A. The features that favor A are
on the interval (1,∞), with higher values indicating stronger support, whereas
the features that favor ¬A are on the interval (0, 1), with lower values indicating
stronger support. Consequently, it is difficult to use the likelihood ratio as de-
fined, because higher scores are not necessarily better. For this reason, we use an
adjustment that inverts the likelihood ratios that support ¬A, placing them on
the same scale as likelihood ratios that support A, and then choose the stronger
of the supports:

LR(v, A) = max
{

P (v|A)
P (v|¬A)

,
P (v|¬A)
P (v|A)

}
. (10)

This strategy produces scores on the interval (1,∞) and higher scores are
always better.

5 Experimentation

5.1 Setting Up the Experiment

To experiment with the methods discussed in this paper, we built an attribute
dictionary for computer retail information with the following attributes: Desktop-
Manufacturer, MonitorManufacturer, PrinterManufacturer, DesktopModel, Mon-
itorModel, PrinterModel, DesktopCost, PeripheralCost, Inventory.

Data for this experiment was taken from the web sites of 15 different com-
puter retailers (e.g. Gateway, Outpost, etc). A total of 22 relations were ex-
tracted. The data was collected off-line from HTML web pages and imported
into relational database tables accessible through the ODBC protocol.

To experiment with this data, we used a procedure from data mining called
stratified cross-validation which we briefly describe (see [17] for a complete de-
scription). Each of the 22 schemas was manually mapped into our attribute dic-
tionary. We then partitioned these 22 schemas into three folds of approximately
equal size. Using two folds for learning and one fold for testing, we repeated
the experiment for the three possible combinations of folds. For the test fold, we
chose two schemas at a time (for all possible combinations) and used Automatch
to match the schemas. We used the manually constructed mappings to judge the
mappings which Automatch concluded.

5.2 Measuring Performance

To measure performance, each schema-matching result was interpreted as set
of mapping decisions for pairs of schema attributes 〈R1(Bi), R2(Cj)〉, where i
ranges over all the attributes of R1 and j ranges over all the attributes of R2.
Each of these attribute mapping decisions falls into one of four sets, A, B, C,
and D, where

A = True Positives (decision to map R1(Bi) to R2(Cj) is correct).
B = False Negatives (decision to not map R1(Bi) to R2(Cj) is incorrect).
C = False Positives (decision to map R1(Bi) to R2(Cj) is incorrect).
D = True Negatives (decision to not map R1(Bi) to R2(Cj) is correct).

The ratio |A|/(|A|+ |C|) is the proportion of true positives among the cases
thought to be positive; i.e., it measures the accuracy of Automatch when it
decides True. The ratio |A|/(|A| + |B|) is the proportion of positives detected
by Automatch among the complete set of positives; i.e., it measures the ability
to detect positives. Specifically to our application, the former ratio measures
the soundness of the discovery process, and the latter ratio measures its com-
pleteness. These two ratios are known from the field of information retrieval
as precision and recall, but we shall refer to them here as the soundness and
completeness of the schema matching process.

To simplify the comparison of the three feature selection approaches, we
combined soundness and completeness into a single performance measure using
their harmonic mean. The harmonic mean of precision and recall is often used

in information retrieval whenever a single performance measure is preferred [3].
The harmonic mean for our mapping problem is calculated as

F (x) = 2 · S(x) · C(x)
S(x) + C(x)

(11)

where S(x) and C(x) are the soundness and completeness of the discovery process
at a given percent reduction x in the feature space. The harmonic mean assumes
high values only when both soundness and completeness are high. Thus, maxi-
mizing the harmonic mean can be thought of as the best compromise between
soundness and completeness.

To measure the performance of each of the feature selection strategies that
were discussed in Section 4, we determine the harmonic mean of soundness and
completeness for each strategy as we increase the percentage of the feature space
that is discarded. We reduce the feature space in increments of 5 percent until
95 percent of the feature space has been discarded.

5.3 Interpreting the Results

First we measured the performance of Automatch without any attempt at op-
timizing the dictionary through feature selection; that is, we use the Bayesian
approach to score matches (Section 3.3) and the flow graph approach to optimize
matches (Section 3.4). Using cross validation, we achieved a performance of 66%
(measured as the harmonic mean of soundness and completeness). In a separate
experiment, we used random guessing to match the same schemas and achieved
a performance of 10%.

Next, we compared the three feature selection strategies of Section 4 and
assessed their impact on schema matching. Figure 3 shows the performance for
schema matching for each of the feature selection strategies. The x-axis is the
percentage of low-scoring features that have been discarded, and the y-axis is the
performance, measured as the harmonic mean of soundness and completeness.
The leftmost point in the graph corresponds to our first experiment with no
feature selection.

Initially, with 5% feature reduction, all the feature selection strategies im-
prove performance by at least 6%. The strategies then perform comparably up to
60% reduction. At levels of reduction over 80%, IG and LR continue to produce
improved matching performance (relative to no feature selection) while MI falls
below performance with no feature selection.

All three feature selection strategies improve performance when compared to
the initial performance with no feature selection (though the level to which they
sustain this improvement varies). This observation indicates that all of these
approaches are acceptable for reducing the feature space. Furthermore, if we are
seeking the most ambitious reduction in the feature space, LR is preferable to
IG which is preferable to MI.

0.50

0.55

0.60

0.65

0.70

0.75

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

LR IG MI

Fig. 3. Harmonic mean of soundness and completeness (y-axis) as the feature set is
reduced in increments of 5 percent (x-axis).

6 Conclusion

In this paper we described an automated solution for the well-known problem
of database schema matching. Our approach uses Bayesian machine learning,
statistical feature selection, and the Minimum Cost Maximum Flow network
algorithm to find an optimal matching of attributes between two semantically
related schemas.

Our significant findings and contributions in this paper were:

– The Automatch system is a new and viable approach to eliminate the schema-
matching bottleneck present in modern database applications. Our results
are encouraging as they show performance that exceeds 70% (measured as
the harmonic mean of the soundness and the completeness of the attribute
matching process).

– Statistical feature selection can be used to improve the performance of Au-
tomatch. The improvement is in three areas: (1) in the storage require-
ments for the auxiliary knowledge base, (2) in the computational costs of
the matching algorithm, and (3) in the quality (soundness and completeness)
of the results. We estimate that statistical feature selection can be used to
improve the performance of other automated schema-matching approaches
(such as [6, 10]) that must deal with high-dimensional feature spaces.

– Statistical feature selection incurs little overhead in Automatch since we
are using a probabilistic learning approach. Learning after feature selection
consists simply of normalizing the probabilities of the remaining features.
In contrast, other machine learning approaches (e.g. neural networks, rule

learners, etc.) must execute their respective learning algorithms after feature
selection is completed.

While the performance of 70% in these experiments is promising, user inter-
action is still necessary to complete the matching process. In our future research,
we plan on building a user interface that allows a domain expert to adjust the
attribute mappings that have been proposed by Automatch. Furthermore, the in-
terface will allow for iterative adjustment (i.e., after the user adjusts some of the
mappings, we can re-apply Automatch for the remaining unmapped attributes).

An important benefit of user interaction in Automatch is that the system
will be able to learn continuously. As new matches are provided through the
user interface, the learner will be able to combine this information with what has
already been learned. Note that this is significantly different than re-executing
the entire learning algorithm. Such continuous learning is possible due to the
statistical nature of the learning algorithm. As new matches are validated by a
user, we can learn from these additional examples by updating the frequency
counts of the features.

Finally, while this initial experimentation is encouraging, it is admittedly of
a limited scale. Additional experimentation is planned to validate these prelim-
inary conclusions.

Acknowledgement: The authors wish to thank Joseph (Seffi) Naor for his
important suggestions in the area of network flows.

References

1. Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice Hall, 1993.

2. Algorithmic Solutions. The LEDA Users Manual (Version 4.2.1), 2001.
3. Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.

ACM Press, 1999.
4. Jacob Berlin and Amihai Motro. Autoplex: Automated discovery of content for

virtual databases. In Proceedings of the Ninth International Conference on Coop-
erative Information Systems, pages 108–122, 2001.

5. Silvana Castano and Valeria De Antonellis. A schema analysis and reconciliation
tool environment for heterogeneous databases. In Proceedings of the International
Database Engineering and Applications Symposium, pages 53–62, 1999.

6. AnHai Doan, Pedro Domingos, and Alon Y. Halevy. Reconciling schemas of dis-
parate data sources: A machine-learning approach. In Proceedings ACM Special
Interest Group for the Management of Data (SIGMOD), 2001.

7. Pedro Domingos and Michael Pazzani. Conditions for the optimality of the simple
bayesian classifier. In Proceedings of the 13th International Conference on Machine
Learning, pages 105–112, 1996.

8. Pat Langley, Wayne Iba, and Kevin Thompson. An analysis of bayesian classifiers.
In Proceedings of the Tenth National Conference on Artificial Intelligence, pages
223–228, 1992.

9. Wen-Syan Li and Chris Clifton. Semantic integration in heterogeneous databases
using neural networks. In Proceedings of 20th International Conference on Very
Large Data Bases, pages 1–12, 1994.

10. Wen-Syan Li and Chris Clifton. Semint: A tool for identifying attribute corre-
spondences in heterogeneous databases using neural networks. Data & Knowledge
Engineering, 33(1):49–84, 2000.

11. Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema match-
ing with cupid. In Proceedings of the 27th International Conferences on Very Large
Databases, pages 49–58, 2001.

12. Renée Miller, Laura Haas, and Mauricio Hernández. Schema mapping as query
discovery. In Proceedings of the 26th International Conferences on Very Large
Databases, pages 77–88, 2000.

13. Tom Mitchell. Machine Learning. McGraw-Hill, 1997.
14. Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, 1988.
15. Erhard Rahm and Philip Bernstein. On matching schemas automatically. Technical

Report MSR-TR-2001-17, Microsoft, Redmond, WA, February 2001.
16. Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz. A bayesian

approach to filtering junk e-mail. AAAI-98 Workshop on Learning for Text Cate-
gorization, 1998.

17. Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations. Morgan Kaufmann, 2000.

