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Abstract

Many approaches to deciding the satisfiability of quantifier-free formulae with respect to a background
theory T—also known as Satisfiability Modulo Theory, or SMT(T)—rely on the integration between an enu-
merator of truth assignments and a decision procedure for conjunction of literals in T. When the background
theory T is the combination T1 ∪ T2 of two simpler theories, the approach is typically instantiated by means
of a theory combination schema (e.g. Nelson–Oppen, Shostak). In this paper we propose a new approach to
SMT(T1 ∪ T2), where the enumerator of truth assignments is integrated with two decision procedures, one for
T1 and one for T2, acting independently from each other. The key idea is to search for a truth assignment not
only to the atoms occurring in the formula, but also to all the equalities between variables which are shared
between the theories. This approach is simple and expressive: for instance, no modification is required to
handle non-convex theories (as opposed to traditional Nelson–Oppen combinations which require a mecha-
nism for splitting). Furthermore, it can be made practical by leveraging on state-of-the-art boolean and SMT
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search techniques, and on theory layering (i.e., cheaper reasoning first, and more often). We provide thorough
experimental evidence to support our claims: we instantiate the framework with two decision procedures
for the combinations of Equality and Uninterpreted Functions (EUF) and Linear Arithmetic (LA), both
for (the convex case of) reals and for (the non-convex case of) integers; we analyze the impact of the differ-
ent optimizations on a variety of test cases; and we compare the approach with state-of-the-art competitor
tools, showing that our implemented tool compares positively with them, sometimes with dramatic gains in
performance.
© 2006 Published by Elsevier Inc.

1. Introduction

The problem of deciding the satisfiability of a quantifier-free formula with respect to a back-
ground theory T , also known under the name of Satisfiability Modulo Theories (SMT ), is being
recognized as increasingly important due to its application to the domain of verification. Notable
theories of interest are Equality and Uninterpreted Functions (EUF), Linear Arithmetic (LA), both
over the reals (LA(Rat )) and the integers (LA(Int )), and its subclass of Difference Logics (DL).
In fact, representation capabilities beyond propositional logic allow for a natural modeling of a
number of real-world problems, e.g., verification of pipelines, equivalence checking of circuits at
Register-Transfer Level (RTL), discharge of proof obligations in software systems, model checking
real-time embedded systems. Particularly relevant is the case of SMT (T1 ∪ T2), where the back-
ground theory T is the combination of two (or more) simpler theories T1 and T2. This is because it is
often the case that different kinds of information has to be taken into account. For instance, RTL
circuits may exhibit hierarchical structure, memory accesses, and arithmetic. Similarly, the analysis
of data-intensive reactive programs (e.g. LUSTRE, Signal) may greatly benefit from the ability to
abstract foreign functions. Being able to decide such combinations of theories automatically avoids
the need for manual breakdown of verification problems into subparts, and results in augmented
capacity of verification tools, and higher design productivity.

A prominent approach to SMT (T), which underlies several verification tools (e.g., MathSAT [5],
DLSAT [9], DPLL(T) [17], TSAT++ [1], ICS [16], CVCLite [3], haRVey [12], Verifun [15], Zapato [6]),
is based on extensions of propositional SAT technology: a SAT engine is modified to enumerate
boolean assignments, and integrated with a decision procedure for the theory T . This schema, denot-
ed as Bool+T in the following, is also followed to tackle the SMT (T1 ∪ T2) problem. The approach
relies on a decision procedure able to decide the satisfiability of conjunctions of literals in T1 ∪ T2,
that is typically based on an integration schema like Nelson–Oppen (N.O.) [23] or Shostak [30]:
decision procedures for each Ti are combined by means of a structured exchange of so-called inter-
face formulae. In particular, in the case of convex theories, interface equalities (that is, equalities
between variables which are shared between two theories) are exchanged; in the case of non-convex
theories, disjunctions of interface equalities have to be managed, and a case-split mechanism is also
required. The resulting procedure for SMT (T1 ∪ T2) is denoted as Bool+no(T1, T2) in the following.
We remark that the problem of SMT (T1 ∪ T2) is far from trivial: the quest for efficiency clashes with
the increased complexity in the decision procedure, also due to the intricacies of the combination
schema.
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In this paper, we tackle the SMT (T1 ∪ T2) problem by deviating from the Bool+no(T1, T2) ap-
proach, and avoiding the need for an integration schema between T1 and T2. Rather, we tighten
the connection between each Ti and the boolean level: while the truth assignment is being con-
structed, each theory is checked for consistency in isolation. This can be seen as constructing two
partial models for the original formula, without the guarantee that they will be mutually consistent;
the “merging” of the two partial models is enforced, on demand, since the solver is requested to
find a truth assignment to all the possible equalities between the interface variables (i.e., variables
belonging both to T1 and T2).

This approach is very general and expressive. It nicely encompasses the case of non-convex the-
ories, whereas in the no(T1, T2) case, a backtrack search is used to take care of the disjunctions that
need to be managed. Furthermore, it is very simple to understand and analyze. In fact, its correctness
can be easily stated by generalizing (to the case of formulae with arbitrary boolean structure) the
proof of correctness for the nondeterministic variant of the Nelson–Oppen integration schema [36].

The approach is also amenable to several implementation advantages. First, each of the solvers
can be implemented and optimized without taking into account the others; for instance, when the
problem falls within one Ti, the solver behaves exactly as Bool+T . Second, the approach does not
rely on the solvers being deduction-complete. This enables us to explore the trade-off between which
deduction is beneficial to efficiency and which is in fact hampering the search—or too difficult to
implement. Furthermore, it is possible to exploit boolean search optimizations and SMT techniques
to optimize the management of interface equalities.

We provide thorough experimental evidence to support our claims: we instantiate the framework
for the combination of EUF and LA, both for (the convex case of) reals and for (the non-convex
case of) integers; we analyze the impact of the different optimizations on a variety of test cases; and
we compare the approach with state-of-the-art competitor tools, showing that our implemented
tool compares positively with them, sometimes with dramatic gains in performance.

This paper is structured as follows. We first present some background on the integration of theo-
ries, and on the Nelson–Oppen combination schema (Section 2), and describe the Bool+T decision
procedure (Section 3). In Section 4 we present the Bool+T1+T2 procedure, discuss its features, and
prove its formal properties. In Section 5 we describe the architectural choices underlying the instan-
tiation of the Bool+T1+T2 in MathSAT. In Section 6 we discuss related work, and in Section 7 we
experimentally evaluate our approach. In Section 8 we draw some conclusions and outline some
directions for future work. Some of the material presented in this paper already appeared in [4].

For better readability, and as it is common practice in papers dealing with combination of theo-
ries, in this paper we always deal with only two theories T1 and T2. The generalization to more than
two theories is straightforward.

2. Preliminary notions

We assume the usual syntactic notions of first-order logic with equality as defined, e.g., in [11]. Let
� be a first-order signature containing function and predicate symbols with their arities and X be a
set of variables. A 0-ary function symbol is called a constant. A�-term is a first-order term built out
of the function symbols in� and the variables in X . We use the standard notion of substitution. We
write substitution applications in postfix notation, e.g. t� for a term t and a substitution �. The set
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of variables occurring in a term t is denoted by Var(t). If t1, . . . , tn are �-terms and p is a predicate
symbol, then p(t1, . . . , tn) is a �-atom. If l and r are two �-terms, then the �-atom l = r is called a
�-equality and ¬(l = r) (also written as l /= r) is called a �-disequality. A �-formula � is built in
the usual way out of the universal and existential quantifiers, boolean connectives, and �-atoms.
The set of �-atoms occurring in � is denoted by Atoms(�). A �-literal is either a �-atom or its
negation. If ϕ is a formula, then Var(ϕ) denotes the set of free variables in ϕ. We call a formula
quantifier-free if it does not contain quantifiers, and a sentence if it has no free variables. Substitution
applications are extended to arbitrary first-order formulas, and are written in postfix notation, e.g.
ϕ� for a formula ϕ and a substitution �. An identification over a set V of variables is an idempotent
substitution from V to V . Any identification � over a set V of variables defines a partition of V
and identifies all the variables in the same equivalence class of the partition with a representative
of that class. If � is an identification over a set V of variables and �� ∈ {=, /=}, then �̂�� denotes the
conjunction

∧

{(x,y)|x� �� y� and x,y∈V}
x �� y

of literals. Notice that �̂= expresses the fact that any two variables identified by an identification
� must take identical value while �̂ /= expresses the fact that any two variables not identified by �
must take distinct value. So, the formula �̂= ∧ �̂ /= (abbreviated with �̂ below) faithfully represents
the identification � over the set V of variables.

We also assume the usual first-order notions of interpretation, satisfiability, validity, logical con-
sequence, and theory, as given, e.g., in [13]. We write � |= � to denote that the formula � is a logical
consequence of the (possibly infinite) set � of formulae. A first-order theory is a set of first-order
sentences. A �-theory is a theory all of whose sentences have signature �. All the theories we con-
sider are first-order theories with equality, which means that the equality symbol = is a predefined
logical constant and it is always interpreted as a relation which is reflexive, symmetric, transitive,
and it is also a congruence. Since the equality symbol is a predefined logical constant, it will not
be included in any signature � considered in this paper (this is an important technical detail to
precisely state the results about the combination of theories below). A�-structure A is a model of a
�-theory T if A satisfies every sentence in T . A �-formula is satisfiable in T (or T -satisfiable) if it is
satisfiable in a model of T . Two�-formulas ϕ and  are equisatisfiable in T if ϕ is satisfiable in T iff
 is satisfiable in T . The satisfiability problem for a theory T amounts to establishing whether any
given finite quantifier-free conjunction of literals (or equivalently, any given finite set of literals)
is T -satisfiable or not. A satisfiability procedure for T is any algorithm that solves the satisfiability
problem for T . The satisfiability of any quantifier-free formula can be reduced to the satisfiability of
sets of literals by converting to disjunctive normal form (DNF) and then splitting on disjunctions,
e.g., checking whether S1 ∨ S2 (where S1 and S2 are conjunction of literals) is T -satisfiable reduces
to checking whether either S1 or S2 is T -satisfiable. Indeed, the conversion to DNF may result in an
exponential blow-up of the size of the formula. A much more efficient way to tackle this problem
in practice is described in Section 3. Notice that the problem of checking the T -satisfiability of
quantifier-free formulae is NP-hard (since it subsumes the problem of checking the satisfiability of
boolean formulae).
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2.1. Semantic properties of theories

In the sequel, let�1 and�2 be two disjoint signatures (i.e.�1 ∩�2 = ∅), and let Ti be a�i-theory
for i = 1, 2.

Definition 1. A�-theory T is stably infinite if for each T -satisfiable�-formula ϕ, there exists a model
of T whose domain is infinite and which satisfies ϕ.

Definition 2. A Nelson–Oppen theory is a stably infinite theory that admits a satisfiability algorithm.

Definition 3. A conjunction� of�-literals is convex in a�-theory T if for each disjunction
∨n
i=1 xi =

yi (where xi, yi are variables and i = 1, ..., n) we have that T ∪ � |= ∨n
i=1 xi = yi iff T ∪ � |= xi =

yi for some i ∈ {1, ..., n}. A �-theory T is convex iff all the conjunctions of �-literals are convex
in T .

Notice that any convex theory whose models are non-trivial (i.e. the domains of the models have
all cardinality strictly greater than one) is stably infinite [7].

In this paper, we will consider the following three theories (however, the proposed approach is
not limited to these):

• The theory EUF of equality whose signature contains a finite set of uninterpreted function
and constant symbols, and such that the equality symbol = is interpreted as the equality
relation.

• The quantifier-free fragment of Linear Arithmetic either over the rationals, denoted by LA(Rat ),
or over the integers, denoted by LA(Int ). The signatures of LA(Rat ) and LA(Int ) contain the
constants 0 and 1, the binary + symbol, the unary − symbol, and the predicate symbol � which all
have the usual arithmetic meaning. We also abbreviate with n the term 1 + 1 + · · · + 1 containing
n occurrences of the constant 1, and with n · x the term x + x + · · · + x, x being a variable.

All three theories are stably infinite but only E and LA(Rat ) are convex, while LA(Int ) is non-
convex. To see that LA(Int ) is non-convex, it is sufficient to notice that the set {x1 = 1, x2 = 2, x1 �
x, x � x2} entails x = x1 ∨ x = x2 but neither x = x1 nor x = x2, where x, x1, x2 are variables.

2.2. Theory combination

In order to describe and prove the correctness of our approach for solving the satisfiability prob-
lem for a combination of theories, we need some additional notation and one Lemma. These are
also used in the context of the Nelson–Oppen combination schema.

A�1 ∪�2-term t is an i-term if it is a variable or if it has the form f(t1, ..., tn), where f is in�i (for
i = 1, 2 and n � 0). Notice that a variable is both a 1-term and a 2-term. A non-variable subterm s

of an i-term t is alien if s is a j-term, and all superterms of s in t are i-terms, where i, j ∈ {1, 2} and
i /= j. An i-term is i-pure if it does not contain alien subterms. An atom (or a literal) is i-pure if it
contains only i-pure terms and its predicate symbol is either equality or in �i . A formula is said to
be pure if every atom occurring in the formula is i-pure for some i ∈ {1, 2}.

First we need to solve the following problem: we consider�1 ∪�2-literals while the satisfiability
procedure for a theory Ti only handles �i-pure literals. The standard solution consists of purifying
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any conjunction � of �1 ∪�2-literals into a conjunction �1 ∧�2 where �i is a conjunction of
i-pure literals (for i = 1, 2). This is achieved by replacing each alien subterm t by a new variable
x and adding the equality x = t to �. Obviously, the purification process always terminates (since
there are only finitely many alien sub-terms in �), yielding �1 ∧�2 such that �1 ∧�2 and � are
equisatisfiable in T1 ∪ T2.

The variables shared by �1 and �2, i.e. those in Var(�1) ∩ Var(�2), are called the interface
variables in �1 ∧�2. If xi and xj are two interface variables, then the equality xi = xj is called an
interface equality, and is denoted by eij . As xi = xj and xj = xi are semantically equivalent, we im-
plicitly consider only one of them, e.g., the one for which i < j. The purification process can be easily
lifted from conjunctions of �1 ∪�2-literals to �1 ∪�2-formulae. Similarly, the interface variables
in a pure �1 ∪�2-formula � are those that are shared between the 1- and 2-pure atoms in �. In
the following, we denote with IE(�) the set of its interface equalities. In the rest of this section,
without loss of generality, we consider the satisfiability of formulae of the form �1 ∧�2, where �i
is a conjunction of i-pure literals.

The following lemma (adapted from [37]) is the basis of the correctness of the Nelson–Oppen
schemas presented in Section 2.3.

Lemma 1. If T1 and T2 are two signature-disjoint stably infinite theories and �i is a conjunction of
i-pure literals (for i = 1, 2), then�1 ∧�2 is T1 ∪ T2-satisfiable if and only if there exists an identification
� of the interface variables in �1 ∧�2 such that �1 ∧ �̂ is T1-satisfiable and �2 ∧ �̂ is
T2-satisfiable.

2.3. The Nelson–Oppen combination schemas

Lemma 1 suggests the following schema, which henceforth we refer to as “non-deterministic Nel-
son–Oppen” [25,36,37]. Assume that we want to check the T1 ∪ T2-satisfiability of a conjunction �
of quantifier-free �1 ∪�2-literals.

(1) As a preliminary step we purify � into a conjunction �1 ∧�2 of pure literals. Let x1, ..., xn be
all the variables in Var(�1) ∩ Var(�2).

(2) We guess an identification � over x1, ..., xn and we consider the problem of checking the Ti-sat-
isfiability of �i ∧ �̂ for i = 1, 2.

(3) If �i ∧ �̂ is Ti-satisfiable for both i = 1 and i = 2, then we conclude the T1 ∪ T2-satisfiability
of �.
Otherwise we go back to step 2 considering another identification of variables, if any is still
unconsidered.

(4) If no more identification of variables must be considered and no satisfiability has been detected
at step 2, then we return the T1 ∪ T2-unsatisfiability of �.

Example 1. Let T1 be EUF and T2 be LA(Int ). Suppose that we want to establish the T1 ∪ T2-unsat-
isfiability of �1 ∧�2 by using Lemma 1, where

�1 := f(x) /= f(w1) ∧ f(x) /= f(w2) and

�2 := 1 � x ∧ x � 2 ∧ w1 = 1 ∧ w2 = 2.
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The set V of interface variables is {x,w1,w2}. There are only five cases to consider (corresponding
to the five distinct equivalence relations on V ):

(1) If �̂ is x = w1 ∧ x = w2 ∧ w1 = w2, then �1 ∧ �̂ is T1-unsatisfiable because f(x) /= f(w2) ∧
x=w2 is.

(2) If �̂ is x /= w1 ∧ x = w2 ∧ w1 /= w2, then �1 ∧ �̂ is T1-unsatisfiable because f(x) /= f(w2) ∧
x=w2 is.

(3) If �̂ is x = w1 ∧ x /= w2 ∧ w1 /= w2, then �1 ∧ �̂ is T1-unsatisfiable because f(x) /= f(w1) ∧
x = w1 is.

(4) If �̂ is x /= w1 ∧ x /= w2 ∧ w1 = w2, then �2 ∧ �̂ is T2-unsatisfiable because w1 = 1 ∧ w2 =
2 ∧ w1 = w2 is.

(5) If �̂ is x /= w1 ∧ x /= w2 ∧ w1 /= w2, then �2 ∧ �̂ is T2-unsatisfiable because T2 ∪�2 |=
x = w1 ∨ x = w2 and both x = w1 ∧ x /= w1 and x = w2 ∧ x /= w2 are T2-unsatisfiable.

Since for each case we have detected either the T1- or T2-unsatisfiability, Lemma 1 allows us to
conclude that �1 ∧�2 is T1 ∪ T2-unsatisfiable.

The procedure obviously terminates since only finitely many different identification � of interface
variables must be considered. The correctness is an immediate consequence of Lemma 1 and the
fact that purification preserves satisfiability. Oppen [25] proved that if the satisfiability problem for
Ti is in NP for both i = 1, 2 (and this is the case for E , LA(Rat ), and LA(Int )), then the satisfiability
problem for T1 ∪ T2 is also in NP.

The non-deterministic combination schema above can be translated in the obvious way
into a naive deterministic procedure by case-splitting on all the ways the interface variables
in the conjunction of pure literals can be equal. Then, the individual satisfiability procedures
for the component theories can be used to check the satisfiability of each branch of the
split.

To design a deterministic and efficient combination schema to exploit Lemma 1, the satisfiability
procedures for T1 and T2 must have some properties. They must be (i) incremental (i.e., it must be
possible to add literals to the conjunctions without restarting the procedures), (ii) resettable (i.e., it
must be possible to remove literals from the conjunctions without restarting the procedures), and
(iii) capable of detecting all (disjunctions of) interface equalities implied by the conjunctions. We
call the latter feature, eij-deduction capability, and we say that a solver is eij-deduction complete iff
it is always able to perform this deduction.

If we have these three capabilities, a deterministic version of the Nelson–Oppen combination
simply consists of exchanging between the two procedures the equalities between variables which
are implied by the conjunctions [23]. In case disjunction of equalities are derived, case-splitting is
also necessary and the capabilities (i) and (ii) are very useful.

Example 2. Let us consider again the situation of Example 1 and assume that the satisfiability pro-
cedures for T1 and T2 have properties (i), (ii), and (iii). The Nelson–Oppen combination schema runs
as follows:

(1) The literals of �1 are processed one by one, T1-satisfiability is reported, and no equality is
derived.
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(2) The literals of �2 are processed one by one, T2-satisfiability is reported, and the disjunction
x = w1 ∨ x = w2 is returned.

(3) There is a case-splitting and the two equalities x = w1 and x = w2 are passed to the satisfiability
procedure for T1:

(a) �1 ∧ x = w1 is T1-unsatisfiable, since f(x) /= f(w1) ∧ x = w1 is;
(b) �1 ∧ x = w2 is T1-unsatisfiable, since f(x) /= f(w2) ∧ x = w2 is.

(4) At this point, the Nelson–Oppen method returns the T1 ∪ T2-unsatisfiability of �1 ∧�2.

Notice that to efficiently handle the two splittings 3(a) and 3(b), the properties (i) and (ii) are
crucial, whilst the property (iii) allows us to avoid guessing equivalence relations on the interface
variables.

The following remark about non-convexity and case-splitting is important. It is only necessary
to propagate equalities between variables, not between variables and constants. So, conjunctions
such as 1 � x ∧ x � 1000 in LA(Int ) will not cause one thousand splits, unless each of the numbers
1, ..., 1000 is constrained equal to an interface variable.

In [25], Oppen shows that the deterministic version of the Nelson–Oppen schema based on equal-
ity exchanging for theories which are convex and admit polynomial-time satisfiability procedures
runs in polynomial time. When non-convex theories are considered, case-splitting on the entailed
disjunctions of equalities between the interface variables is still required and the combination sche-
ma is no longer in the polynomial class. However, Oppen claims [25] that this schema is superior to
the naive deterministic schema described above.

To the best of our knowledge, both the non-deterministic and the naive deterministic schemas
have been proposed only for proving theoretical properties, and have never been implemented
so far, whilst the deterministic Nelson–Oppen schema, in its many variants, is actually imple-
mented in most tools. Therefore, henceforth we refer to the latter simply as “the Nelson–Oppen
schema”.

3. SMT (T ) and SMT (T1 ∪ T2 )

In this section, we discuss the traditional approach to SMT (T1 ∪ T2). This is based on two
main ingredients: the first is a decision procedure for the T1 ∪ T2-satisfiability of conjunctions
of literals in T1 ∪ T2, such as the Nelson–Oppen schema described in the previous section. The
second ingredient is a generic decision procedure Bool+T for SMT (T), which takes into ac-
count the boolean structure of the formula: in a nutshell, Bool+T combines an enumeration
of propositional assignments with a T -satisfiability check for conjunctions of literals in T . The
decision procedure for SMT (T1 ∪ T2) is obtained simply by replacing the T -satisfiability check
with a T1 ∪ T2-satisfiability check.

The rest of this section is devoted to the description of Bool+T , the algorithm which underlies
(with different variants) several systems such as CVCLite [3], DLSAT [9], DPLL(T) [17], haRVey
[12], ICS [16], MathSAT [5], TSAT++ [1], Verifun [15], Zapato [6]. We first give a naive formulation,
based on total assignment enumeration, and hence a more realistic representation of a state-of-the
art SMT (T) procedure, based on DPLL-style assignment enumeration.
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3.1. Bool+T via total model enumeration

The decision procedures described in the following rely on two simple functions. The first one is a
propositional abstraction function, i.e., a bijective function fol2prop which maps a ground first-order
formula � into a boolean formula �p , as follows: fol2prop maps boolean atoms into themselves,
ground atoms into fresh boolean atoms, and is homomorphic w.r.t. boolean operators and set in-
clusion. The second function, prop2fol , is called refinement and is the inverse of fol2prop. (Both
functions can be implemented in such a way to require constant time to map a literal from one
representation to the other.) In the following, sat and unsat denote the possible values returned by
a satisfiability procedure; �p is used to denote a propositional assignment; 	 is used to denote a
conjunction of first order literals, and 	p its boolean abstraction; in general, we use the superscript
p to denote boolean formulas or assignments (e.g., given an expression e, we write ep to denote
fol2prop(e)). We represent propositional assignments �p indifferently as sets of propositional liter-
als {li}i or as conjunctions of propositional literals

∧

i li; in both cases, the intended meaning is that
a positive literal v (resp. a negative literal ¬v) denotes that the variable v is assigned to true (resp.
false).

Fig. 1 presents the naive version of Bool+T . The algorithm enumerates the total truth as-
signments for (the propositional abstraction of) �, and checks for satisfiability in T . The pro-
cedure concludes satisfiability if an assignment is T �satisfiable , or returns with failure
otherwise. The function pick_total _assign returns a truth assignment �p to all the proposi-
tional variables in Ap which satisfies �p , that is, it assigns a truth value to all variables in
Ap . (Notice that, in general, pick_total _assign assigns a truth value to all atoms occurring
in the set received as first argument, no matter if such atoms occur in the formula received
as second argument or not.) The function T �satisfiable (�) detects if the set of conjuncts � is
T -satisfiable: if so, it returns (sat, ∅); otherwise, it returns (unsat, 	), where fol2prop(	) ⊆ �p

and 	 is a T -unsatisfiable set, called a theory conflict set. We call ¬fol2prop(	) a conflict
clause.

Fig. 1. A naive Bool+T procedure based on total model enumeration.



1502 M. Bozzano et al. / Information and Computation 204 (2006) 1493–1525

Fig. 2. A Bool+T procedure based on DPLL-based model enumeration.

3.2. Bool+T via DPLL-based model enumeration

Fig. 2 presents a concrete, DPLL-based implementation of the algorithm defined in the previous
section. 1 In Bool+T , �p is implemented as a stack of literals, which are labeled either as open
decision, closed decision, or implied. (To simplify the notation, we implicitly assume that Ap , �p and
�p are global variables, so that every function accesses and possibly modifies them.) Bool+T uses
the following functions:

• Preprocess performs some preprocessing to the input formula, including CNF-ization if � is
not in CNF, and some simplification steps.

1 For the sake of simplicity, in the following we will omit some technical details about DPLL tools, which can be found,
e.g., in [22].
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• BCP implements standard boolean Constraint Propagation of SAT solvers. The literals l’s oc-
curring as unit clauses in �p are detected and put in a queue. BCP repeatedly adds to �p all the
literals l’s in the queue, assigns them to true and simplifies �p accordingly (that is, it “hides” the
clauses containing positive occurrences of l, and hides the negative occurrences of l, revealing
new unit clauses if any); if no conflicts are detected, then BCP returns (sat, ∅), otherwise it returns
(unsat, 	p ), 	p ⊆ �p being the boolean conflict set causing the conflict. Boolean conflict sets are
generated by techniques based on implication graphs (see [33,8,22] for details).

• backjump&learn implements standard DPLL backjumping and learning mechanisms [33,8,22].
First (learning), starting from a conflict set 	p ⊆ �p , backjump&learn adds the conflict clause
¬	p to �p . Since then, whenever all but one literal in 	p are assigned, the remaining one will
automatically be assigned to false by BCP.
Second (backjumping), backjump&learn pops �p up to the most recent open decision literal s.t. at
least one literal in	p is no more in�p ; if no such literal exists, then it sets a flag “no_open_branches”
to true; otherwise, it flips the value of the open decision literal and closes it. This prunes all open
branches below that decision point in the search tree. 2

• T �satisfiable differs from that of Section 3.1 by the fact that it may have deduction capabilities;
that is, in case of T -satisfiable input prop2fol (�p ), it returns (sat,	, 
), where 
 contains a set of lit-
erals li on unassigned atoms in Atoms (�)which are deduced in the theory T from prop2fol (�p ),
and a set of implications 
i → li (with 
i ⊂ prop2fol (�p )) which caused the deduction, i.e, s.t.

i |=T li for every i.

• deduce&learn adds to the BCP queue every literal fol2prop(li) in 
 , so that its value will be as-
signed and propagated by the next run of BCP. Moreover, is adds fol2prop(¬
i ∨ li) (deduction
clause hereafter) to �p , obtaining an effect analogous to that of learning.

• decide_new_branch picks an unassigned literal l according to some heuristic criterion, declares it
an open decision literal, and adds it to the BCP queue.

On the whole, Bool+T tries to build a total truth assignment �p which satisfies �p s.t. prop2fol (�p )
is satisfiable in T . Initially, the formula � is preprocessed and Ap , �p , and �p are initialized. Let us
consider a generic point in the search tree.

• BCP is applied first, so as to assign true to the literals in the BCP queue (either unit clauses or
literals enqueued by some other function).

• If a boolean conflict 	p is generated, then Bool+T backjumps and learns the given conflict
clause (we call this step boolean backjumping and learning). If no open branches are left, which
means that all candidate assignments have been investigated, then Bool+T returns unsat. Oth-
erwise, the satisfiability in T of (the refinement of) the current assignment �p is tested by
T �satisfiable .

• If T �satisfiable returns unsat, then no total assignment extending �p can be refined into a consis-
tent set of literals, and Bool+T backtracks. (We call this step early pruning.) The theory conflict

2 Notice that this is a simplified description: modern DPLL tools may flip the value of non-decision literals as well (see
[22] for details).
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set generated causes Bool+T to backjump and learn the given conflict clause, and possibly to
stop, as in steps 7–9. We call this step theory-driven backjumping and learning.

• If instead T �satisfiable returns sat, then if �p is a total assignment, then Bool+T returns
sat;3 if not, deduce&learn is invoked on the literals deduced by T �satisfiable and on their relative
reasons in 
 , producing new unit literals for BCP and new deduction clauses. We call this step
theory-driven deduction.

Steps from 6 to 19 are repeated until this causes no more modifications of �p . When this happens,
a new literal is selected by decide_new_branch, and the procedure restarts from step 5.

The idea underlying Bool+T is to use a DPLL solver as an optimized truth assignment enumer-
ator. We notice that the procedure in Fig. 2 enhances that in Fig. 1 by cutting partial assignments
which cannot be expanded into satisfying total ones. This is done in two ways. First, it cuts partial
assignments which propositionally falsify the input formula. This is done by means of BCP, boolean
backjumping and learning, and it is well-known from the SAT literature. Second, it cuts partial as-
signments whose refinement are inconsistent in the theory T . This is done by means of early pruning,
theory-driven backjumping and learning, and theory-driven deduction. Early pruning allows for
cutting every partial assignment as soon as (its refinement) becomes inconsistent in T , thus pruning
the whole set of total assignments which extend it. Theory-driven backjumping and learning allows
for cutting every partial assignment containing a previously detected theory conflict set 	p , thus
pruning all but one total assignments containing 	p . Theory-driven deduction allows for cutting
every partial assignments which assigns false to one deduced literal l, thus pruning the whole set of
total assignments which do not contain l.

The improvements caused by learning the deduction clauses are manifold, depending on the
theory addressed. First, in some theories theory-deduction can be very expensive, so that learn-
ing the deduction clauses allows for performing each deduction only once, leaving the others to
the (much faster) BCP. Second, in some theories (e.g., EUF [24]), the solvers can efficiently per-
form deductions of equalities, like {x = y , y = z} |= f(x) = f(z), but not of disequalities, like {x =
y , ¬(f(x) = f(z))} |= ¬(y = z). In the first case, learning the deduction clause ¬(x = y) ∨ ¬(y =
z) ∨ (f(x) = f(z)) will allow BCP also to propagate ¬(y = z) from {x = y , ¬(f(x) = f(z))}. Third,
in non-convex theories, some solvers can perform deductions of disjunctions of equalities

∨
xi = xj

from sets of literals {l1, ..., lk}. Learning the deduction clause ¬l1 ∨ · · · ∨ ¬lk ∨ ∨
xi = xj allows

for using also these deductions to prune the boolean search. Finally, an improvement w.r.t. the-
ory-driven learning is that the deduction clause may be learned earlier, when all but one literals
in the theory conflict set have been assigned, without waiting the SAT solver to assign the last
literal.

Example 3. Let T1 be EUF and T2 be LA(Int ), and consider the following SMT problem for the
pure formula �:

¬(f(x) = f(w1)) ∧ (A ↔ ¬(f(x) = f(w2))) ∧ 1 � x ∧ x � 2 ∧ w1 = 1 ∧ w2 = 2

3 Notice that here the totality of �p is not strictly necessary, as it would be sufficient to test if the current interpretation
satisfies propositionally the formula. However, the test for totality is somewhat standard in state-of-the-art DPLL solvers,
due to efficiency reasons.
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Fig. 3. Representation of the search tree for Bool+no(T1, T2) applied to � = ¬(f(x) = f(w1)) ∧ (A ↔ ¬(f(x)
= f(w2))) ∧ 1 � x ∧ x � 2 ∧ w1 = 1 ∧ w2 = 2.

V = {x,w1,w2}being the setof interfacevariables.Fig. 3 represents the search tree for Bool+no(T1, T2)

applied to �.
Suppose we first assign the boolean variable A to true (branch 1), so that � simplifies into the

formula �1 ∧�2 of Examples 1 and 2. The no(T1, T2) schema runs as in Example 2, finding a con-
tradiction.

Then we assign A to false (branch 2), so that � simplifies into:

�′
1

︷ ︸︸ ︷
¬(f(x) = f(w1)) ∧ f(x) = f(w2)∧

�2
︷ ︸︸ ︷

1 � x ∧ x � 2 ∧ w1 = 1 ∧ w2 = 2 .

�′
1 differs from�1 as f(x) = f(w2) is not negated. Hence the no(T1, T2) combination schema reruns

steps 1, 2, and 3(a) of Example 2, like in branch 1. Then, in step 3(b), x = w2 is passed to the sat-
isfiability procedure for T1, which states that �′

1 ∧ x = w2 is T1-satisfiable, and no more interface
equality can be deduced. Thus �′

1 ∧�2 is T1 ∪ T2-satisfiable, and hence � is T1 ∪ T2-satisfiable.

In general, SMT tools can learn only clauses containing only atoms occurring in the input for-
mula.4 Thus, eij’s not occurring in the original formula cannot occur in learned clauses. Therefore,
generating conflict clauses in T1 ∪ T2 within the no(T1, T2) schema is a complex process, involving a
backward chain of resolution steps on both the conflict clauses found and the deductions performed
in the single theories, so that to eliminate interface equalities from them. Moreover, such conflict
clauses may be very long and are of no help for the deduction of interface equalities.

In Example 3, the minimal clause not containing interface equalities which can be obtained in
branch 1 is 5 ¬(1 � x) ∨ ¬(x � 2) ∨ ¬(w1 = 1) ∨ ¬(w2 = 2) ∨ (f(x) = f(w1)) ∨ (f(x) = f(w2)), that
is, ¬(�1 ∧�2) itself, which is of no help for pruning the search in branch 2.

4 A noteworthy exception to this fact is Verifun [15].
5 This is the minimal conflict clause obtained by resolving the deduction of step (2) in Example 2, {1 � x, x � 2,w1 =

1,w2 = 2} |= (x = w1 ∨ x = w2), with the conflict clauses obtained by steps 3 (a) and 3 (b), ¬(x = w1) ∨ f(x) = f(w1) and
¬(x = w2) ∨ f(x) = f(w2).
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Fig. 4. The different schemas for SMT (T1 ∪ T2).

4. SMT (T1 ∪ T2 ) via Delayed Theory Combination

We propose a new approach to the SMT (T1 ∪ T2) problem by taking a different view: we get rid
of the Nelson–Oppen schema (see Fig. 4, left), tighten the coupling between the boolean solver Bool
and each satisfiability procedure Ti�satisfiable , and delay the combination of the theories (see Fig. 4,
right). The new approach does not require the direct combination of decision procedures for T1 and
T2. The boolean solver Bool is coupled with a satisfiability procedure Ti�satisfiable for each Ti, and
each of the theory solvers works in isolation, without direct exchange of information. Their mutual
consistency is ensured by augmenting the input problem with all interface equalities eij , even if these
do not occur in the original problem. The enumeration of assignments includes not only the atoms
in the formula, but also the interface equalities of the form eij . Both theory solvers receive, from the
boolean level, the same truth assignment for eij: under such conditions, the two “partial” models
found by each decision procedure can be merged into a model for the input formula. We call the
approach Delayed Theory Combination (DTC), since we can delay the “synchronization” between
the satisfiability checks in the component theories by lifting the phase of deducing equalities to the
propositional level, by introducing “fresh” propositional atoms encoding these special equalities.

4.1. Bool+T1+T2 via total model enumeration

We use notations similar to those used in Section 3. In addition, we use a subscript i to refer to
the theory Ti; each assignment �p is split into �p1 ∧ �p2 ∧ �pe , where prop2fol (�pi ) is a set of i-pure
literals and prop2fol (�pe ) is a set of eij-literals. The functions Bool�satisfiable , pick_total _assign,
Ti�satisfiable , BCP, backjump&learn, deduce&learn, decide_new_branch are analogous to those in
Section 3. The function purify(�) returns a formula �′ containing only i-pure literals which is
equisatisfiable to �. (We call �′ the purified version of �.) The function IE(�) constructs the set
{x1, ..., xn} of interface variables in �, and then generates the n(n− 1)/2 interface equalities xi = xj ,
1 � i < j � n.

Fig. 5 represents a naive version of Bool+T1+T2, a decision procedure for SMT (T1 ∪ T2). Initially
(lines 1 and 2), the formula is purified, the interface variables xi are identified and the interface equal-
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Fig. 5. A naive enumeration-based T1 ∪ T2-satisfiability procedure: Bool+T1+T2.

ities eij are created by IE(�), and added to the set of propositional symbols Ap , and the propositional
abstraction �p of � is created.

The main loop (lines 3–10) enumerates propositional assignments on the extended atoms set Ap ,
which are then checked for both T1- and T2-consistency. While �p is propositionally satisfiable (line
3), we select a truth assignment �p over Ap that satisfies �p , and we split it into �p1 ∧ �p2 ∧ �pe (line
4). Notice that �p assigns also (the boolean abstraction of) eij literals which do not occur in �.
For each theory Ti, prop2fol (�pi ∧ �pe ) (i.e., the part of �p which is relevant for Ti) is checked for
Ti-consistency (lines 5 and 6). If both calls to Ti�satisfiable return sat, then the formula is satisfiable.
Otherwise, when �i is unsat, then 	i is a theory conflict set, i.e. 	i ⊆ � and 	i is Ti-unsatisfiable.
Then, as in the case of Bool+T , �p is strengthened to exclude truth assignments which may fail for
the same reason (lines 8 and 9), and the loop is resumed. Unsatisfiability is returned (line 11) when
the loop is exited without having found a model.

The procedure in Fig. 5 differs from that of Fig. 1 for the following facts. First, the formula �
is purified (line 1). Second, the set of atoms Ap to assign is extended to also include all interface
equalities eij , no matter whether they explicitly occur in the purified formula � or not (line 2); thus,
the new procedure looks for assignments �p ’s which give a truth value to all interface equalities as
well. Third, (the refinement of) one such total assignment �p is decided to be T1 ∪ T2-consistent iff
prop2fol (�pi ∧ �pe ) is Ti-consistent, for both i’s (lines 5–9).

4.2. Bool+T1+T2 via DPLL-based enumeration

Fig. 6 presents one concrete DPLL-based representation of the Bool+T1+T2 algorithm. Here the
enumeration of assignments is carried out by means of a DPLL-based SAT engine, and all the
optimizations discussed for Bool+T can be retained. The input formula � is preprocessed (line 1);
then, as in Fig. 5, � is purified, the interface equalities eij are created by IE(�), and added to the set
of propositional symbols Ap , and �p and �p are initialized.
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Fig. 6. One DPLL-based representation of the Delayed Theory Combination Bool+T1+T2.

The remaining part of the procedure is analogous to that in Fig. 2, modified to deal with the fact
that a candidate total assignment �p = �

p
1 ∧ �pe ∧ �p2 over the extended set Ap is T1 ∪ T2-consistent

iff prop2fol (�pi ∧ �pe ) is Ti-consistent, for i = 1, 2, so that any candidate partial assignment can be
dropped as soon as it no longer matches one such condition. Thus:
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• The global structure of two loops (lines 4, 5, 20–22 in Fig. 2) is maintained in Fig. 6 (lines 5, 6,
28–30), as well as the nested if-then-else structure of the internal loop.

• BCP, the detection of boolean conflicts and the boolean backjumping and learning (lines 6–9 in
Fig. 2) are kept identical (lines 7–10 in Fig. 6).

• The T �satisfiable test, early pruning, theory backjumping&learning and possible failure (lines
11–14 in Fig. 2) are duplicated in Fig. 6 for both theories T1 (lines 13–16) and T2 (lines 18–21).

• The success condition (lines 16 and 17 in Fig. 2) are kept identical (lines 23 and 24 in Fig. 6).
• The theory deduction step (lines 18 and 19 in Fig. 2) is mapped into the concatenation of the

deduction steps for the two distinct theories (lines 25–27 in Fig. 6).

It is important to notice that both the conflict clauses and the deduction clauses which are learned
during the search may contain interface equalities eij’s.

For the sake of efficiency, we assume that all theory solvers are incremental and resettable, as with
N.O. (properties (i)and(ii) inSection2.3). 6 However,unlikewithN.O.,wedonotrequire that theyare
also eij-deduction complete (property (iii)), although DTC benefits from eij-deduction capabilities.

Example 4. Consider the SMT problem of Example 3. Fig. 7 (top) represents the search tree of
Bool+T1+T2 applied to �, under the hypothesis that the theory solvers have no eij-deduction ca-
pability. We suppose that the SAT solver branches, in order, on A, (w1 = w2), (x = w1), (x = w2),
assigning them the true value first. We first assign A to true (branch 1), so that (f(x) = f(w2)) is
false.

(1) Choosing (w1 = w2) causes a T2-inconsistency be revealed by the early-pruning call to
T2�satisfiable ; the clauseC1: ¬(w1 = 1) ∨ ¬(w2 = 2) ∨ ¬(w1 = w2) is learned, and Bool+T1+T2
backtracks to ¬(w1 = w2), which does not cause inconsistency.

(2) Similarly, choosing (x = w1) causes a T1-inconsistency, the conflict clause C2: ¬(x = w1) ∨
f(x) = f(w1) is learned, and Bool+T1+T2 backtracks to ¬(x = w1), which does not cause in-
consistency.

(3) Similarly, choosing (x = w2) causes a T1-inconsistency, the conflict clause C3: ¬(x = w2) ∨
f(x) = f(w2) is learned, and Bool+T1+T2 backtracks to ¬(x = w2).

(4) ¬(x = w2) causes a T2-inconsistency, so that branch 1 is closed, and the clause
C4: ¬(1 � x) ∨ ¬(x � 2) ∨ ¬(w1 = 1) ∨ ¬(w2 = 2} ∨ x = w1 ∨ x = w2 is learned.

Then we assign A to false (branch 2), so that f(x) = f(w2) is true. Because of C1, C2 and C4 re-
spectively, ¬(w1 = w2), ¬(x = w1) and (x = w2) are immediately assigned by BCP without causing
inconsistencies, so that � is T1 ∪ T2-satisfiable.

Fig. 7 (middle) represents the search tree of Bool+T1+T2 applied to �, under the hypothesis
that the theory solvers are eij-deduction complete. T2�satisfiable performs the deduction {1 � x,
x � 2,w1 = 1,w2 = 2} |= (x = w1 ∨ x = w2)and the correspondingdeductionclause is learned,which
is identical to C4 above. As before, we first assign A to true (branch 1), so that (f(x) = f(w2)) is false.
As before, we suppose that the SAT solver branches, in order, on (w1 = w2), (x = w1), (x = w2),
assigning them the true value first. If so, the search tree proceeds as in the previous case until

6 These are highly desirable features in SMT tools in general [5].
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Fig. 7. Representation of the search tree for Bool+T1+T2 applied to � = ¬(f(x) = f(w1)) ∧ (A ↔ ¬(f(x) =
f(w2))) ∧ 1 � x ∧ x � 2 ∧ w1 = 1 ∧ w2 = 2. Top: without deduction. Middle: with eij-deduction. Bottom: with complete
deduction.

¬(w1 = w2), ¬(x = w2) are assigned. Then (x = w2) is assigned by BCP because of the deduction
clause learned C4, and hence the search proceeds as in the previous case.

Fig. 7 (bottom) represents the search tree of Bool+T1+T2 applied to �, under the hypothesis
that both theory solvers are theory-deduction complete (e.g., they can deduce negative equalities
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as well). Before splitting, T2�satisfiable performs not only the deduction {1 � x, x � 2,w1 = 1,w2 =
2} |= (x = w1 ∨ x = w2), as before, but also {w1 = 1,w2 = 2} |= ¬(w1 = w2), learning C4 and C1 as
deduction clauses; T1�satisfiable performs the deduction {¬(f(x) = f(w1))} |= ¬(x = w1), learning
C2. This causes the assignment of ¬(w1 = w2), ¬(x = w1) and x = w2 by BCP. Then T1�satisfiable
performs the deduction {x = w2} |= f(x) = f(w2), from which f(x) = f(w2) and ¬A are assigned by
BCP. The resulting assignment is thus T1 ∪ T2-satisfiable.

From Examples 3 and 4 we notice a few facts.
First, in DTC, using a DPLL-like engine, together with techniques like early pruning and theo-

ry-driven learning and deduction, allows for a drastic pruning of the boolean search on eij’s with
respect to the enumeration of total assignments (16 in Example 4). In particular, the fact that learned
clauses may contain eij’s is essential, because it makes learned clauses shorter—and thus more effec-
tive—and because it allows for reusing the information on eij’s which is learned in one branch to
prune the search on eij’s in the subsequent branches.

Second, in DTC the extra boolean component of search caused by the non-convexity of LA(Int )
is merged into the top-level boolean search, so that it is handled efficiently by the top-level DPLL
procedure.

Third, unlike with N.O., with DTC we do not require eij-deduction capabilities from the theory
solvers, although eij-deduction helps cutting the boolean search space by foreseeing theory conflicts.
Thus, on one extreme (no eij-deductive power for theory solvers), DTC works as a SMT implemen-
tation of non-deterministic N.O. schema, with the DPLL solver playing the double role of (very
efficient) truth assignment enumerator for� and of “smart guesser” of identifications on interface
variables. On the other extreme (both theory solvers are eij-deduction complete), it behaves simi-
larly to an SMT tool with a deterministic N.O. engine, with the added benefits we have mentioned
above; every intermediate situation between the two extremes is possible, by trading DPLL boolean
search for theory-deduction at will.

More generally, with DTC we impose no restriction on the theory-deduction capability of the
theory solvers used, although we fully benefit from any such capability. Thus, one is free to choose
and implement the procedures for T -satisfiability for the theories of interest, evaluating the tradeoff
between the search-pruning benefit and the cost of theory-deduction. 7

4.3. Discussion

In the following, we discuss the advantages of DTC.
Simplicity. The overall schema is extremely simple. Nothing is needed beyond decision proce-

dures for each Ti, and no complicated integration schema between the Ti is required. Furthermore,
when the input problem is fully contained within one Ti, the setup reduces nicely to SMT (Ti). All
features from the DPLL framework such as early pruning, theory driven backjumping and learning,
deduction, and split control can be used.

7 E.g., with some theories such as EUF , theory-deduction of equalities can be computationally cheap, whilst with some
other theories such as LA(Rat), theory-deduction of equalities requires methods which are more expensive than those
for simple satisfiability.
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Bool vs. theory. The interaction between the boolean level and each theory is tightened, thus
taking into account the fact that the boolean structure of the quantifier-free formula can severe-
ly dominate the complexity of T1 ∪ T2-satisfiability. In contrast, Nelson–Oppen privileges the link
between T1 and T2, while SMT (T1 ∪ T2) problems may feature complex interactions between the
boolean level and each of the Ti . In fact, the boolean component is far from negligible with respect
to the integrated theories.

Non-convexity. The DTC schema captures in a very natural way the case of non-convex theo-
ries. The Nelson–Oppen schema implements case-splitting on the disjunction of interface equalities
entailed by each Ti and this case splitting is separate from the management of the boolean split-
ting. Therefore, the combination schema becomes very complex: one has to deal with the fact that
disjunctions of eij need to be exchanged. Besides complicating the deduction mechanism of each
theory, a stack-based search with backtracking has to be performed.

In DTC the search on the “top-level” boolean component of the problem and the search on the
“non-convex” component are dealt with in an “amalgamated” framework, and positively inter-
act with each other, so that to maximize the benefit of the optimizations of state-of-the art SAT
procedures.

Generation of theory conflict. The construction of conflict sets may be a non trivial task within a
single theory. The problem is even harder in the case of T1 ∪ T2, since the construction of a conflict
set must take into account the conflicts obtained in each theory, as well as the interface equalities
that have been exchanged. In our framework, this complication is avoided altogether: a conflict for
the combined theories is naturally induced by the interaction between the conflict in one theory and
the mechanisms for conflict management in the boolean search. Moreover, DTC allows for learning
clauses containing eij’s in a very natural way, which provides big benefits in further pruning the
search.

Deduction. The N.O. schema requires the theory solvers being eij-deduction complete. However,
eij-deduction completeness can be sometimes hard to achieve (e.g., it may greatly complicate the
satisfiability algorithms), and computationally expensive to carry out. In the DTC approach, the
theory solvers do not have to be deduction-complete, although DTC benefits from any eij-deduc-
tion capability. This enables us to explore the trade-off between which deduction is beneficial to
efficiency and which is in fact hampering the search—or too difficult to implement.

As possible drawbacks, we notice that in DTC the whole formula is purified, with the correspond-
ing upfront introduction of O(n2) interface equalities eij . This may increase the boolean search space,
and increase the number of theory literals given as input to each theory solver. However, many of
these may not occur in the purified formula; and even though the truth assignment of the interface
equalities has to be guessed by the boolean level, which potentially increases the boolean search
space, early pruning, learning and deduction help to limit the increase in the search.

4.4. Formal properties

In this section we prove that the Bool+T1+T2 algorithm is a decision procedure for SMT (T1 ∪ T2).
We first show that the existence of a total assignment over Atoms(�) ∪ IE(�) is a necessary and
sufficient condition for T1 ∪ T2-satisfiability; then we show that the algorithm returns sat iff such
an assignments exists, and returns unsat otherwise.

We state a preliminary fact to take care of formulae of generic boolean structure.
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Lemma 2. Let T be a �-theory, � be a quantifier-free �-formula, and �p = fol2prop(�). Then �
is T -satisfiable if and only if there exists a total truth assignment �p over fol2prop(Atoms(�p ))
such that

(•) �p satisfies �p , and
(•) prop2fol (�p ) is T -satisfiable.

The lemma follows from basic notions of first-order logic—we omit the proof.

Theorem 1. Let � be a pure formula on T1 ∪ T2, and let �p be fol2prop(�).
� is T1 ∪ T2-satisfiable iff there exists a total truth assignment �p over fol2prop(Atoms(�) ∪ IE(�))
such that

• �p satisfies �p ,
• prop2fol (�p1 ∧ �pe ) is T1-satisfiable, and
• prop2fol (�p2 ∧ �pe ) is T2-satisfiable,

where �p = �
p
1 ∧ �p2 ∧ �pe ,�1 = prop2fol (�p1 ) is T1-pure,�2 = prop2fol (�p2 ) is T2-pure, and

�e = prop2fol (�pe ) is a set of equality literals over IE(�) .

Proof 1.
(�⇒) � is T1 ∪ T2-satisfiable. From Lemma 2, there exist a total truth assignment �p over

Atoms(�p ) which satisfies �p , and such that � = prop2fol (�p ) is T1 ∪ T2-satisfiable.
Since � is a T1 ∪ T2-pure formula, we can write � as �1 ∧ �2, where each �i is i-pure.

Since �1 ∧ �2 is T1 ∪ T2-satisfiable, by Lemma 1 there exists a �e over IE(�1 ∧ �2) s.t. �i ∧ �e is
Ti-satisfiable for i = 1, 2.

We conclude by noticing that IE(�1 ∧ �2) = IE(�).
(⇐�) Let �p satisfy the conditions above, and let � = prop2fol (�p ) = �1 ∧ �2 ∧ �e.

By applying Lemma 1 with �1 = �1 ∧ �e and �2 = �2 ∧ �e, we have that � is T1 ∪ T2-satisfiable.
Let � be the restriction of � to the atoms occurring in �.
Then, � is also T1 ∪ T2-satisfiable since it is weaker than �. Furthermore, �p = prop2fol � also sat-
isfies �p , since it agrees with �p on the atoms occurring in �p .
The thesis follows from Lemma 2. �

We now show that Bool+T1+T2 of Fig. 5 is a decision procedure for SMT (T1 ∪ T2). We prelimi-
narily prove the following lemma, which states the correctness of the pruning.

Lemma 3. Let T be a �-theory, � be a quantifier-free �-formula, and �p = fol2prop(�). If �p is a
propositional assignment for �p and � = prop2fol (�p ) is T -unsatisfiable, then � is T -satisfiable iff
� ∧ ¬� is.

Proof 2. (⇒) Assume that � is T -satisfiable. Then there must exist an interpretation I which satisfies
T and �. Notice that if � is not T -satisfiable, then T |= ¬�. So, any interpretation satisfying T must
also satisfy ¬�. This must hold also for I . As a consequence, we have that I satisfies T , �, and ¬�.
This allows us to conclude that � ∧ ¬� is T -satisfiable.

(⇐) If � ∧ ¬� is T -satisfiable, then both � and ¬� are T -satisfiable. So, � is T -satisfiable. �
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Theorem 2. The function Bool+T1+T2 of Fig. 5 is a satisfiability procedure for the problem of checking
the T1 ∪ T2-satisfiability of quantifier-free first-order formulae.

Proof 3. Termination is proved by showing that in Bool+T1+T2 the number of iterations in the
while loop (lines 3–10) is bounded by the number of total truth assignments on Ap , which is finite.
In fact, at any iteration, either the loop is exited and sat is returned (line 7), or one of step 8 or
9 are executed. Each of them strengthens �p with ¬fol2prop(	i) by removing (at least) the total
assignment �p currently being analyzed from the possible values returned by pick_assignment .

The procedure can return sat only at line 7; then, by Theorem 1 we can conclude that � is
T1 ∪ T2-satisfiable.

The procedure can return unsat only if the test of step 7 returns false for all iterations of the loop.
By lemma 3, we are guaranteed that the formula � before line 7 and the formula after line 9 are
equisatisfiable.
From Theorem 1 we can conclude that� is T1 ∪ T2-unsatisfiable by considering that we never discard
a satisfying assignment for �.

Finally, we notice that the Bool+T1+T2 procedure in Fig. 6 is also a decision procedure for
SMT (T1∪ T2). Similarly to the SMT (T) case described in Section 3, the Bool+T1+T2 procedure in
Fig. 6 enhances that of Fig. 5 by cutting partial assignments. This preserves termination, cor-
rectness and completeness. In fact, each partial assignment cannot be expanded into total ones
which can cause T1 ∪ T2-satisfiability. In particular, the partial assignments �p which have been
pruned by means of BCP, boolean backjumping and learning are such that they do not satisfy
�p , so that no total assignment extending them would. Furthermore, the other partial assign-
ments �p = �

p
1 ∧ �2

p ∧ �ep have been pruned by means of theory-driven backjumping, learning
and deduction, so that they are such that �i ∧ �e is Ti-unsatisfiable for some i. Thus all total as-
signments extending them are Ti-unsatisfiable for some i, and thus they are T1 ∪ T2-unsatisfiable
by Theorem 1. �

5. Delayed Theory Combination in practice: MATHSAT (EUF, LA)

In this section, we discuss the implementation in MathSAT [5] of the Delayed Theory Combina-
tion schema for the theories of EUF and LA, both for the convex case of reals and the non-convex
case of integers.

5.1. The basic platform: the MathSAT solver

Our starting point is MathSAT [5], an SMT solver able to deal with each of the following the-
ories: LA(Rat ), LA(Int ), and EUF . MathSAT is also able to deal with (EUF ∪ LA(Rat )) and
(EUF ∪ LA(Int )) by eliminating uninterpreted symbols by means of Ackermann expansion [2].

MathSAT implements an enhanced version of the Bool+T schema (see Fig. 8, left). The SAT
solver is used to enumerate models of the propositional abstraction of the formula. It inter-
acts with two theory solvers, one for dealing with a pure EUF-fragment and one for dealing
with a pure LA-fragment; the Ackermann expansion has made sure no interaction is needed be-
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tween the theory solvers themselves. The theory solvers have a uniform interface that provides for
conflict set management and deduction, and integrates backjumping and learning. The interface
is also incremental and resettable; this enables the development of solvers that are state-based,
and can mimic the behaviour of the SAT search. The main components of MathSAT are the
following.

Preprocessor
MathSAT supports a rich input language, with a large variety of boolean and arithmetic oper-

ators, including ternary if-then-else constructs on the term and formula level. Reducing this rich
input language to the simpler form recognized by the core engine is carried out by a preprocessor
module.

The preprocessor performs some basic normalization of atoms, so that the search engine only
has to deal with a restricted set of predicates. It expands ternary if-then-else constructs over math
terms. Finally, it uses a standard linear-time, satisfiability preserving translation to transform the
formula (including the remaining if-then-else constraints on the boolean level) into conjunctive
normal form.

The preprocessor partitions the set of mathematical atoms into disjoint clusters. Two atoms
belong to the same cluster if they share a variable. Instead of one single LA solver, each cluster is
handled by a separate LA solver. (This can be seen as the simplest form of combination of theories,
where there are no interface variables.)

In addition, the preprocessor uses a form of static learning to add some satisfiability preserv-
ing clauses on atoms occurring in �, that help to prune the search space in the boolean level (e.g.,
¬(t1 − t2 � 3) ∨ ¬(t2 − t3 � 5) ∨ (t1 − t3 � 9)).

Finally, the preprocessor performs the propositional abstraction of the formula, instantiating
the mapping between mathematical atoms and the corresponding propositions used in boolean
solving.

Boolean solver
The propositional abstraction of the mathematical formula produced by the preprocessor is

given to the boolean satisfiability solver, extended to implement the MathSAT algorithm de-
scribed in Section 3.2. This solver is built upon the MiniSat solver [14], from which it inherits
conflict-driven learning and backjumping, restarts [33,8,18], optimized boolean constraint prop-
agation based on the two-watched literal scheme, and a variant of the VSIDS splitting heuris-
tics [22]. The communication with the theory solvers is carried out through an interface (sim-
ilar to the one in [17]) that passes assigned literals, consistency queries and backtracking
commands, and receives back answers to the queries, mathematical conflict sets and implied
literals.

The boolean solver has been extended to handle some options relevant when dealing with math-
ematical formulas. For instance, MathSAT inherits MiniSat’s feature of periodically discarding
some of the learned clauses to prevent explosion of the formula size. However, clauses generated by
theory-driven learning and forward deduction mechanisms are never discarded, as a default option,
since they may have required a lot of theory reasoning. As a second example, it is possible to ini-
tialize the VSIDS heuristics weights of literals so that either boolean or theory atoms are preferred
as splitting choices early in the MathSAT search.
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Fig. 8. An architectural view of MathSAT (left) and MathSAT (EUF ,LA) (right).

The theory solver for EUF
The implementation of the EUF solver reuses some of the data structures of the theorem prover

E [29] to store and process terms and atoms. It is based on the congruence-closure algorithm de-
scribed in [24]. It is fully incremental and resettable, and is able to construct conflict sets, discover
implied literals, and explanations. Thus, the EUF solver is eij-deduction complete.

The theory solver for LA
The solver for LA is a complex structure, where various submodules are integrated: the submod-

ule for DL uses the Bellman–Ford algorithm to handle difference logic constraints; the LA(Rat )
submodule employs the simplex algorithm to deal with linear arithmetic over the reals; LA(Int )
is tackled by a (resource-bounded) branch-and-cut procedure, which tries to find an integer so-
lution in the solution space over the rationals; the final check is performed via Fourier-Motzkin
elimination.

Besides being incremental and resettable, the most distinguishing feature is the idea of layering:
cheaper theories are used before more expensive theories. First, the whole assignment is given to
a solver for EUF , which treats all arithmetic operations as uninterpreted functions. Since many
unsatisfiable assignments turn out to be already unsatisfiable with purely equational reasoning, this
often prevents more complex solvers to be called. Only if the current assignment is satisfiable in
EUF will the solver for LA(Rat ) be called to check for satisfiability over the rational numbers.
Finally, if the problem is over the integers, the expensive solver for LA(Int ) will only be called if
the problem turned out to be satisfiable over the rationals.

5.2. Implementing the Delayed Theory Combination Schema

The Delayed Theory Combination Schema has been implemented in the MathSAT framework
for both EUF ∪ LA(Rat ) and EUF ∪ LA(Int ). In a straightforward implementation, boolean as-
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signments to the interface equalities would be given both to the solver for EUF and the solver for
LA, thereby forcing a consistent assignment to these interface equalities. In MathSAT, the solver
for EUF and the first layer of the solver for LA (which is a solver for EUF treating arithmetic
operations as uninterpreted functions) have been merged. (see Fig. 8, right). Hence, in practice, the
interface equalities are handed only to the lower (arithmetical) layers of the LA-solver if they are
consistent with the purely EUF-part of the current assignment.

Filtering theory atoms
The following (optional) techniques have been devised for filtering the atoms that are passed to

the theory solvers for T -satisfiability tests. The idea is that the theory solvers are given smaller but
sufficient sets of constraints that can be hopefully solved faster. Note that the techniques below
only apply to literals that are not interface equalities. This is because interface equalities form the
consistency bridge between two theories.

Pure Literal Filtering. Assume that a�-literal l is propositionally pure in the conjunctive normal
form formula �, meaning that ¬lp does not appear in �p . Now, if a truth assignment �p is such
that ¬lp ∈ �p propositionally satisfies�, then so will (�p \ {¬lp }) ∪ {lp }. Therefore, if lp is assigned
to false in the current partial truth assignment, then ¬l does not have to be passed to the theory
solver.

Theory-Deduced Literal Filtering. Assume that a clauseC = (li ∨ · · · ∨ ln) of�-literals is entailed
by the underlying theory T , i.e. the conjunction ¬l1 ∧ · · · ∧ ¬ln is T -unsatisfiable. (Such clauses re-
sult from theory-driven learning, deduction, and static learning.) If (i) the current truth assignment
�p contains the literals ¬lp1 , . . . , ¬lpn−1, l

p
n , (ii) each ¬l1, . . . , ¬ln−1 has been given to the theory solver,

and (iii) lpn is forced to true by unit propagation on the clause C , then ln does not have to be given
to the theory solver as prop2fol (�p \ {lpn }) is T -satisfiable iff prop2fol (�p ) is.

Management of interface equalities
The most important points to be emphasized are related to the management of the interface

atoms.

• The preprocessor now also purifies the formula: the interface variables xi are identified, and the
interface equalities eij are added to the theory solvers. Note that the interface equalities are added
even if they do not appear in the formula.

• Intuitively, it seems a good idea to delay the activation of eij atoms; in order to achieve this
objective, we instructed the SAT solver not to branch on them until no other choice is left. This
is done by suitably initializing the activity vector controlling the VSDIS splitting strategy [22].
In practice, this choice may cause a significant speedup, as shown in Section 7.3.

• Once the search finds a (both T1-consistent and T2-consistent) truth assignment satisfying �p , we
are not done: to guarantee correctness, we need an assignment also for those eij’s which still do
not have a value. This is provided by the SAT solver used in MathSAT, which constructs total8

assignments over the propositional variables that are declared.

8 See Note 3.
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• Before any new split, the current (partial) assignment is checked for T1- and T2-consistency, and
the procedure backtracks if it is found inconsistent. In this way, the SAT solver enumerates total
assignments on eij’s only if strictly necessary.

• Depending on the search, it is possible that eij are given values not only by branching, but also
by boolean constraint propagation on learned clauses, or even by theory deduction. In fact, the
eij interface equalities are also fed into the congruence closure solver, which also implements
forward deduction [5] and therefore is able to assign forced truth values (e.g., to conclude the
truth of x1 = x2 from the truth of x = x1, y = x2, and x = y). This reduces branching at boolean
level, and limits the delay of combination between the theories.

• When an interface equality eij is involved in a conflict, it is treated like the other atoms by the
conflict-driven splitting heuristic: i.e., its branching weight is increased, and it becomes more likely
to be split upon. Furthermore, the conflict clause is learned, and it is thus possible to prevent
incompatible configurations between interface atoms and the other propositions.

• The initial value attempted for each unassigned eij is false. If xi and xj were in the same equiv-
alence class because of equality reasoning, then eij had already been forced to true by equality
reasoning. Therefore, we are guaranteed that setting eij to false will not result in expensive merg-
ing of equivalence classes, even though conflicts can result in the arithmetic solver. In practice,
this may cause a significant speedup, as shown is Section 7.3.

6. Related work

The Nelson–Oppen integration schema was first proposed in [23], whereas the Shostak method
was proposed independently in [30]. Recently, a number of papers have been proposed to clarify
the issues related to the combination of Shostak theories by studying their relationship with the
Nelson–Oppen schema. We refer the reader to [26] for a synthesis of Nelson–Oppen and Shostak
approaches. The notion of extended canonizer for Shostak theories is discussed in [27,32,26].

The approach presented in this paper can be seen as lifting a nondeterministic variant of the Nel-
son–Oppen integration schema to the case of formulae with arbitrary boolean structure. We exploit
this similarity in order to prove the correctness of our approach. With respect to the approaches
described above, however, where the schema is mostly defined as a formal tool, we also focus on the
practical issues, and show how to reach an efficient implementation by leveraging state-of-the-art
techniques in boolean search and in SMT , and on theory layering (i.e., cheaper reasoning first, and
more often).

In fact, to our knowledge, the integration schema described in this paper has never been proposed
elsewhere as the basis for a solver. The most closely related systems, which are able to deal with
combinations of theories using variants of Bool+no(T1, T2), are the following. CVCLite [10,3] is a
library for checking validity of quantifier-free first-order formulas over several interpreted theories,
including LA(Rat ), LA(Int ), EUF , and arrays, replacing the older tools SVC and CVC. Verifun
[15] is a similar tool, supporting domain-specific procedures for EUF , LA, and the theory of arrays.
Zapato [6] is a counterexample-driven abstraction refinement tool, able to decide the combination
of EUF and a specific fragment of LA(Int ). ICS [19,16] is able to deal with uninterpreted func-
tion symbols and a large variety of theories, including arithmetic, tuples, arrays, and bit-vectors.
ICS [27,32] somewhat departs from the Bool+no(T1, T2) schema, by mixing Shostak approach (by
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merging canonizers for individual theories into a global canonizer), with Nelson–Oppen integration
schema (to deal with non-Shostak theories).

Other approaches implementing Bool+T for a single theory are [38,9,17]. The work in [17] propos-
es a formal characterization of the Bool+T approach, and an efficient instantiation to a decision
procedure for EUF (based on an incremental and resettable congruence closure algorithm [24],
which is also implemented in MathSAT). Despite its generality for the case of a single theory, the
approach is bound to the Bool+T schema, and requires an integration between theory solvers to
deal with SMT (T1 ∪ T2).

A different approach to SMT is the “eager” reduction of a decision problem for T to propositional
SAT. This approach has been successfully pioneered by UCLID [40,31], a tool incorporating a deci-
sion procedure for EUF , arithmetic of counters, separation predicates, and arrays. This approach
leverages on the accuracy of the encodings and on the effectiveness of propositional SAT solvers,
and performs remarkably well for certain theories. However, it sometimes suffers from a blow-up
in the encoding to propositional logic, see for instance a comparison in [17] on EUF problems. The
bottleneck is even more evident in the case of more expressive theories such as LA [34,35], and
in fact UCLID gives up the idea of a fully eager encoding [20]. The most relevant subcase for this
approach is DL ∪ EUF , which is addressed in [34,28]. Unfortunately, it was impossible to make a
comparison due to the unavailability of the benchmarks (only the benchmarks after Ackermann
expansion were made available to us).

7. Experimental evaluation

In this section we evaluate experimentally the Delayed Theory Combination approach. We first
describe the set of test cases used for the experiments (Section 7.1); then, we discuss a comparison be-
tween the DTC implementation of MathSAT and some competitor systems (Section 7.2); finally, in
Section 7.3 we evaluate the impact of the proposed DTC optimizations on the overall performance
of MathSAT.

7.1. Description of the tests

There is a general lack of test suites on EUF ∪ LA. For instance, the tests in [28] were made
available only after Ackermann expansion, so as to drop the EUF component. We also analyzed
the tests in the regression suite for CVCLite [10], but they turned out to be extremely easy.

We defined the following benchmarks suites.
Modular Arithmetic. This suite simulates arithmetic operations (succ, pred, sum) modulo N. Some

basic variables range between 0 and N, and the problem is to decide the satisfiability of (the negation
of) known mathematical facts. Most problems are unsatisfiable. The test suite comes in two versions:
one purely EUF , where the behavior of arithmetic operations is tabled (e.g. s(0) = 1, . . . , s(N) = 0);
one in EUF ∪ LA, where each arithmetic operation has also a characterization via LA and con-
ditional expressions (e.g. p(x, y) = if (x + y < N) then x + y else x + y − N ) taking into account
overflows.

Random Problems. We developed a random generator for SMT(EUF ∪ LA(Rat )) problems. The
propositional structure is a 3-CNF; the atoms can be either fully propositional, equalities between
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two terms, or a comparison between a term and a numerical constant. A basic term is an individual
variable between x1, . . . , xn; a compound terms xi, with i > n, is either the application of an uninter-
preted function symbol (e.g. f(xj1 , . . . , xjn)), or a ternary linear polynomial with random coefficients
to previously defined terms. The generator depends on the coupling: high coupling increases the
probability that a subterm of the term being generated is a compound term rather than a variable.
A problem class is identified by the number of variables and clauses, and the coupling; for each
configuration of the parameters we defined 20 random samples.

Hash. The suite contains some problems over hash tables. They are modeled with a combi-
nation of uninterpreted function symbols and integer ranges. Some constraints specify the right
behavior of the table, ensuring different integer values for different locations; then a property in-
volving multiple nesting of different hash tables is checked (e.g. 1 � x < n → hash1(hash2(x + x)) =
hash1(hash2(2 ∗ x)), where x is an integer variable, and n is half of the size of the tables).

The test suite is parametrized in the number of the hash tables and in their size. We provide both
satisfiable and unsatisfiable instances.

7.2. Comparison with other systems

We ran the implementation of MathSAT based on Delayed Theory Combination (MathSAT-
Dtc hereafter) against the alternative implementation in MathSAT based on Ackermann expansion
(MathSAT-Ack hereafter), and against the competitor tools ICS (v.2.0) and CVCLite (v.1.1.0). (We
also tried to use the unstable version of CVCLite, which is somewhat more efficient, but it was
unable to run the tests due to internal errors.) We ran the tools over all the benchmarks suites, for
a total of more than 3800 test formulae for each tool.

All the experiments were run on a 2-processor INTEL Xeon 3 GhZ machine with 4 Gb of mem-
ory, running Linux RedHat 7.1 (only one processor was allowed to run for each run). The time limit
was set to 1800 seconds and the memory limit to 500 MB. An executable version of MathSAT and
the source files of all the experiments performed in the paper are available at [21].

The overall results are reported in Fig. 9. Each of the columns show the comparison between
MathSAT-Dtc and MathSAT-Ack, CVCLite, and ICS, respectively; the rows correspond to the
different test suites. MathSAT-Dtc dominates MathSAT-Ack on all the problems except the ones
on Modular Arithmetic on EUF . MathSAT-Dtc dominates CVCLite on all the problems. The com-
parison with ICS is limited to problems in the first three benchmarks corresponding to the the first
three rows; since ICS is incomplete over the integers, it returns incorrect results in the Hash suite
(which is on EUF ∪ LA(Int ), with a non-trivial LA(Int ) component). In the first row, MathSAT-
Dtc generally outperforms ICS. On the second row, MathSAT-Dtc behaves better than ICS on part
of the problems, while it times out on others. On the problems in the third row, ICS is faster than
MathSAT, even though the suite turns out to be relatively easy for both systems (most tests were
run within one second).

7.3. Impact of the different solutions/strategies

We also evaluated the impact on the overall performance of the specific optimizations that we
devised for DTC. We compared the default version of MathSAT-Dtc (the one used for the experi-
ments in Section 7.2) against three different configurations, obtained by disabling one optimization



M. Bozzano et al. / Information and Computation 204 (2006) 1493–1525 1521

Fig. 9. Execution time ratio: the X and Y axes report MathSAT-Dtc and each competitor’s times, respectively (logarith-
mic scale). A dot above the diagonal means a better performance of MathSAT-Dtc and viceversa. The two uppermost
horizontal lines and the two rightmost vertical lines represent, respectively, out-of-memory (higher) or time-out (lower).

at a time (in other words, each version that has been tested differs from the default version only
with respect to one of the optimizations). The configurations we tested are, respectively:

No delayed eij splitting. The configuration obtained by disabling the delayed activation of in-
terface equalities; with this configuration, the system is more likely to split on interface atoms in
earlier stages of the search.



1522 M. Bozzano et al. / Information and Computation 204 (2006) 1493–1525

Fig. 10. Execution time ratio: the X and Y axes report the default version of MathSAT-Dtc and its variations’ times,
respectively (logarithmic scale). A dot above the diagonal means a better performance of the default version and viceversa.
The two uppermost horizontal lines and the two rightmost vertical lines represent, respectively, out-of-memory (higher)
or time-out (lower).

No default eij false value. The configuration obtained by disabling the choice of using “false” as a
default split value for each unassigned interface equality; due to the way the splitting mechanism is
realized in MiniSat, this actually amounts to force the initial value of unassigned interface equalities
to “true”. This means that the EUF reasoner is more likely to deal with positive equalities, and thus
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merge equivalence classes; on the other hand, notice that negated equalities may induce splitting in
LA.

No EQ-layering. The configuration of MathSAT-Dtc without EQ-layering. In this configuration
the solver for EUF is not used as the first layer in the solver for LA. However, deduction on interface
equalities is still carried out by the solver for EUF .

We ran the different configurations over all the benchmarks suites, with the same time and
memory limits as in Section 7.2.

The overall results are reported in Fig. 10. The columns show the comparison between MathSAT-
Dtc and its variations, in the order described above; the rows correspond to the different test suites.
In general, the optimizations introduce at most marginal degrade in performance; in fact, in many
cases they result in dramatic speed-ups. It is also interesting to notice that the different optimiza-
tions seem to interact positively, i.e. the elimination of any of them yields significant performance
degradation in some classes of problems.

8. Conclusions and future work

In this paper, we have proposed a new approach to the combination of theories for the SMT (T1 ∪
T2) problem. The approach privileges the interaction between the boolean component and each of
the theories, and delays the interaction between each of the theories. This approach is very expres-
sive (e.g., it nicely encompasses the case of non-convex theories), and much simpler to understand
and analyze; each of the solvers can be implemented and optimized without taking into account the
others; furthermore, in our approach it is possible to investigate the different degrees of deduction
which can be carried out by the theory solvers.

We have implemented the approach in the MathSAT solver [5], for the case of the combination
of LA and EUF , both in the convex case of rationals, and the non-convex case of integers. The
experimental evaluation shows that the use of dedicated solvers for EUF , and the control of the
split over interface atoms, are crucial to make the approach efficient. In fact, the system compares
positively with state-of-the-art competitors, sometimes with dramatic gains in performance.

In the future, we will proceed along the following directions. On one side, we will increase the
performance of the solver, in particular in the case of problems in LA(Rat ). During the evalua-
tion, most of the time is spent in arithmetic computations, and several bottlenecks have already
been identified. Furthermore, we will investigate the idea of on-the-fly purification, and more ac-
curate heuristics to control splitting. On the other side, we will investigate the idea of incremental
satisfiability, and the integration of MathSAT with domain-specific verification flows based on in-
ductive reasoning (e.g., verification of timed and hybrid systems, and of RTL circuits). Finally, we
plan to widen the scope of applicability of our approach to combination of theories for which a
generalization of the Nelson–Oppen schema is required. In fact, there have been some attempts
to lift the Nelson–Oppen schema to non-disjoint combinations [41] or to disjoint combinations of
non-stably infinite theories [39]. Such schemas generalize the Nelson–Oppen approach by guessing
identifications over a larger set of variables than that of interface variables (this is necessary for
completeness). Our approach can be easily adapted to consider interface atoms over such an ex-
tended set of variables. This allows us to obtain rapid prototypes of these schemas which, by now,
have only been interesting from a theoretical point of view, given the difficulties of a reasonable
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implementation of the guessing phase. This paves the way to conduct experimental evaluations of
how SMT-techniques scale up for a wider range of combinations of theories.

References

[1] A. Armando, C. Castellini, E. Giunchiglia, M. Maratea, A SAT-based decision procedure for the boolean combination
of difference constraints, in: Proceedings of SAT’04, 2004.

[2] W. Ackermann, Solvable Cases of the Decision Problem, North Holland, Amsterdam, 1954.
[3] C.L. Barrett, S. Berezin, CVC Lite: a new implementation of the cooperating validity checker, in: Proceedings of

CAV’04, Lecture Notes in Computer Sciences, vol. 3114, Springer, Berlin, 2004.
[4] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Ranise, R. Sebastiani, Efficient satisfiability

modulo theories via delayed theory combination, in: Proceedings of CAV 2005, Lecture Notes in Computer Sciences,
vol. 3576, Springer, Berlin, 2005.

[5] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Schulz, R. Sebastiani, An incremental and
layered procedure for the satisfiability of linear arithmetic logic, in: Proceedings of TACAS’05, Lecture Notes in
Computer Sciences, vol. 3440, Springer, Berlin, 2005.

[6] T. Ball, B. Cook, S.K. Lahiri, L. Zhang, Zapato: automatic theorem proving for predicate abstraction refinement, in:
CAV, Lecture Notes in Computer Sciences, vol. 3114, 2004.

[7] C.W. Barret, D.L. Dill, A. Stump, A generalization of Shostak’s method for combining decision procedures, in:
Proceedings of FROCOS’02, 2002.

[8] R.J. Bayardo Jr, R.C. Schrag, Using CSP look-back techniques to solve real-world SAT instances, in: Proceedings
of AAAI/IAAI’97, AAAI Press, 1997, pp. 203–208.

[9] S. Cotton, E. Asarin, O. Maler, P. Niebert, Some progress in satisfiability checking for difference logic, in: Proceedings
of FORMATS-FTRTFT 2004, 2004.

[10] CVC, CVCL, SVC. Available from: <http://verify.stanford.edu/{CVC,CVCL,SVC}>.
[11] N. Dershowitz, J.-P. Jouannaud, Rewrite systems, in: in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer

Science, Elsevier and MIT Press, Amsterdam/Cambridge, MA, 1990, pp. 243–320.
[12] D. Deharbe, S. Ranise, Light-Weight theorem proving for debugging and verifying units of code, in: Proceedings of

SEFM’03, IEEE Computer Society Press, Sliver Spring, MD, 2003.
[13] H.B. Enderton, A Mathematical Introduction to Logic, Academic Press, New York, 1972.
[14] N. Eén, N. Sörensson, An extensible SAT-solver, in: Theory and Applications of Satisfiability Testing (SAT 2003),

Lecture Notes in Computer Sciences, vol. 2919, Springer, Berlin, 2004, pp. 502–518.
[15] C. Flanagan, R. Joshi, X. Ou, J.B. Saxe, Theorem proving using lazy proof explication, in: Proceedings of the CAV’03,

Lecture Notes in Computer Sciences, vol. 2725, Springer, Berlin, 2003, pp. 355–367.
[16] J.-C. Filliâtre, S. Owre, H. Rueß, N. Shankar, ICS: integrated canonizer and solver, in: Proceedings of CAV’01, Lecture

Notes in Computer Sciences, vol. 2102, 2001, pp. 246–249.
[17] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, C. Tinelli, DPLL(T): fast decision procedures, in: Proceedings

of CAV’04, Lecture Notes in Computer Sciences, vol. 3114, Springer, Berlin, 2004, pp. 175–188.
[18] C. Gomes, B. Selman, H. Kautz, Boosting combinatorial search through randomization, in: Proceedings of the

Fifteenth National Conference on Artificial Intelligence, American Association for Artificial Intelligence, 1998, pp.
431–437.

[19] ICS. Available from: <http://www.icansolve.com>.
[20] D. Kroening, J. Ouaknine, S. Seshia, O. Strichman, Abstraction-based satisfiability solving of Presburger arithmetic,

in: Proceedings of CAV’04, Lecture Notes in Computer Sciences, vol. 3114, Springer, Berlin, 2004, pp. 308–320.
[21] MathSAT. Available from: <http://mathsat.itc.it>.
[22] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, S. Malik, Chaff: engineering an efficient SAT solver, in: Pro-

ceedings of the DAC’01, ACM, 2001, pp. 530–535.
[23] G. Nelson, D.C. Oppen, Simplification by cooperating decision procedures, ACM Trans. Programm. Lang. Syst. 1

(2) (1979) 245–257.



M. Bozzano et al. / Information and Computation 204 (2006) 1493–1525 1525

[24] R. Nieuwenhuis, A. Oliveras, Congruence closure with integer offsets, in: Proceedings of the 10th LPAR, number
2850 in LNAI, Springer, Berlin, 2003, pp. 77–89.

[25] D.C. Oppen, Complexity, convexity and combinations of theories, Theor. Comput. Sci. 12 (1980) 291–302.
[26] S. Ranise, C. Ringeissen, D.-K. Tran, Nelson–Oppen, Shostak, and the extended canonizer: a family picture with a

newborn, in: Proceedings of the ICTAC’04, 2004.
[27] H. Rueß, N. Shankar, Deconstructing Shostak, in: Proceedings of the LICS’01, IEEE Computer Society, 2001, pp.

19–28.
[28] S.A. Seshia, R.E. Bryant, Deciding quantifier-free Presburger formulas using parameterized solution bounds, in:

Proceedings of the LICS’04, 2004.
[29] S. Schulz, E—A Brainiac Theorem Prover, AI Commun. 15 (2/3) (2002) 111–126.
[30] R.E. Shostak, Deciding combinations of theories, J. ACM 31 (1984) 1–12.
[31] S.A. Seshia, S.K. Lahiri, R.E. Bryant, A hybrid SAT-based decision procedure for separation logic with uninterpreted

functions, in: Proceedings of the DAC’03, 2003.
[32] N. Shankar, H. Rueß, Combining Shostak theories, in: RTA, vol. 2378, 2002.
[33] J.P.M. Silva, K.A. Sakallah, GRASP—a new search algorithm for satisfiability, in: Proceedings of the ICCAD’96,

ACM, 1996, pp. 220–227.
[34] O. Strichman, S. Seshia, R. Bryant, Deciding separation formulas with SAT, in: Proceedings of the Computer Aided

Verification, (CAV’02), Lecture Notes in Computer Sciences, Springer, Berlin, 2002.
[35] O. Strichman, On solving Presburger and linear arithmetic with SAT, in: Proceedings of Formal Methods in Com-

puter-Aided Design (FMCAD 2002), Lecture Notes in Computer Sciences, Springer, Berlin, 2002.
[36] C. Tinelli, M. Harandi, A new correctness proof of the Nelson–Oppen combination procedure, in: Proceedings of

the FROCOS’96, 1996.
[37] C. Tinelli, C. Ringeissen, Unions of non-disjoint theories and combinations of satisfiability procedures, Theor. Com-

put. Sci. 290 (1) (2003) 291–353.
[38] TSAT++. Available from: <http://www.ai.dist.unige.it/Tsat>.
[39] C. Tinelli, C.G. Zarba, Combining non-stably infinite theories, J. Automated Reasoning (2005) (to appear).
[40] UCLID. Available from: <http://www-2.cs.cmu.edu/∼uclid>.
[41] C.G. Zarba, Combining sets with integers, in: A. Armando (Ed.), Proceedings of the FROCOS’02, Lecture Notes in

Computer Sciences, vol. 2309, Springer, Berlin, 2002, pp. 103–116.


