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CHAPTER 7.

TWO-DIMENSIONAL HYPERGRAPH

7.1, General

The physical layout of a 2D hypergraph is mapped onto a two dimensional square
grid, as shown in Figure 7.1a, which is an example of a 5-by-5 ZD regular hypergraph.

For regular hypergraphs, each node is identified by an ordered pair {z,y):

node{x,y) suchthat 1<z<n, 1<y<n
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Figure 7.1: The Layout of a 2D Hypergraph
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For a partial hypergraph, the neis in the x direction are indexed sequentially from 1
to k. The nets in the v direction are indexed sequentially from 1 to k. Each net has k
nodes with two ports and a nodes with one port, such that (r% =k +a ). A two-port node
ia identified by an ordered pair (z,y}, a vne-port node by either {z,00) or {00,y). Since
the n nodes of each net are indistinguishable with respect to the center of the star, it is

always possible to rearrange the network such that all nodes with two ports are within

one square region cloge to the x -y axis origin, as shown in Figure 7.1b.

In the discussion the following notation is used:
e net,{s) is the s** net in the = direction. Thus, node{r,s) is at the intersection of
net,(s) and net,{r).
¢ commonly known refers to state information which has been broadeast from a
known origin and has reached and been decoded by all the nodes of a net.
e L. {5} is the total communication load of net {5}, defined as the number of full buflers
that are ready to be sent over the net. It includes only commonly known state infor-
mation.
e L (r,s} is the communication load of node{r s) via the port (r,5) to net (s} it
includes only load information which is already commonly known.
o L,(r,s) is the load of node(r,s} via the port,(r,s) to net (r}); it includes only load

information which is already commonly known.

7.2, Two-Dhmensional Node Interface

The node interface to a 213 network consists of two ports, buffers, a conirol unit,

and a host interface, as shown in Figure 7.2, Each of the two ports is full-duplex and is
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designed as described in Chapter 4. The control unit is the heart of the node interface

and includes the functions buffer manager, routing controller, and synchronizer.

The buffers at each node are organized as one uniform finite collection of m units.
Each buffer can contain one packet of data. Any of these can be attached for read or
write operations to the host bus interface, or pori,, or port,. Fach buffer can lunction
as a FIFO or 2 RAM and, in the FIFO mode, it can be attached to two interfaces, for

simultaneous read and write operations.

7.3. The Delay for Updating State Information

One of the design objectives is to minimize the delay of updating state information
and thereby improving the distributed algorithm performance. The 2D regular and par-
tial hypergraph are analyzed in this sectio, in order to find out the average— and worst—
case propagation delay of state information in the system. it is assumed that each net
has n nodes, and each slot has r control minislots. In the following discussion it is
assumed bhat the state information should propagate via two nets in 2D-R hypergraph

and via three nets in 2D-P hypergraph.

It is assumed that the control messages sent during the CMSs have a predefined
structure, with a specific field {few bits) for each parameter. Therefore, a state parame-
ter {e.g., load) which arrives ab the nede via port, can be transmitted via port, during

its next CMS.
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Figure 7.2: Functional Description of 2D Interface

7.3.1. The average delay

If a uniform use of the control minislots is assumed, then a node sends control

information via its CMS every

Thus, on average, new state information is sent with a delay of —é—a’ and will reach to

all the nodes on a net after an additional f +1 slots. The maximum distance between
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any two nodes of 2D--R is two nets. Therefore, the average delay for state information

to reach all the 2D-R nodes is

bromosp-n = a1 + f+1)=1 +2(f +1) slots.

In the 2D-P the information should propagate via three nets; therefore, the average

delay is

bprop—sp—p = 31+ J +1) = S0 43/ +1) slots.

7.3.2. Upper-bound on the delay

In the worst case, the state information is transmitted after { slots; therefore, the
upper-bound of the propagation delay through the system is 21 + 2( f +1) slots for

2D-R, and 31 + 3(f +1) slots for 2D-P.

The upper-bound parameter is important for the design of protocols that operate
in an open loop mode, i.e., distributed algorithms which use fime stamps as a substi-

tute for explicit acknowledgements, as in the mutual exclusion example of SBection 6.4.

7.3.3. Number of messages

The total number of control messages that are exchanged is an important cri-
terion in the evaluation of a distributed algorithm. Since the system is gldbaiiy gyn-
chronized by events, and assuming that each event is time stamped, then the order of
the distributed events is preserved. Therefore, in many cases the control messages and
their timing information can be sufficient for the distributed algorithm. One aspect of
the complexity of distributed algorithms, which are based on eomumon knowledge,

can be measured by counting how many control messages are exchanged.
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In order that a state parameter will reach all the system’s nodes, the parameter
is sent in a control message over one net and then over all the nets which are orthogo-
nal to the original net. Thus, the number of control messages which are needed for
propagating 2 certain state information (e.g., mutual exclusion request} to all the
system’s nodes is n-+1 for 2D-R. For 9D-P the maximum distance is three, and a
parameter propagates first via one net, then on k orthogonal nets, and then on k-1

parallel nets {1-+k-+k—1 = 2k nets).

All the nodes of a net monitor the activity on the net in the same way and in a
gynchronous manner. Thus, the distributed activity can be measured by the total
number of nets rather than by the total number of nodes. Therefore, the complexity
of the synchronous hypergraph is twice the square root of the total number of nodes
(2\/23{&%;). This complexity is much lower than a point-fo-point network,
which is on the order of the total number of nodes. Thus, it exhibits the potential of

the synchronous hypergraph for the implementation of cornplex distributed algo-

rithms.

7.4. Routing Algorithms for a 2D} Regular Network

The basic parameter for routing is the total load, which is commeonly known on a
net, rather than the total load of a node. An opitmal routing algorithm will balance the
load among all nets and thereby maximize the communication capacity of the systerm.
The use of the net load as a parameter decreases the complexity of the routing algorithm
relative to algorithms that use the load of each individual node. For example, the

number of different parameters for an algorithm which considers global information of
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Several methods for routing algorithms will be discussed in this section. These
methods use the load information that is periodically exchanged by the confrol messages.
One of the design objectives is to make these algorithms transparent to the host, i.e., the
routing algorithms are performed by the network interface, independent of the system’s
software. Each node monitors its neighborhood (the activity on its two nets), and per-
forms the routing algorithm without exchanging special messages with other nodes in the

system.

The different routes on a 2D regular network may be classified into two types:
Primary route is the path with the least number of nets from one node to another.
For the 2D-R hypergraph, the primary path has a length of one or two nets. For exam-
ple, to get from node(r,s} to node{u,v) (whick do not have a common net) there are
two possible ways: (i) via net,(r) to net, (v), or (ii) via nef’,z {8} to net, (u).

Secondary route is any route which is not a primary route. For the 2D~R hypergraph,

a secondary route has a length of at least three nets,

7.4.1. The local balancing routing algorithin

This algorithm uses only the primary routes. Between every two nodes, in the
plane of 2D-R, there are at most two primary routes. The routing algorithm deter-
mines which route to select. If the nodes have a common net the routing is via this
net; otherwise, the criterion for selecting the primary route is by locally balancing the
load of the two orthogonal nets, i.e., the data packet is sent via the net with the lesser

load.
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An active node is a node which uses its CMS, and by this asserts that "J am
Alive.” Let node{r,s} be the source node, and node (1,0) be the destination node, then
there are four cases:

Case 1 - r#u and s5#v, and node{r,v) and node(u ,¢ ) are active.

If L (s} > L,{r), otherwise route is via net,(r} and net, (v}, else the route is via
net, (s) and net,{u).

Case 2 — ¢ =wu or & = v, the source and destination have ports to the same net, the
packet ia sent directly via this net.

Case 3 - r3u and s#v, and only one of the intermediate nodes, node{r,v} or
nede{u,s), is active, then the packet is routed via the active node.

Case 4 - both intermediate nodes, node(r,v) and node {u,5), are not active, then a

secondary route is selected.

The implementation of local load balancing is simple. In order to compute the
total load of a net, the nodes report the relative change in their load. Thus, the com-
putation of the total joad of one net is done by adding {or subtracting) the load

changes.

7.4.2. The class of secondary routing algorithms

The class of secondary routing algorithms considers both primnary and secondary
routes. The objective of these algorithms is to balance the load over all the network’s
nets, and as a result to maximize the utilization and to minimize the average delay.
With each control message, additional load parameters are transferred, which give

information on the load of the orthogonal net. Via its two ports, the node monitors
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the activity on each of its two nets, and the information seen by port, is then

transmitted over net,, and vice versa.

In order to maximize the flow in the system and to minimize the average packet

delay, the sum of the net’s load along the route should be minimized.

Theorem: Maximum route length on 2D-R -
On 2D-R hypergraph, the secondary routing algorithm should not consider

routes which are longer than three nets.

Proof:-
Let node{r,s) be the source node and node{u,v} be the destination node. The
destination node can be accessed either via net, (v) or via net {u). Assume that
from some censiderations nef, (v) was selected; since the network is 2D-R hyper-
graph, a packet from the souree node will intersect with net, (v} after traveling
via one or two orthogonal nets, and the total length wili not exceed three nets.
The same argument is used if the net, (u) is selected. Thus, any route of length

greater than three nets will just increase the sum of the loads along the route,

Q.E.D.

In general, each port monitors the activity over its net and extracts three param-
eters:
(1) L - the curreni load on the net.
(2) L - the average net load during the past h slots (A is to be determined by simu-
lation of an actual system}.
(3) /% - the average net utilization during the past A slots, which is the ratio

between the full DMSs and h.
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These three parameters are broadcast with the control messages via the other port
onto the orthogonal net. As a result, all nodes receive these parameters from all the
nete of the system. For maintaining global information, each node of the 2D-R should
store 3(2n) = 6n parameters, and for 2D-P network, only 6k parameters. Thus,
maintaining global routing information for 2D partial network can be quite reason-

able.

7.5. 2D Partial Hypergraph as a Centralized Switch

In this section the partial hypergraph is viewed as a centralized switching network,
such that the nodes with two ports, constituting the switch, can be located in one build-
ing, and the nodes with one port are distributed within an area of a few kilometers

around the switeh.

Figure 7.3 is an example of a partial hypergraph of four nets (NET A, NET B,
NET ¢, and NET D); each net is a passive optical star and is operated as described in
Chapter 5. This is the same as the operation of the nets of a 2D regular hypergraph net-
work. Two nodes of each net have two ports and are placed in one area, counstituling the
centralized switch. Note that this centralized arrangement is done for practical purposes
(such as maintenance), and not because of different operational principles. The nets in
Figure 7.3 can be viewed as local area networks, and the centralized switch is the means
for merging them together. Thus, 2D-P hypergraph is a method for connecting local
area networks (optical nets) together. This approach is significant, since it enables the

construction of s small system which can be gradually extended.
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In the analysis of a partial hypergraph as a centralized switch, three main issues are
considered: (i} the bottlenecks and overflow prevention, (ii) conditions for ensuring max-

smum communication Aow, and (iii) the effective bandwidth of a net.

7.5.1. Bottlenecks and overflow prevention

The nodes with two ports {the switch nodes) are potential bottlenecks, since a
large portion of the communication traffic merges into them. Bottlenecks can occur
under heavy load: i.e., when the number of full buffers which are commonly known
is at least one, A bottleneck may result in buffer overflow and the loss of packets. In

the following discussion it will be shown how overflows can be prevented.

In order to achieve these objectives the following conditions are determined, and

then a theorem is proved.

Buffers Condition 1:

At a switch node, the set of buffers ({By, By, By, ... , B, }} Is divided such that

no more than |%LJ can be in the queue of port,, and no more than {%! can be
in the queue of port,.

Periodic Exchange Condition:
Kach switch node can broadcast state information via its two ports using the com-

trol messages during its OMS, at most every ! time slots.

Overflow Hazard Flag Condition:
The control message has a flag which indicates overflow hazard. When a port

turns the overfow hazard flag on, the other nodes on this net will not transmit
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any more packets to it. The maximura latency or delay for turning on the
overfiow hazard flag, and for this information to get to all the nodes on the net,
is

HAZARD ~FLAG g, =1 + [ +1,
which is the time until the next CMS, plus the time for this information to pro-

pagate through the net.

Buffers Condition 2:
The total number of buffers at each switch node is greater than 20 -+ 4f -+ 2, or

that

[ﬁ{bf+f+1+ﬂ
2

the expression [ "2 f -+ 1 is the maximum number of packets which can arrive
at that port from the time it has been decided locally {at the node interface),
until the time in which this state information is commeonly known on the net.

Note that the second f is for the possible f packets which can be on their way,

from the time the new state is commnonly known.

The Algorithm for Turning On the Overflow Hazard Flag:
A switch node will turn on the overflow hazard flag when it broadcasts via port,

over net , if the queue of full buffers ready to be sent via port, over net, is

greater or equal to

%31} S f — 1, and similarty for the overflow hazard flag
which is broadcast over net,.

Theorem:

The above conditions and algorithm are sufficient for preventing overtlow.,
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Proof:
Whenever any of the two overflow hazard flags are turned on, the switch node
can control the traffic which is generated locally by its host, by preventing the
host from filling up buffers, Assume that, in the worst case, all the traffie from
one net should be switched to the other net. Thus, no more than { + 2f +1
packets can arrive from the moment the hazard flag is Jocally turned on until this
state is effective at all of the net's nodes. Therefore, using the above algorithm is

sufficient to prevent overflow.

7.5.2. Ensuring maximum flow

The use of the overflow hazard flag may cause reduction in the performance of
the system, i.e., the above conditions can reduce the effective communication capacity

of the network. To prevent this additional condition is introduced:

Maximum Flow Condition:
When an overflow hazard flag is turned on over net, , there should be a minimum
number of full buffers in the queue to net,, such that this queue will not become
empty before the overflow hazard will be turn offl. This minimum number is

I'4+2 f 1, and the following inequality holds:

!--’{-;«-Jml‘ ~2f — 1> 42f +1 or !1;1‘}»2(1’ +2f +1).

Theorem:

The above condition iz sufficient to ensure maxi mum fHow.
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Proof:
Clearly, a reduction may happen if the quene of port, is empty, while the traffic
over net, to this node is halted by the overflow hazard flag. The time for turning
off the overflow hazard flag is ! -+ f +1 slots, and additional f slots are
required for a packet to arrive at this node. Thus, I' +2f + 1 full buffers ensure

that the node will be able to send packets continuously.

The value of ' determines the total number of buffers in the interface. There-
fore, in order to reduce this number, the ports of a switch node should have more
access to a OMS, i.e., the switch node should have priority over other nodes in the use

of the OMS. This will also improve the response time of the network.

7.5.3. Effective bandwidth

In this analysis, the system is modeled in order to find the number of nets
required for econstructing a system with some given parameters. In the following
model the system is homogeneous; i.e., all the nodes are identical in their behavior,

and all the nets have the same number of nodes.

The following parameters are defined:
® n,. — the number of nodes on each net {n,,, = k-ta).
e n,, - the total number of nodes in the syster n , =n,, P a ¥k 2k
e BW, .. -~ the node’s bandwidth, or the average traffic which the host of each node
generates (it is the same for nodes with one or two ports).

e BW, , — the net’s bandwidth, the mozimum traffic which the net can transfer.

o b — the ratio between BW, , and BW, , b=BW,  /BW,

node *
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¢ d,,. — the average distance between two nodes of the network {measured in the
number of different nets in which a message should travel). In the 2D-P network the
possible distances are 1, 2 or 3 nets.

In order to support the average communication in the system, the following ineq’ua]ity
should be satisfied:

2kBW,,, >n

Le., the total communication capseity should be greater than or equal to the total

BW,

node

daug)

ENE

traffic generated by the system’s nodes, which should be multiplied by the average
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distance (number of nets) each packet travels.

The average distance in the homogeneous 2D-P is

- 2ka Ak ta —1)+2k (ko —1)+3a(k —1) + E*[1(2k+2a —1)+2((k +a —1}%-q %))
2

ave’

d

LLFIIN
Using the above expressions, it is possible to show various relatiouships among

the different parameters {see Figures 7.4 and 7.5). The parameter b represents the
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state of a given technology, and one can assume that iis value will increase in the
future, with the result that a single net will be able to support the communication of
more or busier nodes. For a larger value of b and a in a fixed size system, the number
of nets is smaller. Also for a fixed value of b, as the system size enlarges, the net size

enlarges as well. It is also apparent that the number of ports on each net of the par-

tial network is larger than —gw« but smaller than 4.



