
Real-Time Programming

Interfaces

Real Time Operating Systems and Middleware

Luca Abeni

luca.abeni@unitn.it



Needs for a Real-Time Interface

Real-Time Operating Systems and Middleware Real-Time Programming Interfaces

• Real-Time applications might need to:

• Implement a periodic / sporadic behaviour
• Schedule themselves with fixed priorities (RM,

DM, etc...)
• Disable paging for their memory (or disable

mechanisms that introduce unpredictabilities)

• Which Application Programming Interface (API) is
needed?

• Which are the requirements for real-time
applications?

• For example: is the standard Unix API enough?
• How should we extend it to support real-time

applications?



A Real-Time API

Real-Time Operating Systems and Middleware Real-Time Programming Interfaces

• API: Application Programming Interface

• Source code interface
• Provides functions, data structures, macros, ...
• Specified in a programming language

• We use C

• Of course, we want to use a standard API

• A program written by using a standard API can
be easily ported to new architectures (often, a
simple recompilation is needed)

• Refrasing our previous question: is any standard API
capable to support real-time applications?



POSIX

Real-Time Operating Systems and Middleware Real-Time Programming Interfaces

• POSIX: Portable Operating System Interface

• Family of IEEE / ISO / IEC standards defining the
API, services, and standard applications
provided by a unix like OS

• Original standard: IEEE 1003.1-1988; today,
more than 15 standards

• Interaction with “Sin-
gle UNIX Specification” ⇒ information available at
http://opengroup.org/onlinepubs/009695399

• Real-Time POSIX: POSIX.1b, Real-time extensions

• Priority Scheduling
• Clocks and Timers, Real-Time Signals
• ...

http://opengroup.org/onlinepubs/009695399


Implementing Periodic Tasks

Real-Time Operating Systems and Middleware Real-Time Programming Interfaces

• Clocks and Timers can be used for implementing
peridic tasks
1 void *PeriodicTask(void *arg)
2 {
3 <initialization>;
4 <start periodic timer, period = T>;
5 while (cond) {
6 <job body>;
7 <wait next activation>;
8 }
9 }

• How can it be implemented using the C language?
• Which kind of API is needed to fill the following

blocks:

• <start periodic timer>

• <wait next activation>



Sleeping for the Next Job

Real-Time Operating Systems and Middleware Real-Time Programming Interfaces

0 2 4 6 8 10 12 14 16 18 20

τ1

• First idea: on job termination, sleep until the next
release time

• <wait next activation>:

• Read current time
• δ = next activation time - current time
• usleep(δ)

1 void wait_next_activation(void);
2 {
3 gettimeofday(&tv, NULL);
4 d = nt - (tv.tv_sec * 1000000 + tv.tv_usec);
5 nt += period; usleep(d);
6 }



Problems with Relative Sleeps

Real-Time Operating Systems and Middleware Real-Time Programming Interfaces

Preemption can happen in wait next activation()

0 2 4 6 8 10

τ1

• Preemption between gettimeofday() and
usleep() ⇒

• ⇒ The task sleeps for the wrong amount of time!!!

0 2 4 6 8 10

τ1

• Correctly sleeps for 2ms

0 2 4 6 8 10

τ1

• Sleeps for 2ms; should
sleep for 0.5ms



Using Periodic Signals

Real-Time Operating Systems and Middleware Real-Time Programming Interfaces

• The “relative sleep” problem can be solved by a call
implementing a periodic behaviour

• Unix systems provide a system call for setting up a
periodic timer
setitimer(int which, const struct itimerval *value,

struct itimerval *ovalue)

• ITIMER REAL: timer fires after a specified real
time. SIGALRM is sent to the process

• ITIMER VIRTUAL: timer fires after the process
consumes a specified amount of time

• ITIMER PROF: process time + system calls

• <start periodic timer> can use
setitimer()



Using Periodic Signals - setitimer()

Real-Time Operating Systems and Middleware Real-Time Programming Interfaces

1 #define wait_next_activation pause
2

3 static void sighand(int s)
4 {
5 }
6

7 int start_periodic_timer(uint64_t offs, int period)
8 {
9 struct itimerval t;

10

11 t.it_value.tv_sec = offs / 1000000;
12 t.it_value.tv_usec = offs % 1000000;
13 t.it_interval.tv_sec = period / 1000000;
14 t.it_interval.tv_usec = period % 1000000;
15

16 signal(SIGALRM, sighand);
17

18 return setitimer(ITIMER_REAL, &t, NULL);
19 }

Try www.dit.unitn.it/˜abeni/periodic-1.c

www.dit.unitn.it/~abeni/periodic-1.c


Enhancements

Real-Time Operating Systems and Middleware Real-Time Programming Interfaces

• The previous example uses an empty handler for
SIGALRM

• This can be avoided by using sigwait()

int sigwait(const sigset_t *set, int *sig)

• Select a pending signal from set

• Clear it
• Return the signal number in sig

• If no signal in set is pending, the thread is
suspended



setitimer() + sigwait()

Real-Time Operating Systems and Middleware Real-Time Programming Interfaces

1 void wait_next_activation(void)
2 {
3 int dummy;
4

5 sigwait(&sigset, &dummy);
6 }
7

8 int start_periodic_timer(uint64_t offs, int period)
9 {

10 struct itimerval t;
11

12 t.it_value.tv_sec = offs / 1000000;
13 t.it_value.tv_usec = offs % 1000000;
14 t.it_interval.tv_sec = period / 1000000;
15 t.it_interval.tv_usec = period % 1000000;
16

17 sigemptyset(&sigset);
18 sigaddset(&sigset, SIGALRM);
19 sigprocmask(SIG_BLOCK, &sigset, NULL);
20

21 return setitimer(ITIMER_REAL, &t, NULL);
22 }



Clocks & Timers

Real-Time Operating Systems and Middleware Real-Time Programming Interfaces

• Let’s look at the first setitimer() parameter:

• ITIMER REAL

• ITIMER VIRTUAL

• ITIMER PROF

• It selects the timer: every process has 3 interval
timers

• timer: abstraction modelling an entity which can
generate events (interrupts, or signal, or
asyncrhonous calls, or...)

• clock: abstraction modelling an entity which provides
the current time

• Clock: “what time is it?”
• Timer: “wake me up at time t”



POSIX Clocks & Timers

Real-Time Operating Systems and Middleware Real-Time Programming Interfaces

• Traditional Unix API three interval timers per
process, connected to three different clocks

• Real time
• Process time
• Profiling

• ⇒ only one real-time timer per process!!!
• POSIX (Portable Operating System Interface):

• Different clocks (at least CLOCK REALTIME,
CLOCK MONOTONIC optional)

• Multiple timers per process (each process can
dynamically allocate and start timers)

• A timer firing generates an asyncrhonous event
which is configurable by the program



POSIX Timers

Real-Time Operating Systems and Middleware Real-Time Programming Interfaces

• POSIX timers are per process
• A process can create a timer with timer create()

int timer_create(clockid_t c_id, struct sigevent *e,
timer_t *t_id)

• c id specifies the clock to use as a timing base
• e describes the asynchronous notification to

occur when the timer fires
• On success, the ID of the created timer is

returned in t id

• A timer can be armed (started) with
timer settime()

int timer_settime(timer_t timerid, int flags,
const struct itimerspec *v, struct itimerspec *ov)

• flags: TIMER ABSTIME



POSIX Timers

Real-Time Operating Systems and Middleware Real-Time Programming Interfaces

• POSIX Clocks and POSIX Timers are part of
RT-POSIX

• To use them in real programs, librt has to be
linked

1. Get www.disi.unitn.it/˜abeni/periodic-3.c
2. gcc -Wall periodic-3.c -lrt -o ptest

3. The -lrt option links librt, that provides
timer create(), timer settime(), etc...

• On some old distributions, libc does not properly
support these “recent” calls ⇒ some workaronds
can be needed

www.disi.unitn.it/~abeni/periodic-3.c


POSIX Timers & Periodic Tasks

Real-Time Operating Systems and Middleware Real-Time Programming Interfaces

1 int start_periodic_timer(uint64_t offs, int period)
2 {
3 struct itimerspec t;
4 struct sigevent sigev;
5 timer_t timer;
6 const int signal = SIGALRM;
7 int res;
8

9 t.it_value.tv_sec = offs / 1000000;
10 t.it_value.tv_nsec = (offs % 1000000) * 1000;
11 t.it_interval.tv_sec = period / 1000000;
12 t.it_interval.tv_nsec = (period % 1000000) * 1000;
13 sigemptyset(&sigset); sigaddset(&sigset, signal);
14 sigprocmask(SIG_BLOCK, &sigset, NULL);
15

16 memset(&sigev, 0, sizeof(struct sigevent));
17 sigev.sigev_notify = SIGEV_SIGNAL;
18 sigev.sigev_signo = signal;
19 res = timer_create(CLOCK_MONOTONIC, &sigev, &timer);
20 if (res < 0) {
21 return res;
22 }
23 return timer_settime(timer, 0, &t, NULL);
24 }



Using Absolute Time

Real-Time Operating Systems and Middleware Real-Time Programming Interfaces

• POSIX clocks and timers provide Absolute Time

• The “relative sleeping problem” can be solved
• Instead of reading the current time and

computing δ based on it,
wait next activation() can directly wait for
the absolute arrival time of the next job

• The clock nanosleep() function must be used
int clock_nanosleep(clockid_t c_id, int flags,

const struct timespec *rqtp,
struct timespec *rmtp)

• The TIMER ABSTIME flag must be set
• The next activation time must be explicitly

computed and set in rqtp

• In this case, the rmtp parameter is not important



Implementation with clock nanosleep

Real-Time Operating Systems and Middleware Real-Time Programming Interfaces

1 static struct timespec r;
2 static int period;
3

4 static void wait_next_activation(void)
5 {
6 clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &r, NULL);
7 timespec_add_us(&r, period);
8 }
9

10 int start_periodic_timer(uint64_t offs, int t)
11 {
12 clock_gettime(CLOCK_REALTIME, &r);
13 timespec_add_us(&r, offs);
14 period = t;
15

16 return 0;
17 }

• clock gettime is used to initialize the arrival time
• The example code uses global variables r (next

arrival time) and period. Do not do it in real code!



Some Final Notes

Real-Time Operating Systems and Middleware Real-Time Programming Interfaces

• Usual example; periodic tasks implemented by
sleeping fo an absolute time:
www.dit.unitn.it/˜abeni/periodic-4.c

• Exercize: how can we remove global variables?

• Summing up, periodic tasks can be implemented by

• Using periodic timers
• Sleeping for an absolute time

• Timers often have a limited resolution (generally
multiple of a system tick)

• In system’s periodic timers (itimer(), etc...) the
error often sums up

• In modern systems, clock resolution is generally not
a problem

www.dit.unitn.it/~abeni/periodic-4.c


Exercize: Cyclic Executive

Real-Time Operating Systems and Middleware Real-Time Programming Interfaces

• Implement a simple cyclic executive

• 3 tasks: T1 = 50ms, T2 = 100ms, and T3 = 150ms

• Tasks’ bodies are in
www.dit.unitn.it/˜abeni/cyclic_test.c

• Use the mechanism you prefer for implementing
the periodic event (minor cycle)

• Some hints:

• Compute the minor cycle
• Compute the major cycle
• So, we need a periodic event every ... ms

• What should be done when this timer fires?

• Done? Try T1 = 60ms, T2 = 80ms, T3 = 120ms

www.dit.unitn.it/~abeni/cyclic_test.c


Remember?

Real-Time Operating Systems and Middleware Real-Time Programming Interfaces

• The schedule repeats every 4 minor cycles

• τ1 must be scheduled every 25ms ⇒ scheduled in
every minor cycle

• τ2 must be scheduled every 50ms ⇒ scheduled
every 2 minor cycles

• τ3 must be scheduled every 100ms ⇒ scheduled
every 4 minor cycles

25 50 75 100 125 150 175 200

T∆

• First minor cycle: C1 + C3 ≤ 25ms

• Second minor cycle: C1 + C2 ≤ 25ms



Implementation

Real-Time Operating Systems and Middleware Real-Time Programming Interfaces

Timer

Timer

Timer

Timer

Minor
Cycle

Cycle
Major

• Periodic timer firing
every minor cycle

• Every time the
timer fires...

• ...Read the
scheduling ta-
ble and execute
the appropriate
tasks

• Then, sleep until
next minor cycle


	Needs for a Real-Time Interface
	A Real-Time API
	POSIX
	Implementing Periodic Tasks
	Sleeping for the Next Job
	Problems with Relative Sleeps
	Using Periodic Signals
	Using Periodic Signals - setitimer()
	Enhancements
	setitimer() + sigwait()
	Clocks & Timers
	POSIX Clocks & Timers
	POSIX Timers
	POSIX Timers
	POSIX Timers & Periodic Tasks
	Using Absolute Time
	Implementation with clock_nanosleep
	Some Final Notes
	Exercize: Cyclic Executive
	Remember?
	Implementation

