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Abstract

Automating semantic matching of attributes for the purpose of information inte-
gration is challenging, and the dynamics of the Web further exacerbate this problem.
Believing that many facets of metadata can contribute to a resolution, we present
a framework for multifaceted exploitation of metadata in which we gather infor-
mation about potential matches from various facets of metadata and combine this
information to generate and place confidence values on potential attribute matches.
To make the framework apply in the highly dynamic Web environment, we base our
process largely on machine learning. Experiments we have conducted are encourag-
ing, showing that when the combination of facets converges as expected, the results
are highly reliable.
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1 Introduction

In this paper, we focus on the long-standing and challenging problem of attribute match-
ing [1] for the purpose of information integration. To address this problem, researchers
have used a variety of techniques including the use of data values [2, 3], data-dictionary
information [3], structural properties [4], ontologies [5], synonyms and other terminologi-
cal relationships found in dictionaries and thesauri [6, 7, 8], and various combinations of
these techniques [9, 10, 11]. These are the kinds of facets of metadata we wish to exploit,
all of which may contribute to the resolution of attribute-matching issues. Although we
probably have some idea about what metadata is most useful and in what combination
and under what circumstances we should use this metadata, we probably do not know
with certainty. Thus, rather than try to encode algorithms over the metadata ourselves,
we largely use machine learning to develop the algorithms. This approach also has the
advantage of being flexible in the presence of changing dynamics, which are so common
on the Web.
As in [12], we assume that we wish to integrate data from multiple populated source

schemes into a target scheme, where all schemes are described using the same conceptual
model [13]. Ultimately, however, we can and do consider our sources to be Web reposito-
ries, which we reverse engineer into source schemes by the data-extraction processes we
have defined for semistructured and unstructured Web pages [14], by the database reverse-
engineering process we have defined, which works for Web tables and relational databases
[15], and by the Web form data-extraction process we are developing [16]. Moreover, us-
ing standard representational transformations among conceptual-model schemes, we can
transform the conceptual-model instance of any particular wrapper into a conceptual-
model instance required by our technology, and thus we can make use of any developed
wrapper technology (e.g. [17, 18, 19] and many more—see the bibliography in [14]). In
addition to these assumptions for sources, we assume that target schemes are augmented
with a variety of both application-independent and application-specific ontological in-
formation. For this paper the augmentations we discuss are WordNet [20, 21], which is
application independent, sample data, which is application specific, and regular-expression
recognizers, which are partly application specific and partly application independent.
Our contribution in this paper is the following framework which we propose as a way

to discover which attributes in a source scheme S directly match with which attributes in
a target scheme T .1

1. For each individual, independent facet, find potential attribute matches between the
m attributes in S and the n attributes in T . Provide confidence measures between
0 (lowest confidence) and 1 (highest confidence) for each potential match. Section 2
explains how we generate matching rules over independent facets.

2. Using the confidence measures from (1), combine the measures for each potential
match into a unified measure of match confidence. The result is an m×n matrix M
of confidence measures. Section 3 explains how we combine confidence measures.

3. Iterate over M using a best-first match constrained by an injective assignment algo-
rithm until all matches whose confidence measures exceed a threshold t are settled.
Section 3 also explains how we settle attribute matches.

1In future work we intend to expand this framework to indirect matches in which target object and
relationship sets match with virtual source object and relationship sets formed by queries over source
model instances as set forth in [12], but we focus here only on direct attribute matches.



We illustrate our framework using car advertisements, which are plentiful on the Web,
appearing in a variety of unstructured and structured forms. In Section 4 we report on
the results obtained from this application, and in Section 5 we make concluding remarks.

2 Individual Facet Matching

In our framework we consider each individual facet separately. For each facet we obtain a
vector of measures for the features of interest and then apply machine learning over this
feature vector to generate a decision rule and a measure of confidence for each generated
decision. We use C4.5 [22] as our decision-rule and confidence-measure generator.
So far we have investigated three facets: (1) terminological relationships (e.g. syn-

onyms, word senses, and hypernym groupings), (2) data-value characteristics (e.g. average
values, variances, string lengths), and (3) target-specific, regular-expression matches (i.e.
whether expected strings appear in the data). We explain the details of these facets in
the subsections below. We leave for future work the investigation of additional facets (e.g.
data-dictionary descriptors, structural constraints, and scheme characteristics).

2.1 Terminological Relationships

One facet of metadata that usually gives humans a clue about which attributes to match
are the meanings of the attribute names. To match attribute names, we need a dictionary
or thesaurus. WordNet [20, 21] is a readily available lexical reference system that organizes
English nouns, verbs, adjectives, and adverbs into synonym sets, each representing one
underlying lexical concept. Other researchers have also suggested using WordNet to match
attributes (e.g. [7, 23]), but have given few, if any, details.
Initially we investigated the possibility of using 27 available features of WordNet in

an attempt to match an attribute A of a source scheme with an attribute B of a target
scheme. The C4.5-generated decision tree, however, was not intuitive.2 We therefore
introduced some bias by selecting only those features we believed would contribute to a
human’s decision to declare a potential attribute match, namely (f0) same word (1 if A =
B and 0 otherwise), (f1) synonym (1 if “yes” and 0 if “no”), (f2) sum of the distances of A
and B to a common hypernym (“is kind of”) root (if A and B have no common hypernym
root, the distance is defined as a maximum number in the algorithm), (f3) the number of
different common hypernym roots of A and B, and (f4) the sum of the number of senses
of A and B. For our training data we used 222 positive and 227 negative A-B pairs
selected from attribute names found in database schemes readily available to us along
with synonym names found in dictionaries. Figure 1(a) shows the resulting decision tree.
Surprisingly, neither f0 (same word) nor f1 (synonym) became part of the decision rule.
Feature f3 dominates—when WordNet cannot find a common hypernym root, the words
are not related. After f3, f2 makes the most difference—if two words are closely related to
the same hypernym root, they are a good potential match. (Note that f2 covers f0 and f1
because both identical words and direct synonyms have zero distance to a common root;
this helps mitigate the surprise about f0 and f1.) Lastly, if the number of senses is too
high (f4 > 11), a pair of words tends to match almost randomly; thus the C4.5-generated
rule rejects these pairs and accepts fewer senses only if pairs are reasonably close (f2 <=

2An advantage of decision-tree learners over other machine learning (such as neural nets) is that they
generate results whose reasonableness can be validated by a human.



f3 <= 0: NO (222.0/26.0)
f3 > 0
| f2 <= 2: YES (181.0/3.0)
| f2 > 2
| | f4 <= 11
| | | f2 <= 5: YES (15.0/5.0)
| | | f2 > 5: NO (14.0/6.0)
| | f4 > 11: NO (17.0/2.0)

(a) WordNet Rule

Car Y ear Make Model Style Payment
Car .98 .11 .11 .11 .12 .11

Y ear .11 .98 .11 .11 .11 .11
Make .11 .11 .98 .98 .98 .11
Model .11 .11 .98 .98 .98 .11

Mileage .11 .11 .11 .11 .11 .11
Phone .43 .11 .11 .11 .43 .11
Price .11 .11 .11 .11 .12 .98

Feature .11 .11 .67 .12 .12 .11

(b) WordNet Matrix

Figure 1: Generated WordNet Rule and Confidence-Value Matrix

Car Y ear Make Model Style Payment
Car NA NA NA NA NA NA

Y ear NA .98 0 0 0 0
Make NA 0 .97 .83 0 0
Model NA 0 1 1 0 0

Mileage NA 0 0 0 0 .97
Phone NA 0 0 0 0 0
Price NA 0 0 0 0 .14

F eature NA 0 .05 .92 0 0

(a) Value Characteristics

Car Y ear Make Model Style Payment
Car NA NA NA NA NA NA

Y ear NA 1 0 .04 0 .49
Make NA 0 1 0 0 0
Model NA 0 0 .87 .13 .01

Mileage NA 0 0 0 0 0
Phone NA 0 0 0 0 0
Price NA 0 0 0 0 0

F eature NA 0 0 .01 .99 0

(b) Expected Values

Figure 2: Confidence-Value Matrices

5) to a common root. The parenthetical numbers (x/y) following “YES” and “NO” for a
decision-tree leaf L give the total number of training instances x classified for L and the
number of incorrect training instances y classified for L.
Figure 1(b) shows a confidence-value matrix generated by the decision rule in Fig-

ure 1(a) for a sample application. The attributes on the top are source attributes
taken from a Web table (www.swapaleas.com, November 2000).3 The attributes on
the left are target attributes taken from our standard car-ads data-extraction ontology
(www.deg.byu.edu). For a “YES” leaf L, C4.5 computes confidence factors by the for-
mula (x − y)/x where x is the total number of training instances classified for L and
y is the number of incorrect training instances classified for L.4 For a “NO” leaf, the
confidence factor is 1 − ((x − y)/x), which converts “NO’s” into “YES’s” with inverted
confidence values. Observe that the confidence is high for the matches {Car, Car}, {Year,
Year}, {Make, Make}, and {Model, Model}, as it should be. The confidence, however,
is also high for {Make, Model}, {Make, Style}, and {Model, Style}, which are synonyms
in some contexts, although not in car ads. Also, the confidence of {Price, Payment} is
high, but “Price” is the selling price of a car, which should not match “Payment,” the
monthly payment of the lease. As we shall see, other facets are needed to sort out these
differences.

3When attribute names were abbreviations, we expanded them so that WordNet could recognize them.
We also selected nouns from phrase names. In future work, we intend to automate abbreviation expansion
using dictionaries and noun selection using simple natural-language-processing techniques.

4We set the C4.5 parameter for rule-instance classification to 10 so that leaves with too few classifica-
tions would not have unsuitably high confidence factors.



2.2 Data-Value Characteristics

Another facet of metadata that usually gives humans a clue about which attributes to
match is whether two sets of data, in some sense, have similar value characteristics. Previ-
ous work in [2] shows that this facet can successfully help match attributes by considering
such characteristics as means and variances of numerical data and string-lengths and
alphabetic/non-alphabetic ratios of alphanumeric data. We used the same features as in
[2], but generated a C4.5 decision rule rather than a neural-net decision rule.
We trained the C4.5 decision-rule generator for our car-ads application using data

from twenty-nine different car-ad Web sites scattered throughout the US. We generated
two decisions trees, one for numeric data and one for alphanumeric data. Lacking space,
we do not give the generated decision trees, which are similar in form to the decision
tree in Figure 1(a) except that the alphanumeric decision tree is much larger. We do,
however, give in Figure 2(a) the confidence-value matrix for our sample car-ads test case.
In Figure 2(a) the “Car” attribute is a nonlexical attribute whose values are OID’s, making
them inapplicable for value analysis. Observe that years, makes, and models, which should
match all have high confidence values. Observe, however, that the makes, models, and
features all tend to look alike according to the value characteristics measured and that
mileages and payments also look alike. These need to be further sorted out using other
facets. Interestingly, prices and payments do not have similar value characteristics; this
is because their means are vastly different.

2.3 Expected Data Values

Yet another facet of metadata that usually gives humans a clue about which attributes to
match is the presence of expected data values. As explained in [12], we can associate with
each attribute A in the target scheme a regular expression that matches values expected
to appear for a source attribute B that potentially matches A. Furthermore, we can apply
developed wrapper technology to extract a set of data values for the source attribute B.
Then, using techniques described in [14], we can extract data values for source attributes
and categorize them with respect to the attributes in the target, and thus match source
and target attributes.
Instead of using C4.5 to generate a decision rule for expected data values, we directly

generated confidence factors as follows. We applied the regular expression for each target
attribute A against the set of values for each source attribute B and found the percentage
of B values that matched (or included at least some match). Then, for each A-B pair, we
simply let this percentage value be the confidence value. Figure 2(b) shows the matrix for
our sample car-ads test case. Observe that years, makes, and models consistently include
expected values, as expected. Further, makes, models, and styles do not get mixed up
when we consider specific expected values—“Ford” is a make, not a model or a style;
“Cavalier” is a model, not a make or a style; and “Sedan” is a style, not a make or a
model. Interestingly, features and styles match—this is because features include styles in
our car-ads ontology.

3 Combining Facets and Settling Matches

Although we would like to study more sophisticated combinations in the future, including
the possibility of using machine learning to provide an appropriate decision rule, we cur-



Car Y ear Make Model Style Payment
Car .98 .11 .11 .11 .12 .11

Y ear .11 .99 .04 .05 .04 .20
Make .11 .04 .99 .60 .33 .04
Model .11 .04 .66 .95 .37 .04

Mileage .11 .04 .04 .04 .04 .36
Phone .43 .04 .04 .04 .14 .04
Price .11 .04 .04 .04 .04 .38

F eature .11 .04 .24 .35 .37 .04

(a) Combined Matrix

Car Y ear Make Model Style Payment
Car 1 0 0 0 0 0

Y ear 0 1 0 0 0 0
Make 0 0 1 0 0 0
Model 0 0 0 1 0 0

Mileage 0 0 0 0 .04 .36
Phone 0 0 0 0 .14 .04
Price 0 0 0 0 .04 .38

F eature 0 0 0 0 .37 .04

(b) Final Matrix

Figure 3: Combined Matrix and Final Confidence-Value Matrix with Settled Matches

Input: a matrix M of confidence values, and a threshold T.

Output: a set of matching attribute pairs.

While there is an unsettled confidence value in M greater than T

Find the largest unsettled confidence value V in M;

Settle V by setting it to 1;

Mark V as being settled;

For each unsettled confidence value W in the rows and columns of V

Settle W by setting it to 0;

Mark W as being settled;

Output the settled attribute pairs whose value is 1;

Figure 4: Attribute-Match Settling Algorithm

rently use a simple average over the confidence values for each attribute pair. Figure 3(a)
shows the resulting combined matrix for our sample car-ads application.
We settle matching pairs by the algorithm in Figure 4, which is greedy (selects the

highest confidence value first) and is an injective assignment algorithm (allows at most
one match for any row or column). When we run this algorithm on the matrix in Fig-
ure 3(a) with a threshold value of 0.50, which we selected as an initial best guess based
on the combined matrix, we obtain the final matrix in Figure 3(b). Observe that even
though “Make-Model” pairs have values exceeding the threshold, the injective assignment
constraint eliminates these matches because they are precluded by the “Make-Make” and
“Model-Model” matches. Thus, the final matching pairs are {Car, Car}, {Year, Year},
{Make, Make}, and {Model, Model}, as they should be.

4 Experimental Results

In addition to our sample application presented here, we applied our method to six other
car-ads tables found on the Web and obtained similar results. Over all test cases, the
process matched 100% (32 of 32) of the direct matches. There were 2 false matches among
a potential of 376 false matches—in one table “Feature” matched “Color,” and in another
“Feature” matched “Body Type.” In our car-ads ontology, both colors and body types
are special kinds of features, and thus the match was not entirely wrong—just not exact.
In future work we need to verify these results across different applications with more
complex schemes, but the results of these initial tests are indeed encouraging.
For comparison, we ran each individual facet matrix alone through the settling algo-

rithm. In these tests, the settling process found only 90% of the direct matches (30 of 32
for WordNet, 21 of 25 applicable matches for value characteristics, and 23 of 25 applica-
ble matches for expected values). The settling process also found 18 false matches (4 for
WordNet, 8 for value characteristics, and 6 for expected values). These results suggest



that the multifaceted approach proposed here is likely to be better than any single-faceted
approach.

5 Concluding Remarks

We presented a framework for discovering direct matches between sets of source and target
attributes. In the framework multiple facets each individually contribute in a combined
way to produce a final set of matches. The results are encouraging and show that the
multifaceted approach to exploiting metadata for attribute matching has promise.
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