
EACL-2006

11
th

 Conference

of the European Chapter of the

Association for Computational Linguistics

Proceedings of the workshop on

Learning Structured Information

in Natural Language Applications

April, 3, 2006

Trento, Italy

SPONSOR:

Department of Computer Science, University of Rome ”Tor Vergata”

ORGANIZING COMMITTEE:

Roberto Basili, University of Rome ”Tor Vergata”, Co-chair
Alessandro Moschitti, University of Rome ”Tor Vergata”, Co-chair

PROGRAM COMMITTEE:

Nicola Cancedda (Xerox Research Centre Europe, France)
Nello Cristianini (University of California, Davis , USA)
Aron Culotta (University of Massachusetts Amherst, USA)
Walter Daelemans (University of Antwerp, Netherlands)
Marcello Federico (ITC-Irst, Italy)
Attilio Giordana (University of Turin, Italy)
Marko Grobelink (J. Stefan Institute, Ljubljana, Slovenia)
Fred Jelinek (CLSP John Hopkins University, USA)
Thorsten Joachims (Cornell University, USA)
Lluis Marquez (Universitat Politecnica de Catalunya, Spain)
Giuseppe Riccardi (University of Trento, Italy)
Dan Roth (University of Illinois at Urbana-Champaign, USA)
Alex Smola (National ICT Australia, ANU)
Carlo Strapparava (ITC-Irst, Italy)
John Shawe Taylor (University of Southampton, UK)
Ben Taskar (University of California at Berkeley , USA)
Dimitry Zelenko (SRA international inc., USA)

WORKSHOP WEBSITE:

http://ai-nlp.info.uniroma2.it/eacl2006-ws10/

i

INTRODUCTION

Language processing largely deals with multidimensional and highly structured forms of
information. Indeed, from the morphological up to the deep syntactic and semantic levels,
linguistic information is often described by structured data, making the learning of the
associated linguistic tasks more complex.

Traditional methods for the design of language applications involve the extraction of
features that map data representations to vectors of attributes/values. Unfortunately, there
is no methodology that helps in this feature modeling problem. Consequently, in order to
encode structured data, the designer has to rely on his/her deep knowledge, expertise and
intuition about the linguistic phenomenon associated with the target structures.

Recently, approaches that attempt to alleviate such modeling complexity by directly
encoding structured data have been developed. Among other, kernel methods and
conditional random fields provide interesting properties. The former use kernel functions
to implicitly define richer feature spaces (e.g. substructure spaces) whereas the latter allow
the designer to directly encode the probabilistic model on the structures. The promising
aspects of such approaches open new research directions:

(a) the study of their impact on the modeling of diverse natural language structures,

(b) their comparative assessment with traditional attribute-value models, and

(c) the investigation of techniques which aim to improve their efficiency.

Additionally, the complementary study of mapping the classification function in structured
spaces is very interesting. Classification functions can be designed to output structured
data instead of simple values. In other words, the output values may be interpreted as
macro-labels which describe configurations and dependencies over simpler components, e.g.
parse trees or semantic structures.

The workshop was held on April 3, 2006, just preceding the 11th Conference of the
European Chapter of the Association for Computational Linguistics. Its primary objective
was to favor the discussing on the above topics. For this purpose, researchers from different
communities such as machine learning, computational linguistics, information retrieval and
data mining were invited to partecipate at the workshop to promote the discussion and
development of new ideas and methods for the effective exploitation of ”structured data”
for natural language learning and applications.

Regarding these latter, Coreference Resolution, Information/Relation Extraction,
Machine Translation, Multilingual Corpus Alignment, Named Entity Recognition, Question
Classification, Semantic Role Labeling, Semantic Parsing, Syntactic Parsing and Parse Re-
Ranking, Text Categorization and Word Sense Disambiguation were considered particularly
interesting for the workshop discussion. Moreover, machine learning approaches based
on Kernel Methods, Maximal Margin Classifiers, Conditional Random Fields and Support
Vector Machines (SVMs) were judged those most promising to deal with structured data.

This volume contains twelve papers accepted for presentation at the workshop. We
received a rather large number of high quality papers. Consequently, due to the restriction
imposed by one day workshop, we decided to divide the papers in two categories: those
reporting almost conclusive results and/or theories supported by a sound experimentation
(full papers) and those proposing preliminary results and/or theories that would have been
received significant benefits from a more extensive experimentation (position papers).

ii

The program committee accepted eight submissions as full papers (about 50% of
acceptance rate) and others four as position papers. The workshop papers deal with
several interesting aspects of structured data in natural language learning. From a machine
learning perspective, the contributions on: kernel methods within SVMs, probabilistic
approaches and unsupervised methods, e.g. latent semantic analysis, support an interesting
comparative discussion. Regarding the NLP tasks, the papers touch almost all the targeted
applications: Named Entity recognition, Relation Extraction, Discourse Parsing, Semantic
Role Labeling, Prepositional Phrase Attachment problem, Text Categorization, Machine
Translation and Question Answering.

We believe that the workshop outcome will be helpful to increase the knowledge about
advanced machine learning techniques in the modeling of structured data for Natural
Language Applications.

We gratefully acknowledge all the members of the Program Committee for the excellent
work done in reviewing and commenting the individual submissions within the very short
time.

Roberto Basili
Alessandro Moschitti

Rome, February 15th, 2006.

iii

WORKSHOP PROGRAM

Monday, April 3

9:00-9:15 WELCOME AND INTRODUCTORY NOTES

FULL PAPER SESSION

9:15-9:40 Maximum Entropy Tagging with Binary and Real-Valued Features
Vanessa Sandrini, Marcello Federico and Mauro Cettolo

9:40-10:05 Constraint Satisfaction Inference:
Non-probabilistic Global Inference for Sequence Labelling
Sander Canisius, Antal van den Bosch and Walter Daelemans

10:05-10:30 Decomposition Kernels for Natural Language Processing
Fabrizio Costa, Sauro Menchetti, Alessio Ceroni, Andrea Passerini and Paolo Frasconi

10:30-11:00 COFFEEBREAK

11:05-11:50 Invited Speaker

POSITION PAPER SESSION

11:50-12:10 A Multiclassifier based Document Categorization System:
profiting from the Singular Value Decomposition Dimensionality Reduction Technique
Ana Zelaia, Ĩnaki Alegria, Olatz Arregi and Basilio Sierra

12:10-12:30 Discourse Parsing: Learning FOL Rules based on Rich Verb Semantic Representations
to automatically label Rhetorical Relations
Rajen Subba, Barbara Di Eugenio and Su Nam Kim

12:30-14:00 LAUNCH BREAK

FULL PAPER SESSION

14:00-14:25 Reranking Translation Hypotheses Using Structural Properties
Săsa Hasan, Oliver Bender, and Hermann Ney

14:25-14:50 Tree Kernel Engineering in Semantic Role Labeling Systems
Alessandro Moschitti, Daniele Pighin and Roberto Basili

14:50-15:15 Syntagmatic Kernels: a Word Sense Disambiguation Case Study
Claudio Giuliano, Alfio Gliozzo and Carlo Strapparava

iv

POSITION PAPER SESSION

15:15-15:35 Learning to Identify Definitions using Syntactic Features
Ismail Fahmi and Gosse Bouma

15:35-15:55 An Ontology-Based Approach to Disambiguation of Semantic Relations
Tine Lassen and Thomas Vestskov Terney

15:55-16:30 COFFEEBREAK

FULL PAPER SESSION

16:30-16:55 Towards Free-text Semantic Parsing:
A Unified Framework Based on FrameNet, VerbNet and PropBank
Ana-Maria Giuglea and Alessandro Moschitti

16:55-17:20 Constructing a Rule Based Naming System for Thai Names Using the Concept of Ontologies
Chakkrit Snae

17:20-18:00 CONCLUSIVE REMARKS AND DISCUSSION

v

Table of Contents

Introduction . i

Workshop Program . iv

Table of Contents . vi

Maximum Entropy Tagging with Binary and Real-Valued Features
Vanessa Sandrini, Marcello Federico and Mauro Cettolo . 1

Constraint Satisfaction Inference: Non-probabilistic Global Inference for Sequence Labelling
Sander Canisius, Antal van den Bosch and Walter Daelemans . 9

Decomposition Kernels for Natural Language Processing
Fabrizio Costa, Sauro Menchetti, Alessio Ceroni, Andrea Passerini and
Paolo Frasconi . 17

A Multiclassifier based Document Categorization System: profiting from the Singular Value
Decomposition Dimensionality Reduction Technique

Ana Zelaia, Iñaki Alegria, Olatz Arregi and Basilio Sierra . 25

Discourse Parsing: Learning FOL Rules based on Rich Verb Semantic Representations
to automatically label Rhetorical Relations

Rajen Subba, Barbara Di Eugenio and Su Nam Kim . 33

Reranking Translation Hypotheses Using Structural Properties
Sas̆a Hasan, Oliver Bender, and Hermann Ney . 41

Tree Kernel Engineering in Semantic Role Labeling Systems
Alessandro Moschitti, Daniele Pighin and Roberto Basili . 49

Syntagmatic Kernels: a Word Sense Disambiguation Case Study
Claudio Giuliano, Alfio Gliozzo and Carlo Strapparava . 57

Learning to Identify Definitions using Syntactic Features
Ismail Fahmi and Gosse Bouma . 64

An Ontology-Based Approach to Disambiguation of Semantic Relations
Tine Lassen and Thomas Vestskov Terney. .72

Towards Free-text Semantic Parsing: A Unified Framework Based on FrameNet, VerbNet and
PropBank

Ana-Maria Giuglea and Alessandro Moschitti . 78

Constructing a Rule Based Naming System for Thai Names Using the Concept of Ontologies
Chakkrit Snae . 86

Author Index . 95

vi

Maximum Entropy Tagging with Binary and Real-Valued Features

Vanessa Sandrini Marcello Federico Mauro Cettolo

ITC-irst - Centro per la Ricerca Scientifica e Tecnologica

38050 Povo (Trento) - ITALY

{surname}@itc.it

Abstract

Recent literature on text-tagging reported

successful results by applying Maximum

Entropy (ME) models. In general, ME

taggers rely on carefully selected binary

features, which try to capture discrimi-

nant information from the training data.

This paper introduces a standard setting

of binary features, inspired by the litera-

ture on named-entity recognition and text

chunking, and derives corresponding real-

valued features based on smoothed log-

probabilities. The resulting ME models

have orders of magnitude fewer parame-

ters. Effective use of training data to esti-

mate features and parameters is achieved

by integrating a leaving-one-out method

into the standard ME training algorithm.

Experimental results on two tagging tasks

show statistically significant performance

gains after augmenting standard binary-

feature models with real-valued features.

1 Introduction

The Maximum Entropy (ME) statistical frame-

work (Darroch and Ratcliff, 1972; Berger et al.,

1996) has been successfully deployed in several

NLP tasks. In recent evaluation campaigns, e.g.

DARPA IE and CoNLL 2000-2003, ME models

reached state-of-the-art performance on a range of

text-tagging tasks.

With few exceptions, best ME taggers rely on

carefully designed sets of features. Features cor-

respond to binary functions, which model events,

observed in the (annotated) training data and sup-

posed to be meaningful or discriminative for the

task at hand. Hence, ME models result in a log-

linear combination of a large set of features, whose

weights can be estimated by the well known Gen-

eralized Iterative Scaling (GIS) algorithm by Dar-

roch and Ratcliff (1972).

Despite ME theory and its related training algo-

rithm (Darroch and Ratcliff, 1972) do not set re-

strictions on the range of feature functions1 , pop-

ular NLP text books (Manning and Schutze, 1999)

and research papers (Berger et al., 1996) seem

to limit them to binary features. In fact, only

recently, log-probability features have been de-

ployed in ME models for statistical machine trans-

lation (Och and Ney, 2002).

This paper focuses on ME models for two text-

tagging tasks: Named Entity Recognition (NER)

and Text Chuncking (TC). By taking inspiration

from the literature (Bender et al., 2003; Borth-

wick, 1999; Koeling, 2000), a set of standard bi-

nary features is introduced. Hence, for each fea-

ture type, a corresponding real-valued feature is

developed in terms of smoothed probability distri-

butions estimated on the training data. A direct

comparison of ME models based on binary, real-

valued, and mixed features is presented. Besides,

performance on the tagging tasks, complexity and

training time by each model are reported. ME es-

timation with real-valued features is accomplished

by combining GIS with the leave-one-out method

(Manning and Schutze, 1999).

Experiments were conducted on two publicly

available benchmarks for which performance lev-

els of many systems are published on theWeb. Re-

sults show that better ME models for NER and TC

can be developed by integrating binary and real-

valued features.

1Darroch and Ratcliff (1972) show how any set of real-
valued feature functions can be properly handled.

1

2 ME Models for Text Tagging

Given a sequence of words wT
1 = w1, . . . , wT and

a set of tags C, the goal of text-tagging is to find
a sequence of tags cT

1 = c1, . . . , cT which maxi-

mizes the posterior probability, i.e.:

ĉT
1 = arg max

cT

1

p(cT
1 | wT

1). (1)

By assuming a discriminative model, Eq. (1) can

be rewritten as follows:

ĉT
1 = arg max

cT

1

T∏

t=1

p(ct | ct−1
1 , wT

1), (2)

where p(ct|c
t−1
1 , wT

1) is the target conditional
probability of tag ct given the context (c

t−1
1 , wT

1),
i.e. the entire sequence of words and the full se-

quence of previous tags. Typically, independence

assumptions are introduced in order to reduce the

context size. While this introduces some approxi-

mations in the probability distribution, it consid-

erably reduces data sparseness in the sampling

space. For this reason, the context is limited here

to the two previous tags (ct−1
t−2) and to four words

around the current word (wt+2
t−2). Moreover, limit-

ing the context to the two previous tags permits to

apply dynamic programming (Bender et al., 2003)

to efficiently solve the maximization (2).

Let y = ct denote the class to be guessed (y ∈ Y)
at time t and x = ct−1

t−2, w
t+2
t−2 its context (x ∈ X).

The generic ME model results:

pλ(y | x) =
exp(

∑n
i=1 λifi(x, y))∑

y′ exp(
∑n

i=1 λifi(x, y′))
. (3)

The n feature functions fi(x, y) represent any kind
of information about the event (x, y) which can be
useful for the classification task. Typically, binary

features are employed which model the verifica-

tion of simple events within the target class and

the context.

InMikheev (1998), binary features for text tagging

are classified into two broad classes: atomic and

complex. Atomic features tell information about

the current tag and one single item (word or tag) of

the context. Complex features result as a combina-

tion of two or more atomic features. In this way, if

the grouped events are not independent, complex

features should capture higher correlations or de-

pendencies, possibly useful to discriminate.

In the following, a standard set of binary fea-

tures is presented, which is generally employed

for text-tagging tasks. The reader familiar with the

topic can directly check this set in Table 1.

3 Standard Binary Features

Binary features are indicator functions of specified

events of the sample space X × Y . Hence, they
take value 1 if the event occurs or 0 otherwise. For

the sake of notation, the feature name denotes the

type of event, while the index specifies its param-

eters. For example:

Orthperson,Cap,−1(x, y)

corresponds to an Orthographic feature which is

active if and only if the class at time t is person

and the word at time t−1 in the context starts with
capitalized letter.

3.1 Atomic Features

Lexical features These features model co-

occurrences of classes and single words of the con-

text. Lexical features are defined on a window

of ±2 positions around the current word. Lexical
features are denoted by the name Lex and indexed

with the triple c, w, d which fixes the current class,

i.e. ct = c, the identity and offset of the word in

the context, i.e. wt+d = w. Formally, the feature

is computed by:

Lex c,w,d(x, y) =̂ δ(ct = c) · δ(wt+d = w).

For example, the lexical feature for word

Verona, at position t with tag loc (location) is:

Lexloc,Verona,0(x, y) = δ(ct = loc) ·

·δ(wt = Verona).

Lexical features might introduce data sparseness

in the model, given that in real texts an impor-

tant fraction of words occur only once. In other

words, many words in the test set will have no

corresponding features-parameter pairs estimated

on the training data. To cope with this problem,

all words observed only once in the training data

were mapped into the special symbol oov.

Syntactic features They model co-occurrences

of the current class with part-of-speech or chunk

tags of a specific position in the context. Syntactic

features are denoted by the name Syn and indexed

with a 4-tuple (c, Pos, p, d) or (c, Chnk, p, d),

2

Name Index Definition

Lex c, w, d δ(ct = c) · δ(wt+d = w), d ∈ Z

Syn c, T, p, d δ(ct = c) · δ(T(wt+d) = p) , T ∈ {Pos, Chnk}, d ∈ Z

Orth c, F, d δ(ct = c) · F(wt+d) , F ∈ {IsCap, IsCAP}, d ∈ Z

Dict c, L, d δ(ct = c) · InList(L,wt+d), d ∈ Z

Tran c, c′, d δ(ct = c) · δ(ct−d = c′) d ∈ N+

Lex+ c, s, k, ws+k−1
s

∏s+k−1
d=s Lexc,wd,d(x, y), k ∈ N+, s ∈ Z

Syn+ c, T, s, k, ps+k−1
s

∏s+k−1
d=s Sync,T,pd,d(x, y), k ∈ N+, s ∈ Z

Orth+ c, F, k, b+k
−k δ(ct = c) ·

∏k
d=−k δ(Orthc,F,d(x, y) = bd) , bd ∈ {0, 1}, k ∈ N+

Dict+ c, L, k, b+k
−k δ(ct = c) ·

∏k
d=−k δ(Dictc,L,d(x, y) = bd) , bd ∈ {0, 1}, k ∈ N+

Tran+ c, k, ck
1

∏k
d=1′ Tranc,cd,d(x, y) k ∈ N+

Table 1: Standard set of binary features for text tagging.

which fixes the class ct, the considered syntactic

information, and the tag and offset within the con-

text. Formally, these features are computed by:

Sync,Pos,p,d(x, y)=̂δ(ct = c) · δ(Pos(wt+d) = p)

Sync,Chnk,p,d(x, y)=̂δ(ct = c)·δ(Chnk(wt+d) = p).

Orthographic features These features model

co-occurrences of the current class with surface

characteristics of words of the context, e.g. check

if a specific word in the context starts with cap-

italized letter (IsCap) or is fully capitalized

(IsCAP). In this framework, only capitalization

information is considered. Analogously to syntac-

tic features, orthographic features are defined as

follows:

Orthc,IsCap,d(x, y)=̂δ(ct = c) · IsCap(wt+d)

Orthc,IsCAP,d(x, y)=̂δ(ct = c) · IsCAP(wt+d).

Dictionary features These features check if

specific positions in the context contain words oc-

curring in some prepared list. This type of feature

results relevant for tasks such as NER, in which

gazetteers of proper names can be used to improve

coverage of the training data. Atomic dictionary

features are defined as follows:

Dictc,L,d(x, y)=̂δ(ct = c) · InList(L,wt+d)

where L is a specific pre-compiled list, and

InList is a function which returns 1 if the spec-

ified word matches one of the multi-word entries

of list L, and 0 otherwise.

Transition features Transition features model

Markov dependencies between the current tag and

a previous tag. They are defined as follows:

Tranc,c′,d(x, y)=̂δ(ct = c) · δ(ct−d = c′).

3.2 Complex Features

More complex events are defined by combining

two or more atomic features in one of two ways.

Product features take the intersection of the cor-

responding atomic events. V ector features con-

sider all possible outcomes of the component fea-

tures.

For instance, the product of 3 atomic Lexical

features, with class c, offsets−2,−1, 0, and words
v−2, v−1, v0, is:

Lex+c,−2,3,v−2,v−1,v0
(x, y)=̂

0∏

d=−2

Lexc,vd,d(x, y).

Vector features obtained from three Dictionary

features with the same class c, list L, and offsets,

respectively, -1,0,+1, are indexed over all possible

binary outcomes b−1, b0, b1 of the single atomic

features, i.e.:

Dict+c,L,1,b−1,b0,b+1
(x, y)=̂δ(ct = c)×

1∏

d=−1

δ(Dictc,L,d(x, y) = bd).

Complex features used in the experiments are de-

scribed in Table 1.

The use of complex features significantly in-

creases the model complexity. Assuming that

there are 10, 000 words occurring more than once
in the training corpus, the above lexical feature po-

tentially adds O(|C|1012) parameters!

As complex binary features might result pro-

hibitive from a computational point of view, real-

valued features should be considered as an alter-

native.

3

Feature Index Probability Distribution

Lex d p(ct | wt+d)
Syn T, d p(ct | T(wt+d))
Orth F, d p(ct | F(wt+d))
Dict List, d p(ct | IsIn(List, wt+d))
Tran d p(ct | ct−d)

Lex+ s, k p(ct | wt+s, .., wt+s+k−1

Syn+ T, s, k p(ct | T(wt+s, . . . , wt+s+k−1))
Orth+ k, F p(ct | F(wt−k), . . . , F(wt+k))
Dict+ k,L p(ct | InList(L, wt−k), . . . , InList(L, wt+k))
Tran+ k p(ct | ct−k, . . . , ct+k))

Table 2: Corresponding standard set of real-values features.

4 Real-valued Features

A binary feature can be seen as a probability mea-

sure with support set made of a single event. Ac-

cording to this point of view, we might easily ex-

tend binary features to probability measures de-

fined over larger event spaces. In fact, it results

convenient to introduce features which are log-

arithms of conditional probabilities. It can be

shown that in this way linear constraints of the

MEmodel can be interpreted in terms of Kullback-

Leibler distances between the target model and the

conditional distributions (Klakow, 1998).

Let p1(y|x), p2(y|x), . . . , pn(y|x) be n different

conditional probability distributions estimated on

the training corpus. In our framework, each con-

ditional probability pi is associated to a feature fi

which is defined over a subspace [X]i × Y of the
sample space X × Y . Hence, pi(y|x) should be
read as a shorthand of p(y | [x]i).
The corresponding real-valued feature is:

fi(x, y) = log pi(y | x). (4)

In this way, the ME in Eq. (3) can be rewritten as:

pλ(y|x) =

∏n
i pi(y|x)λi

∑
y
′

∏
i pi(y

′ |x)λi

. (5)

According to the formalism adopted in Eq. (4),

real-valued features assume the following form:

fi(ct, c
t−1
t−2, w

t+2
t−2) = log pi(ct | ct−1

t−2, w
t+2
t−2). (6)

For each so far presented type of binary feature,

a corresponding real-valued type can be easily de-

fined. The complete list is shown in Table 2. In

general, the context subspace was defined on the

basis of the offset parameters of each binary fea-

ture. For instance, all lexical features selecting

two words at distances -1 and 0 from the current

position t are modeled by the conditional distri-

bution p(ct | wt−1, wt). While distributions of
lexical, syntactic and transition features are con-

ditioned on words or tags, dictionary and ortho-

graphic features are conditioned on binary vari-

ables.

An additional real-valued feature that was em-

ployed is the so called prior feature, i.e. the prob-

ability of a tag to occur:

Prior(x, y) = log p(ct)

A major effect of using real-valued features is

the drastic reduction of model parameters. For

example, each complex lexical features discussed

before introduce just one parameter. Hence, the

small number of parameters eliminates the need

of smoothing the ME estimates.

Real-valued features present some drawbacks.

Their level of granularity, or discrimination, might

result much lower than their binary variants. For

many features, it might result difficult to compute

reliable probability values due to data sparseness.

For the last issue, smoothing techniques devel-

oped for statistical language models can be applied

(Manning and Schutze, 1999).

5 Mixed Feature Models

This work, beyond investigating the use of real-

valued features, addresses the behavior of models

combining binary and real-valued features. The

reason is twofold: on one hand, real-valued fea-

tures allow to capture complex information with

fewer parameters; on the other hand, binary fea-

tures permit to keep a good level of granularity

over salient characteristics. Hence, finding a com-

promise between binary and real-valued features

4

might help to develop ME models which better

trade-off complexity vs. granularity of informa-

tion.

6 Parameter Estimation

From the duality of ME and maximum likeli-

hood (Berger et al., 1996), optimal parameters

λ∗ for model (3) can be found by maximizing

the log-likelihood function over a training sample

{(xt, yt) : t = 1, . . . ,N}, i.e.:

λ∗ = arg max
λ

N∑

t=1

log pλ(yt|xt). (7)

Now, whereas binary features take only two values

and do not need any estimation phase, conditional

probability features have to be estimated on some

data sample. The question arises about how to ef-

ficiently use the available training data in order to

estimate the parameters and the feature distribu-

tions of the model, by avoiding over-fitting.

Two alternative techniques, borrowed from sta-

tistical language modeling, have been consid-

ered: the Held-out and the Leave-one-out methods

(Manning and Schutze, 1999).

Held-out method. The training sample S is split
into two parts used, respectively, to estimate the

feature distributions and the ME parameters.

Leave-one-out. ME parameters and feature dis-

tributions are estimated over the same sample S.
The idea is that for each addend in eq. (7), the cor-

responding sample point (xt, yt) is removed from
the training data used to estimate the feature distri-

butions of the model. In this way, it can be shown

that occurrences of novel observations are simu-

lated during the estimation of the ME parameters

(Federico and Bertoldi, 2004).

In our experiments, language modeling smooth-

ing techniques (Manning and Schutze, 1999) were

applied to estimate feature distributions pi(y|x).
In particular, smoothing was based on the dis-

counting method in Ney et al. (1994) combined to

interpolation with distributions using less context.

Given the small number of smoothing parameters

involved, leave-one-out probabilities were approx-

imated by just modifying count statistics on the

fly (Federico and Bertoldi, 2004). The rationale is

that smoothing parameters do not change signifi-

cantly after removing just one sample point.

For parameter estimation, the GIS algorithm

by Darroch and Ratcliff (1972) was applied. It

is known that the GIS algorithm requires feature

functions fi(x, y) to be non-negative. Hence, fea-
tures were re-scaled as follows:

fi(x, y) = log pi(y|x) + log
1 + ε

min pi

, (8)

where ε is a small positive constant and the de-

nominator is a constant term defined by:

min pi = min
(x,y)∈S

pi(y|x). (9)

The factor (1 + ε) was introduced to ensure that
real-valued features are always positive. This con-

dition is important to let features reflect the same

behavior of the conditional distributions, which

assign a positive probability to each event.

It is easy to verify that this scaling operation

does not affect the original model but only impacts

on the GIS calculations. Finally, a slack feature

was introduced by the algorithm to satisfy the con-

straint that all features sum up to a constant value

(Darroch and Ratcliff, 1972).

7 Experiments

This section presents results of MEmodels applied

to two text-tagging tasks, Named Entity Recogni-

tion (NER) and Text Chunking (TC).

After a short introduction to the experimen-

tal framework, the detailed feature setting is pre-

sented. Then, experimental results are presented

for the following contrastive conditions: binary

versus real-valued features, training via held-out

versus leave-one-out, atomic versus complex fea-

tures.

7.1 Experimental Set-up

Named Entity Recognition English NER ex-

periments were carried out on the CoNLL-2003

shared task2. This benchmark is based on texts

from the Reuters Corpus which were manually

annotated with parts-of-speech, chunk tags, and

named entity categories. Four types of categories

are defined: person, organization, location and

miscellaneous, to include e.g. nations, artifacts,

etc. A filler class is used for the remaining words.

After including tags denoting the start of multi-

word entities, a total of 9 tags results. Data are

partitioned into training (200K words), develop-

ment (50K words), and test (46K words) samples.

2Data and results in http://cnts.uia.ac.be/conll2003/ner.

5

Text Chunking English TC experiments were

conducted on the CoNLL-2000 shared task3.

Texts originate from the Wall Street Journal and

are annotated with part-of-speech tags and chunks.

The chunk set consists of 11 syntactic classes. The

set of tags which also includes start-markers con-

sists of 23 classes. Data is split into training (210K

words) and test (47K words) samples.

Evaluation Tagging performance of both tasks

is expressed in terms of F-score, namely the har-

monic mean of precision and recall. Differences in

performance have been statistically assessed with

respect to precision and recall, separately, by ap-

plying a standard test on proportions, with signif-

icance levels α = 0.05 and α = 0.1. Henceforth,
claimed differences in precision or recall will have

their corresponding significance level shown in

parenthesis.

7.2 Settings and Baseline Models

Feature selection and setting for ME models is an

art. In these experiments we tried to use the same

set of features with minor modifications across

both tasks. In particular, used features and their

settings are shown in Table 3.

Training of models with GIS and estimation

of feature distributions used in-house developed

toolkits. Performance of binary feature models

was improved by smoothing features with Gaus-

sian priors (Chen and Rosenfeld, 1999) with mean

zero and standard deviation σ = 4. In general,
tuning of models was carried out on a development

set.

Most of the comparative experiments were per-

formed on the NER task. Three baseline models

using atomic features Lex, Syn, and Tran were

investigated first: model BaseBin, with all binary

features; model BaseReal, with all real-valued fea-

tures plus the prior feature; model BaseMix, with

real-valued Lex and binary Tran and Syn. Mod-

els BaseReal and BaseMix were trained with the

held-out method. In particular, feature distribu-

tions were estimated on the training data while ME

parameters on the development set.

7.3 Binary vs. Real-valued Features

The first experiment compares performance of the

baseline models on the NER task. Experimental

results are summarized in Table 4. Models Base-

Bin, BaseReal, and BaseMix achieved F-scores of

3Data and results in http://cnts.uia.ac.be/conll2000/chunking.

Model ID Num P% R% F-score

BaseBin 580K 78.82 75.62 77.22

BaseReal 10 79.74 74.15 76.84

BaseMix 753 78.90 75.85 77.34

Table 4: Performance of baseline models on the

NER task. Number of parameters, precision, re-

call, and F-score are reported for each model.

Model Methods P% R% F-score

BaseMix Held-Out 78.90 75.85 77.34

BaseMix L-O-O 80.64 76.40 78.46

Table 5: Performance of mixed feature models

with two different training methods.

77.22, 76.84, and 77.34. Statistically meaning-

ful differences were in terms of recall, between

BaseBin and BaseReal (α = 0.1), and between
BaseMix and BaseReal (α = 0.05).

Despite models BaseMix and BaseBin perform

comparably, the former has many fewer parame-

ters, i.e. 753 against 580,000. In fact, BaseMix re-

quires storing and estimating feature distributions,

which is however performed at a marginal compu-

tational cost and off-line with respect to GIS train-

ing.

7.4 Training with Mixed Features

An experiment was conducted with the BaseMix

model to compare the held-out and leave-one-out

training methods. Results in terms of F-score are

reported in Table 5. By applying the leave-one-

out method F-score grows from 77.34 to 78.46,

with a meaningful improvement in recall (α =
0.05). With respect to models BaseBin and Base-
Real, leave-one-out estimation significantly im-

proved precision (α = 0.05).

In terms of training time, ME models with real-

valued features took significantly more GIS iter-

ations to converge. Figures of cost per iteration

and number of iterations are reported in Table 6.

(Computation times are measured on a single CPU

Pentium-4 2.8GHz.) Memory size of the training

process is instead proportional to the number n of

parameters.

7.5 Complex Features

A final set of experiments aims at comparing the

baseline MEmodels augmented with complex fea-

tures, again either binary only (model FinBin),

6

Feature Index NE Task Chunking Task

Lex c, w, d N(w) > 1,−2 ≤ d ≤ +2 −2 ≤ d ≤ +2
Syn c, T, p, d T ∈ {Pos, Chnk}, d = 0 T = Pos,−2 ≤ d ≤ +2
Tran c, c′, d d = −2,−1 d = −2,−1

Lex+ c, s, k, ws+k−1
s s = −1, 0, k = 1 s = −1, 0 k = 1

Syn+ c, T, s, k, ps+k−1
s not used s = −1, 0 k = 1

Orth+ c, k, F, b+k
−k

F = {Cap, CAP}, k = 2 F = Cap, k = 1

Dict+ c, k, L, b+k
−k k = 3L = {LOC, PER, ORG, MISC} not used

Tran+ c, k, ck
1 k = 2 k = 2

Table 3: Setting used for binary and real-valued features in the reported experiments.

Model Single Iteration Iterations Total

BaseBin 54 sec 750 ≈ 11 h
BaseReal 9.6 sec 35,000 ≈ 93 h
BaseMix 42 sec 4,000 ≈ 46 h

Table 6: Computational cost of parameter estima-

tion by different baseline models.

real-valued only (FinReal), or mixed (FinMix).

Results are provided both for NER and TC.

This time, compared models use different fea-

ture settings. In fact, while previous experiments

aimed at comparing the same features, in either

real or binary form, these experiments explore al-

ternatives to a full-fledged binary model. In par-

ticular, real-valued features are employed whose

binary versions would introduce a prohibitively

large number of parameters. Parameter estima-

tion of models including real-valued features al-

ways applies the leave-one-out method.

For the NER task, model FinBin adds Orth+

and Dict+; FinReal adds Lex+, Orth+ and

Dict+; and, FinMix adds real-valued Lex+ and

binary-valued Orth+ and Dict+.

In the TC task, feature configurations are as fol-

lows: FinBin uses Lex, Syn, Tran, and Orth+;

FinReal uses Lex, Syn, Tran, Prior, Orth+,

Lex+, Syn+, Tran+; and, finally, FinMix uses

binary Syn, Tran, Orth+ and real-valued Lex,

Lex+, Syn+.

Performance of the models on the two tasks are

reported in Table 7 and Table 8, respectively.

In the NER task, all final models outperform the

baseline model. Improvements in precision and

recall are all significant (α = 0.05). Model Fin-
Mix improves precision with respect to model Fin-

Bin (α = 0.05) and requires two order of magni-
tude fewer parameters.

Model Num P% R% F-score

FinBin 673K 81.92 80.36 81.13

FinReal 19 83.58 74.03 78.07

FinMix 3K 84.34 80.38 82.31

Table 7: Results with complex features on the

NER task.

Model Num P% R% F-score

FinBin 2M 91.04 91.48 91.26

FinReal 19 88.73 90.58 89.65

FinMix 6K 91.93 92.24 92.08

Table 8: Results with complex features on the TC

task.

In the TC task, the same trend is observed.

Again, best performance is achieved by the model

combining binary and real-valued features. In par-

ticular, all observable differences in terms of pre-

cision and recall are significant (α = 0.05).

8 Discussion

In summary, this paper addressed improvements to

ME models for text tagging applications. In par-

ticular, we showed how standard binary features

from the literature can be mapped into correspond-

ing log-probability distributions. ME training with

the so-obtained real-valued features can be accom-

plished by combining the GIS algorithm with the

leave-one-out or held-out methods.

With respect to the best performing systems at

the CoNLL shared tasks, our models exploit a rel-

atively smaller set of features and perform signifi-

cantly worse. Nevertheless, performance achieved

by our system are comparable with those reported

by other ME-based systems taking part in the eval-

uations.

Extensive experiments on named-entity recog-

7

nition and text chunking have provided support to

the following claims:

• The introduction of real-valued features dras-
tically reduces the number of parameters of

the ME model with a small loss in perfor-

mance.

• The leave-one-out method is significantly
more effective than the held-out method for

training ME models including real-valued

features.

• The combination of binary and real-valued
features can lead to better MEmodels. In par-

ticular, state-of-the-art ME models with bi-

nary features are significantly improved by

adding complex real-valued features which

model long-span lexical dependencies.

Finally, the GIS training algorithm does not

seem to be the optimal choice for ME models in-

cluding real-valued features. Future work will in-

vestigate variants of and alternatives to the GIS

algorithm. Preliminary experiments on the Base-

Real model showed that training with the Simplex

algorithm (Press et al., 1988) converges to simi-

lar parameter settings 50 times faster than the GIS

algorithm.

9 Acknowledgments

This work was partially financed by the Euro-

pean Commission under the project FAME (IST-

2000-29323), and by the Autonomous Province of

Trento under the the FU-PAT project WebFaq.

References

O. Bender, F. J. Och, and H. Ney. 2003. Maximum
entropy models for named entity recognition. In
Walter Daelemans and Miles Osborne, editors, Pro-
ceedings of CoNLL-2003, pages 148–151. Edmon-
ton, Canada.

A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra.
1996. A Maximum Entropy Approach to Natural
Language Processing. Computational Linguistics,
22(1):39–72.

A. Borthwick. 1999. A Maximum Entropy approach
to Named Entity Recognition. Ph.D. thesis, Com-
puter Science Department - New York University,
New York, USA.

S. Chen and R. Rosenfeld. 1999. A Gaussian prior
for smoothing maximum entropy models. Techni-
cal Report CMUCS-99-108, Carnegie Mellon Uni-
versity.

J.N. Darroch and D. Ratcliff. 1972. Generalized Itera-
tive Scaling for Log-Liner models. Annals of Math-
ematical Statistics, 43:1470–1480.

M. Federico and N. Bertoldi. 2004. Broadcast news
lm adaptation over time. Computer Speech and Lan-
guage, 18(4):417–435, October.

D. Klakow. 1998. Log-linear interpolation of language
models. In Proceedings of the International Confer-
ence of Spoken Language P rocessing (ICSLP), Sid-
ney, Australia.

R. Koeling. 2000. Chunking with maximum entropy
models. In Proceedings of CoNLL-2000, pages
139–141, Lisbon, Portugal.

C. D. Manning and H. Schutze. 1999. Foundations
of Statistical Natural Language Processing. MIT
Press.

A. Mikheev. 1998. Feature lattices for maximum en-
tropy modelling. In COLING-ACL, pages 848–854.

H. Ney, U. Essen, and R. Kneser. 1994. On structur-
ing probabilistic dependences in stochastic language
modeling. Computer Speech and Language, 8(1):1–
38.

F.J. Och and H. Ney. 2002. Discriminative training and
maximum entropy models for statistical machin e
translation. In ACL02: Proceedings of the 40th An-
nual Meeting of the Association for Computational
Linguistics, pages 295–302, PA, Philadelphia.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling. 1988. Numerical Recipes in C. Cam-
bridge University Press, New York, NY.

8

Constraint Satisfaction Inference:
Non-probabilistic Global Inference for Sequence Labelling

Sander Canisius and Antal van den Bosch

ILK / Language and Information Science

Tilburg University

Tilburg, The Netherlands

{S.V.M.Canisius,Antal.vdnBosch@uvt.nl}@uvt.nl

Walter Daelemans

CNTS, Department of Linguistics

University of Antwerp

Antwerp, Belgium

Walter.Daelemans@ua.ac.be

Abstract

We present a new method for performing

sequence labelling based on the idea of us-

ing a machine-learning classifier to gen-

erate several possible output sequences,

and then applying an inference proce-

dure to select the best sequence among

those. Most sequence labelling methods

following a similar approach require the

base classifier to make probabilistic pre-

dictions. In contrast, our method can

be used with virtually any type of clas-

sifier. This is illustrated by implement-

ing a sequence classifier on top of a (non-

probabilistic) memory-based learner. In

a series of experiments, this method is

shown to outperform two other methods;

one naive baseline approach, and another

more sophisticated method.

1 Introduction

In machine learning for natural language process-

ing, many diverse tasks somehow involve pro-

cessing of sequentially-structured data. For ex-

ample, syntactic chunking, grapheme-to-phoneme

conversion, and named-entity recognition are all

usually reformulated as sequence labelling tasks:

a task-specific global unit, such as a sentence or a

word, is divided into atomic sub-parts, e.g. word

or letters, each of which is separately assigned a

label. The concatenation of those labels forms the

eventual output for the global unit.

More formally, we can define a sequence la-

belling task as a tuple (x,y, `). The goal is to map

an input vector x = 〈x1, x2, . . . , xn〉 of tokens to

an output sequence y = 〈y1, y2, . . . , yn〉 of labels.

The possible labels for each token are specified by

a finite set `, that is, yi ∈ `,∀i.

In most real-world sequence labelling tasks, the

values of the output labels are sequentially cor-

related. For machine learning approaches to se-

quence labelling this implies that classifying each

token separately without considering the labels as-

signed to other tokens in the sequence may lead

to sub-optimal performance. Ideally, the complex

mapping of the entire input sequence to its corre-

sponding output sequence is considered one clas-

sification case; the classifier then has access to all

information stored in the sequence. In practise,

however, both input and output sequences are far

too sparse for such classifications to be performed

reliably.

A popular approach to circumvent the issues

raised above is what we will refer to as the clas-

sification and inference approach, covering tech-

niques such as hidden markov models and condi-

tional random fields (Lafferty et al., 2001). Rather

than having a token-level classifier make local de-

cisions independently of the rest of the sequence,

the approach introduces an inference procedure,

operating on the level of the sequence, using class

likelihoods estimated by the classifier to optimise

the likelihood of the entire output sequence.

A crucial property of most of the classification

and inference techniques in use today is that the

classifier used at the token level must be able to

estimate the likelihood for each potential class la-

bel. This is in contrast with the more common

view of a classifier having to predict just one class

label for an instance which is deemed most opti-

mal. Maximum-entropy models, which are used in

many classification and inference techniques, have

this property; they model the conditional class dis-

tribution. In general, this is the case for all prob-

abilistic classification methods. However, many

general-purpose machine learning techniques are

9

not probabilistic. In order to design inference pro-

cedures for those techniques, other principles than

probabilistic ones have to be used.

In this paper, we propose a non-probabilistic in-

ference procedure that improves performance of a

memory-based learner on a wide range of natural-

language sequence processing tasks. We start

from a technique introduced recently by Van den

Bosch and Daelemans (2005), and reinterpret it as

an instance of the classification and inference ap-

proach. Moreover, the token-level inference pro-

cedure proposed in the original work is replaced

by a new procedure based on principles of con-

straint satisfaction that does take into account the

entire sequential context.

The remainder of this paper is structured as fol-

lows. Section 2 introduces the theoretical back-

ground and starting point of the work presented in

this paper: the trigram method, and memory-based

learning. Next, the new constraint-satisfaction-

based inference procedure for class trigrams is

presented in Section 3. Experimental comparisons

of a non-sequence-aware baseline classifier, the

original trigram method, and the new classification

and inference approach on a number of sequence

labelling tasks are presented in Section 4 and dis-

cussed in Section 5. Finally, our work is compared

and contrasted with some related approaches in

Section 6, and conclusions are drawn in Section 7.

2 Theoretical background

2.1 Class Trigrams

A central weakness of approaches considering

each token of a sequence as a separate classifica-

tion case is their inability to coordinate labels as-

signed to neighbouring tokens. Due to this, invalid

label sequences, or ones that are highly unlikely

may result. Van den Bosch and Daelemans (2005)

propose to resolve parts of this issue by predict-

ing trigrams of labels as a single atomic class la-

bel, thereby labelling three tokens at once, rather

than classifying each token separately. Predict-

ing sequences of three labels at once makes sure

that at least these short subsequences are known to

be syntactically valid sequences according to the

training data.

Applying this general idea, Van den Bosch and

Daelemans (2005) label each token with a com-

plex class label composed of the labels for the pre-

ceding token, the token itself, and the one follow-

ing it in the sequence. If such class trigrams are

assigned to all tokens in a sequence, the actual la-

bel for each of those is effectively predicted three

times, since every token but the first and last is

covered by three class trigrams. Exploiting this

redundancy, a token’s possibly conflicting predic-

tions are resolved by voting over them. If two out

of three trigrams suggest the same label, this label

is selected; in case of three different candidate la-

bels, a classifier-specific confidence metric is used

to break the tie.

Voting over class trigrams is but one possible

approach to taking advantage of the redundancy

obtained with predicting overlapping trigrams. A

disadvantage of voting is that it discards one of

the main benefits of the class trigram method: pre-

dicted class trigrams are guaranteed to be syntac-

tically correct according to the training data. The

voting technique splits up the predicted trigrams,

and only refers to their unigram components when

deciding on the output label for a token; no attempt

is made to keep the trigram sequence intact in the

final output sequence. The alternative to voting

presented later in this paper does try to retain pre-

dicted trigrams as part of the output sequence.

2.2 Memory-based learning

The name memory-based learning refers to a class

of methods based on the k-nearest neighbour rule.

At training time, all example instances are stored

in memory without attempting to induce an ab-

stract representation of the concept to be learned.

Generalisation is postponed until a test instance is

classified. For a given test instance, the class pre-

dicted is the one observed most frequently among

a number of most-similar instances in the instance

base. By only generalising when confronted with

the instance to be classified, a memory-based

learner behaves as a local model, specifically

suited for that part of the instance space that the

test instance belongs to. In contrast, learners that

abstract at training time can only generalise glob-

ally. This distinguishing property makes memory-

based learners especially suited for tasks where

different parts of the instance space are structured

according to different rules, as is often the case in

natural-language processing.

For the experiments performed in this study we

used the memory-based classifier as implemented

by TiMBL (Daelemans et al., 2004). In TiMBL,

similarity is defined by two parameters: a feature-

level similarity metric, which assigns a real-valued

10

score to pairs of values for a given feature, and a

set of feature weights, that express the importance

of the various features for determining the simi-

larity of two instances. Further details on both of

these parameters can be found in the TiMBL man-

ual. To facilitate the explanation of our inference

procedure in Section 3, we will formally define

some notions related to memory-based classifica-

tion.

The function Ns,w,k(x) maps a given instance

x to the set of its nearest neighbours; here, the

parameters s, w, and k are the similarity metric,

the feature weights, and the number k of nearest

neighbours, respectively. They will be considered

given in the following, so we will refer to this

specific instantiation simply as N(x). The func-

tion wd(c,N(x)) returns the weight assigned to

class c in the given neighbourhood according to

the distance metric d; again we will use the nota-

tion w(c,N(x)) to refer to a specific instantiation

of this function. Using these two functions, we can

formulate the nearest neighbour rule as follows.

arg max
c

w(c,N(x))

The class c maximising the above expression is

returned as the predicted class for the instance x.

3 Constraint Satisfaction Inference

A strength of the class trigram method is the guar-

antee that any trigram that is predicted by the base

classifier represents a syntactically valid subse-

quence of length three. This does not necessar-

ily mean the trigram is a correct label assignment

within the context of the current classification, but

it does reflect the fact that the trigram has been

observed in the training data, and, moreover, is

deemed most likely according to the base classi-

fier’s model. For this reason, it makes sense to try

to retain predicted trigrams in the output label se-

quence as much as possible.

The inference method proposed in this section

seeks to attain this goal by formulating the class

trigram disambiguation task as a weighted con-

straint satisfaction problem (W-CSP). Constraint

satisfaction is a well-studied research area with ap-

plications in numerous fields both inside and out-

side of computer science. Weighted constraint sat-

isfaction extends the traditional constraint satis-

faction framework with soft constraints; such con-

straints are not required to be satisfied for a so-

lution to be valid, but constraints a given solution

does satisfy, are rewarded according to weights as-

signed to them.

Formally, a W-CSP is a tuple (X,D,C,W).
Here, X = {x1, x2, . . . , xn} is a finite set of vari-

ables. D(x) is a function that maps each variable

to its domain, that is, the set of values that variable

can take on. C is the set of constraints. While

a variable’s domain dictates the values a single

variable is allowed to take on, a constraint spec-

ifies which simultaneous value combinations over

a number of variables are allowed. For a tradi-

tional (non-weighted) constraint satisfaction prob-

lem, a valid solution would be an assignment of

values to the variables that (1) are a member of the

corresponding variable’s domain, and (2) satisfy

all constraints in the set C . Weighted constraint

satisfaction, however, relaxes this requirement to

satisfy all constraints. Instead, constraints are as-

signed weights that may be interpreted as reflect-

ing the importance of satisfying that constraint.

Let a constraint c ∈ C be defined as a func-

tion that maps each variable assignment to 1 if the

constraint is satisfied, or to 0 if it is not. In addi-

tion, let W : C → IR+ denote a function that maps

each constraint to a positive real value, reflecting

the weight of that constraint. Then, the optimal so-

lution to a W-CSP is given by the following equa-

tion.

x
∗ = arg max

x

∑

c

W (c)c(x)

That is, the assignment of values to its variables

that maximises the sum of weights of the con-

straints that have been satisfied.

Translating the terminology introduced earlier

in this paper to the constraint satisfaction domain,

each token of a sequence maps to a variable, the

domain of which corresponds to the three candi-

date labels for this token suggested by the trigrams

covering the token. This provides us with a defini-

tion of the function D, mapping variables to their

domain. In the following, yi,j denotes the candi-

date label for token xj predicted by the trigram

assigned to token xi.

D(xi) = {yi−1,i, yi,i, yi+1,i}

Constraints are extracted from the predicted tri-

grams. Given the goal of retaining predicted tri-

grams in the output label sequence as much as pos-

sible, the most important constraints are simply

11

the trigrams themselves. A predicted trigram de-

scribes a subsequence of length three of the entire

output sequence; by turning such a trigram into a

constraint, we express the wish to have this trigram

end up in the final output sequence.

(xi−1, xi, xi+1) = (yi,i−1, yi,i, yi,i+1),∀i

No base classifier is flawless though, and there-

fore not all predicted trigrams can be expected to

be correct. Nevertheless, even an incorrect trigram

may carry some useful information regarding the

output sequence: one trigram also covers two bi-

grams, and three unigrams. An incorrect trigram

may still contain smaller subsequences, of length

one or two, that are correct. Therefore, all of these

are also mapped to constraints.

(xi−1, xi) = (yi,i−1, yi,i), ∀i

(xi, xi+1) = (yi,i, yi,i+1), ∀i

xi−1 = yi,i−1, ∀i

xi = yi,i, ∀i

xi+1 = yi,i+1, ∀i

With such an amount of overlapping con-

straints, the satisfaction problem obtained eas-

ily becomes over-constrained, that is, no vari-

able assignment exists that can satisfy all con-

straints without breaking another. Only one in-

correctly predicted class trigram already leads to

two conflicting candidate labels for one of the to-

kens at least. Yet, without conflicting candidate

labels no inference would be needed to start with.

The choice for the weighted constraint satisfaction

method always allows a solution to be found, even

in the presence of conflicting constraints. Rather

than requiring all constraints to be satisfied, each

constraint is assigned a certain weight; the optimal

solution to the problem is an assignment of values

to the variables that optimises the sum of weights

of the constraints that are satisfied.

Constraints can directly be traced back to a pre-

diction made by the base classifier. If two con-

straints are in conflict, the one which the classi-

fier was most certain of should preferably be sat-

isfied. In the W-CSP framework, this preference

can be expressed by weighting constraints accord-

ing to the classifier confidence for the originating

trigram. For the memory-based learner, we define

the classifier confidence for a predicted class ci

as the weight assigned to that class in the neigh-

bourhood of the test instance, divided by the total

weight of all classes.

w(ci,N(x))∑
c w(c,N(x))

Let x denote a test instance, and c∗ its pre-

dicted class. Constraints derived from this class

are weighted according to the following rules.

• for a trigram constraint, the weight is simply

the base classifier’s confidence value for the

class c∗

• for a bigram constraint, the weight is the sum

of the confidences for all trigram classes in

the nearest-neighbour set of x that assign the

same label bigram to the tokens spanned by

the constraint

• for a unigram constraint, the weight is the

sum of the confidences for all trigram classes

in the nearest-neighbour set of x that assign

the same label to the token spanned by the

constraint

4 Experiments

To thoroughly evaluate our new inference proce-

dure, and to show that it performs well over a

wide range of natural-language sequence labelling

tasks, we composed a benchmark set consisting of

six different tasks, covering four areas in natural

language processing: syntax (syntactic chunking),

morphology (morphological analysis), phonology

(grapheme-to-phoneme conversion), and informa-

tion extraction (general, medical, and biomedical

named-entity recognition). Below, the six data sets

used for these tasks are introduced briefly.

CHUNK is the task of splitting sentences into

non-overlapping syntactic phrases or constituents.

The data set, extracted from the WSJ Penn Tree-

bank, and first used in the CoNLL-2000 shared

task (Tjong Kim Sang and Buchholz, 2000), con-

tains 211,727 training examples and 47,377 test

instances.

NER, named-entity recognition, involves iden-

tifying and labelling named entities in text. We

employ the English NER shared task data set

used in the CoNLL-2003 conference (Tjong Kim

Sang and De Meulder, 2003). This data set dis-

criminates four name types: persons, organisa-

tions, locations, and a rest category of “miscellany

names”. The data set is a collection of newswire

12

articles from the Reuters Corpus, RCV11. The

given training set contains 203,621 examples; as

test set we use the “testb” evaluation set which

contains 46,435 examples.

MED is a data set extracted from a semantic an-

notation of (parts of) two Dutch-language medi-

cal encyclopedias. On the chunk-level of this an-

notation, there are labels for various medical con-

cepts, such as disease names, body parts, and treat-

ments, forming a set of twelve concept types in to-

tal. Chunk sizes range from one to a few tokens.

The data have been split into training and test sets,

resulting in 428,502 training examples and 47,430

test examples.

The GENIA corpus (Tateisi et al., 2002) is a col-

lection of annotated abstracts taken from the Na-

tional Library of Medicine’s MEDLINE database.

Apart from part-of-speech tagging information,

the corpus annotates a subset of the substances

and the biological locations involved in reactions

of proteins. Using a 90%–10% split for producing

training and test sets, there are 458,593 training

examples and 50,916 test examples.

PHONEME refers to grapheme-to-phoneme con-

version for English. The sequences to be la-

belled are words composed of letters (rather than

sentences composed of words). We based our-

selves on the English part of the CELEX-2 lexi-

cal data base (Baayen et al., 1993), from which

we extracted 65,467 word-pronunciation pairs.

This pair list has been aligned using expectation-

maximisation to obtain sensible one-to-one map-

pings between letters and phonemes (Daelemans

and Van den Bosch, 1996). The classes to pre-

dict are 58 different phonemes, including some

diphones such as [ks] needed to keep the letter-

phoneme alignment one-to-one. The resulting

data set has been split into a training set of 515,891

examples, and a test set of 57,279 examples.

MORPHO refers to morphological analysis of

Dutch words. We collected the morphologi-

cal analysis of 336,698 Dutch words from the

CELEX-2 lexical data base (Baayen et al., 1993),

and represented the task such that it captures the

three most relevant elements of a morphological

analysis: (1) the segmentation of the word into

morphemes (stems, derivational morphemes, and

inflections), (2) the part-of-speech tagging infor-

mation contained by each morpheme; and (3) all

1Reuters Corpus, Volume 1, English language, 1996-08-
20 to 1997-08-19.

Task Baseline Voting CSInf Oracle

CHUNK 91.9 92.7 93.1 95.8
NER 77.2 80.2 81.8 86.5
MED 64.7 67.5 68.9 74.9
GENIA 55.8 60.1 61.8 70.6
PHONEME 79.0 83.4 84.5 98.8
MORPHO 41.3 46.1 51.9 62.2

Table 1: Performances of the baseline method, and

the trigram method combined both with majority

voting, and with constraint satisfaction inference.

The last column shows the performance of the (hy-

pothetical) oracle inference procedure.

spelling changes due to compounding, derivation,

or inflection that would enable the reconstruction

of the appropriate root forms of the involved mor-

phemes.

For CHUNK, and the three information extrac-

tion tasks, instances represent a seven-token win-

dow of words and their (predicted) part-of-speech

tags. Each token is labelled with a class using the

IOB type of segmentation coding as introduced by

Ramshaw and Marcus (1995), marking whether

the middle word is inside (I), outside (O), or at the

beginning (B) of a chunk, or named entity. Per-

formance is measured by the F-score on correctly

identified and labelled chunks, or named entities.

Instances for PHONEME, and MORPHO consist

of a seven-letter window of letters only. The labels

assigned to an instance are task-specific and have

been introduced above, together with the tasks

themselves. Generalisation performance is mea-

sured on the word accuracy level: if the entire

phonological transcription of the word is predicted

correctly, or if all three aspects of the morpholog-

ical analysis are predicted correctly, the word is

counted correct.

4.1 Results

For the experiments, memory-based learners were

trained and automatically optimised with wrapped

progressive sampling (Van den Bosch, 2004) to

predict class trigrams for each of the six tasks in-

troduced above. Table 1 lists the performances of

constraint satisfaction inference, and majority vot-

ing applied to the output of the base classifiers, and

compares them with the performance of a naive

baseline method that treats each token as a sepa-

rate classification case without coordinating deci-

sions over multiple tokens.

Without exception, constraint satisfaction infer-

13

ence outperforms majority voting by a consider-

able margin. This shows that, given the same

sequence of predicted trigrams, the global con-

straint satisfaction inference manages better to re-

cover sequential correlation, than majority voting.

On the other hand, the error reduction attained by

majority voting with respect to the baseline is in

all cases more impressive than the one obtained

by constraint satisfaction inference with respect to

majority voting. However, it should be empha-

sised that, while both methods trace back their ori-

gins to the work of Van den Bosch and Daelemans

(2005), constraint satisfaction inference is not ap-

plied after, but instead of majority voting. This

means, that the error reduction attained by major-

ity voting is also attained, independently by con-

straint satisfaction inference, but in addition con-

straint satisfaction inference manages to improve

performance on top of that.

5 Discussion

The experiments reported upon in the previous

section showed that by globally evaluating the

quality of possible output sequences, the con-

straint satisfaction inference procedure manages to

attain better results than the original majority vot-

ing approach. In this section, we attempt to fur-

ther analyse the behaviour of the inference pro-

cedure. First, we will discuss the effect that the

performance of the trigram-predicting base classi-

fier has on the maximum performance attainable

by any inference procedure. Next, we will con-

sider specifically the effect of base classifier accu-

racy on the performance of constraint satisfaction

inference.

5.1 Base classifier accuracy and inference

procedure upper-bounds

After trigrams have been predicted, for each token,

at most three different candidate labels remain. As

a result, if the correct label is not among them, the

best inference procedure cannot correct that. This

suggests that there is an upper-bound on the per-

formance attainable by inference procedures oper-

ating on less than perfect class trigram predictions.

To illustrate what performance is still possible af-

ter a base classifier has predicted the trigrams for

a sequence, we devised an oracle inference proce-

dure.

An oracle has perfect knowledge about the true

label of a token; therefore it is able to select this la-

bel if it is among the three candidate labels. If the

correct label is absent among the candidate labels,

no inference procedure can possibly predict the

correct label for the corresponding token, so the

oracle procedure just selects randomly among the

candidate labels, which will be incorrect anyway.

Table 1 compares the performance of majority vot-

ing, constraint satisfaction inference, and the ora-

cle after an optimised base classifier has predicted

class trigrams.

5.2 Base classifier accuracy and constraint

satisfaction inference performance

There is a subtle balance between the quality of

the trigram-predicting base classifier, and the gain

that any inference procedure for trigram classes

can reach. If the base classifier’s predictions are

perfect, all three candidate labels will agree for all

tokens in the sequence; consequently the inference

procedure can only choose from one potential out-

put sequence. On the other extreme, if all three

candidate labels disagree for all tokens in the se-

quence, the inference procedure’s task is to select

the best sequence among 3n possible sequences,

where n denotes the length of the sequence; it is

likely that such a huge amount of candidate label

sequences cannot be dealt with appropriately.

Table 2 collects the base classifier accuracies,

and the average number of potential output se-

quences per sentence resulting from its predic-

tions. For all tasks, the number of potential se-

quences is manageable; far from the theoretical

maximum 3n, even for GENIA, that, compared

with the other tasks, has a relatively large num-

ber of potential output sequences. The factors that

have an effect on the number of sequences are

rather complex. One important factor is the accu-

racy of the trigram predictions made by the base

classifier. To illustrate this, Figure 1 shows the

number of potential output sequences as a function

of the base classifier accuracy for the PHONEME

task. There is an almost linear decrease of the

number of possible sequences as the classifier ac-

curacy improves. This shows that it is important

to optimise the performance of the base classifier,

since it decreases the number of potential output

sequences to consider for the inference procedure.

Other factors affecting the number of potential

output sequences are the length of the sequence,

and the number of labels defined for the task. Un-

like classifier accuracy, however, these two factors

14

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 65 70 75 80 85 90 95

#
 s

e
q
u
e
n
c
e
s

base classifier accuracy

Figure 1: Average number of potential output se-

quences as a function of base classifier accuracy

on the PHONEME task.

Task Base acc. Avg. # seq.

CHUNK 88.8 38.4
NER 91.6 9.0
MED 77.1 9.3
GENIA 71.8 1719.3
PHONEME 91.7 1.8
MORPHO 80.9 2.8

Table 2: The average number of potential output

sequences that result from class trigram predic-

tions made by a memory-based base classifier.

are inherent properties of the task, and cannot be

optimised.

While we have shown that improved base clas-

sifier accuracy has a positive effect on the num-

ber of possible output sequences; we have not yet

established a positive relation between the num-

ber of possible output sequences and the perfor-

mance of constraint satisfaction inference. Fig-

ure 2 illustrates, again for the PHONEME task, that

there is indeed a positive, even linear relation be-

tween the accuracy of the base classifier, and the

performance attained by inference. This relation

exists for all inference procedures: majority vot-

ing, as well as constraint satisfaction inference,

and the oracle procedure. It is interesting to see

how the curves for those three procedure compare

with each other.

The oracle always outperforms the other two

procedures by a wide margin. However, its in-

crease is less steep. Constraint satisfaction in-

ference consistently outperforms majority voting,

though the difference between the two decreases

as the base classifier’s predictions improve. This

is to be expected, since more accurate predictions

means more majorities will appear among candi-

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 65 70 75 80 85 90 95

s
e
q
u
e
n
c
e
 a

c
c
u
ra

c
y

base classifier accuracy

oracle
constraint satisfaction inference

majority voting

Figure 2: Performance of majority voting, con-

straint satisfaction inference, and the oracle infer-

ence procedure as a function of base classifier ac-

curacy on the PHONEME task.

date labels, and the predictive quality of such ma-

jorities improves as well. In the limit –with a per-

fect base classifier– all three curves will meet.

6 Related work

Many learning techniques specifically designed

for sequentially-structured data exist. Given our

goal of developing a method usable with non-

probabilistic classifiers, we will not discuss the

obvious differences with the many probabilistic

methods. In this section, we will contrast our work

with two other approaches that also apply prin-

ciples of constraint satisfaction to sequentially-

structured data.

Constraint Satisfaction with Classifiers (Pun-

yakanok and Roth, 2001) performs the somewhat

more specific task of identifying phrases in a se-

quence. Like our method, the task of coordinating

local classifier decisions is formulated as a con-

straint satisfaction problem. The variables encode

whether or not a certain contiguous span of tokens

forms a phrase. Hard constraints enforce that no

two phrases in a solution overlap.

Similarly to our method, classifier confidence

estimates are used to rank solutions in order of

preference. Unlike in our method, however, both

the domains of the variables and the constraints

are prespecified; the classifier is used only to esti-

mate the cost of potential variable assignments. In

our approach, the classifier predicts the domains

of the variables, the constraints, and the weights

of those.

Roth and Yih (2005) replace the Viterbi algo-

15

rithm for inference in conditional random fields

with an integer linear programming formulation.

This allows arbitrary global constraints to be in-

corporated in the inference procedure. Essentially,

the method adds constraint satisfaction function-

ality on top of the inference procedure. In our

method, constraint satisfaction is the inference

procedure. Nevertheless, arbitrary global con-

straints (both hard and soft) can easily be incor-

porated in our framework as well.

7 Conclusion

The classification and inference approach is a pop-

ular and effective framework for performing se-

quence labelling in tasks where there is strong

interaction between output labels. Most existing

inference procedures expect a base classifier that

makes probabilistic predictions, that is, rather than

predicting a single class label, a conditional proba-

bility distribution over the possible classes is com-

puted. The inference procedure presented in this

paper is different in the sense that it can be used

with any classifier that is able to estimate a confi-

dence score for its (non-probabilistic) predictions.

Constraint satisfaction inference builds upon

the class trigram method introduced by Van den

Bosch and Daelemans (2005), but reinterprets it

as a strategy for generating multiple potential out-

put sequences, from which it selects the sequence

that has been found to be most optimal according

to a weighted constraint satisfaction formulation

of the inference process. In a series of experi-

ments involving six sequence labelling task cover-

ing several different areas in natural language pro-

cessing, constraint satisfaction inference has been

shown to improve substantially upon the perfor-

mance achieved by a simpler inference procedure

based on majority voting, proposed in the original

work on the class trigram method.

The work presented in this paper shows there is

potential for alternative interpretations of the clas-

sification and inference framework that do not rely

on probabilistic base classifiers. Future work may

well be able to further improve the performance

of constraint satisfaction inference, for example,

by using more optimised constraint weighting

schemes. In addition, alternative ways of formu-

lating constraint satisfaction problems from classi-

fier predictions may be explored; not only for se-

quence labelling, but also for other domains that

could benefit from global inference.

References

R. H. Baayen, R. Piepenbrock, and H. van Rijn. 1993.
The CELEX lexical data base on CD-ROM. Lin-
guistic Data Consortium, Philadelphia, PA.

W. Daelemans and A. Van den Bosch. 1996.
Language-independent data-oriented grapheme-to-
phoneme conversion. In J. P. H. Van Santen,
R. W. Sproat, J. P. Olive, and J. Hirschberg, edi-
tors, Progress in Speech Processing, pages 77–89.
Springer-Verlag, Berlin.

W. Daelemans, J. Zavrel, K. Van der Sloot, and A. Van
den Bosch. 2004. TiMBL: Tilburg memory based
learner, version 5.1.0, reference guide. Technical
Report ILK 04-02, ILK Research Group, Tilburg
University.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fi elds: Probabilistic models for seg-
menting and labeling sequence data. In Proceed-
ings of the 18th International Conference on Ma-
chine Learning, Williamstown, MA.

V. Punyakanok and D. Roth. 2001. The use of classi-
fi ers in sequential inference. In NIPS-13; The 2000
Conference on Advances in Neural Information Pro-
cessing Systems, pages 995–1001. The MIT Press.

L.A. Ramshaw and M.P. Marcus. 1995. Text chunk-
ing using transformation-based learning. In Pro-
ceedings of the 3rd ACL/SIGDAT Workshop on Very
Large Corpora, Cambridge, Massachusetts, USA,
pages 82–94.

D. Roth and W. Yih. 2005. Integer linear programming
inference for conditional random fi elds. In Proc. of
the International Conference on Machine Learning
(ICML), pages 737–744.

Yuka Tateisi, Hideki Mima, Ohta Tomoko, and Junichi
Tsujii. 2002. Genia corpus: an annotated research
abstract corpus in molecular biology domain. In Hu-
man Language Technology Conference (HLT 2002),
pages 73–77.

E. Tjong Kim Sang and S. Buchholz. 2000. Introduc-
tion to the CoNLL-2000 shared task: Chunking. In
Proceedings of CoNLL-2000 and LLL-2000, pages
127–132.

E. Tjong Kim Sang and F. De Meulder. 2003. In-
troduction to the conll-2003 shared task: Language-
independent named entity recognition. In W. Daele-
mans and M. Osborne, editors, Proceedings of
CoNLL-2003, pages 142–147. Edmonton, Canada.

A. Van den Bosch and W. Daelemans. 2005. Improv-
ing sequence segmentation learning by predicting
trigrams. In I. Dagan and D. Gildea, editors, Pro-
ceedings of the Ninth Conference on Computational
Natural Language Learning.

A. Van den Bosch. 2004. Wrapped progressive
sampling search for optimizing learning algorithm
parameters. In R. Verbrugge, N. Taatgen, and
L. Schomaker, editors, Proceedings of the 16th
Belgian-Dutch Conference on Artificial Intelligence,
pages 219–226, Groningen, The Netherlands.

16

Decomposition Kernels for Natural Language Processing

Fabrizio Costa Sauro Menchetti Alessio Ceroni

Dipartimento di Sistemi e Informatica,

Università degli Studi di Firenze,

via di S. Marta 3, 50139 Firenze, Italy

{costa,menchett,passerini,aceroni,p-f} AT dsi.unifi.it

Andrea Passerini Paolo Frasconi

Abstract

We propose a simple solution to the se-

quence labeling problem based on an ex-

tension of weighted decomposition ker-

nels. We additionally introduce a multi-

instance kernel approach for representing

lexical word sense information. These

new ideas have been preliminarily tested

on named entity recognition and PP at-

tachment disambiguation. We finally sug-

gest how these techniques could be poten-

tially merged using a declarative formal-

ism that may provide a basis for the inte-

gration of multiple sources of information

when using kernel-based learning in NLP.

1 Introduction

Many tasks related to the analysis of natural lan-

guage are best solved today by machine learning

and other data driven approaches. In particular,

several subproblems related to information extrac-

tion can be formulated in the supervised learning

framework, where statistical learning has rapidly

become one of the preferred methods of choice.

A common characteristic of many NLP problems

is the relational and structured nature of the rep-

resentations that describe data and that are inter-

nally used by various algorithms. Hence, in or-

der to develop effective learning algorithms, it is

necessary to cope with the inherent structure that

characterize linguistic entities. Kernel methods

(see e.g. Shawe-Taylor and Cristianini, 2004) are

well suited to handle learning tasks in structured

domains as the statistical side of a learning algo-

rithm can be naturally decoupled from any rep-

resentational details that are handled by the ker-

nel function. As a matter of facts, kernel-based

statistical learning has gained substantial impor-

tance in the NLP field. Applications are numerous

and diverse and include for example refinement

of statistical parsers (Collins and Duffy, 2002),

tagging named entities (Cumby and Roth, 2003;

Tsochantaridis et al., 2004), syntactic chunking

(Daumé III and Marcu, 2005), extraction of rela-

tions between entities (Zelenko et al., 2003; Cu-

lotta and Sorensen, 2004), semantic role label-

ing (Moschitti, 2004). The literature is rich with

examples of kernels on discrete data structures

such as sequences (Lodhi et al., 2002; Leslie et

al., 2002; Cortes et al., 2004), trees (Collins and

Duffy, 2002; Kashima and Koyanagi, 2002), and

annotated graphs (Gärtner, 2003; Smola and Kon-

dor, 2003; Kashima et al., 2003; Horváth et al.,

2004). Kernels of this kind can be almost in-

variably described as special cases of convolu-

tion and other decomposition kernels (Haussler,

1999). Thanks to its generality, decomposition

is an attractive and flexible approach for defining

the similarity between structured objects starting

from the similarity between smaller parts. How-

ever, excessively large feature spaces may result

from the combinatorial growth of the number of

distinct subparts with their size. When too many

dimensions in the feature space are irrelevant, the

Gram matrix will be nearly diagonal (Schölkopf

et al., 2002), adversely affecting generalization in

spite of using large margin classifiers (Ben-David

et al., 2002). Possible cures include extensive use

of prior knowledge to guide the choice of rele-

vant parts (Cumby and Roth, 2003; Frasconi et al.,

2004), the use of feature selection (Suzuki et al.,

2004), and soft matches (Saunders et al., 2002). In

(Menchetti et al., 2005) we have shown that better

generalization can indeed be achieved by avoid-

ing hard comparisons between large parts. In a

17

weighted decomposition kernel (WDK) only small

parts are matched, whereas the importance of the

match is determined by comparing the sufficient

statistics of elementary probabilistic models fit-

ted on larger contextual substructures. Here we

introduce a position-dependent version of WDK

that can solve sequence labeling problems without

searching the output space, as required by other re-

cently proposed kernel-based solutions (Tsochan-

taridis et al., 2004; Daumé III and Marcu, 2005).

The paper is organized as follows. In the next

two sections we briefly review decomposition ker-

nels and its weighted variant. In Section 4 we in-

troduce a version of WDK for solving supervised

sequence labeling tasks and report a preliminary

evaluation on a named entity recognition problem.

In Section 5 we suggest a novel multi-instance ap-

proach for representing WordNet information and

present an application to the PP attachment am-

biguity resolution problem. In Section 6 we dis-

cuss how these ideas could be merged using a

declarative formalism in order to integrate mul-

tiple sources of information when using kernel-

based learning in NLP.

2 Decomposition Kernels

An R-decomposition structure (Haussler, 1999;

Shawe-Taylor and Cristianini, 2004) on a set X is

a triple R = 〈 ~X , R,~k〉 where ~X = (X1, . . . ,XD)
is a D–tuple of non–empty subsets of X , R is

a finite relation on X1 × · · · × XD × X , and
~k = (k1, . . . , kD) is a D–tuple of positive defi-

nite kernel functions kd : Xd × Xd 7→ IR. R(~x, x)
is true iff ~x is a tuple of “parts” for x — i.e. ~x

is a decomposition of x. Note that this defini-

tion of “parts” is very general and does not re-

quire the parthood relation to obey any specific

mereological axioms, such as those that will be

introduced in Section 6. For any x ∈ X , let

R−1(x) = {(x1, . . . , xD) ∈ ~X : R(~x, x)} de-

note the multiset of all possible decompositions1

of x. A decomposition kernel is then defined as

the multiset kernel between the decompositions:

KR(x, x′) =
∑

~x ∈ R−1(x)

~x′
∈ R−1(x′)

D
∏

d=1

κd(xd, x
′
d) (1)

1Decomposition examples in the string domain include
taking all the contiguous fixed-length substrings or all the
possible ways of dividing a string into two contiguous sub-
strings.

where, as an alternative way of combining the ker-

nels, we can use the product instead of a summa-

tion: intuitively this increases the feature space di-

mension and makes the similarity measure more

selective. Since decomposition kernels form a

rather vast class, the relation R needs to be care-

fully tuned to different applications in order to

characterize a suitable kernel. As discussed in

the Introduction, however, taking all possible sub-

parts into account may lead to poor predictivity be-

cause of the combinatorial explosion of the feature

space.

3 Weighted Decomposition Kernels

A weighted decomposition kernel (WDK) is char-

acterized by the following decomposition struc-

ture:

R = 〈 ~X , R, (δ, κ1, . . . , κD)〉

where ~X = (S, Z1, . . . , ZD), R(s, z1, . . . , zD, x)
is true iff s ∈ S is a subpart of x called the selector

and ~z = (z1, . . . , zD) ∈ Z1×· · ·×ZD is a tuple of

subparts of x called the contexts of s in x. Precise

definitions of s and ~z are domain-dependent. For

example in (Menchetti et al., 2005) we present two

formulations, one for comparing whole sequences

(where both the selector and the context are subse-

quences), and one for comparing attributed graphs

(where the selector is a single vertex and the con-

text is the subgraph reachable from the selector

within a short path). The definition is completed

by introducing a kernel on selectors and a kernel

on contexts. The former can be chosen to be the

exact matching kernel, δ, on S × S, defined as

δ(s, s′) = 1 if s = s′ and δ(s, s′) = 0 otherwise.

The latter, κd, is a kernel on Zd × Zd and pro-

vides a soft similarity measure based on attribute

frequencies. Several options are available for con-

text kernels, including the discrete version of prob-

ability product kernels (PPK) (Jebara et al., 2004)

and histogram intersection kernels (HIK) (Odone

et al., 2005). Assuming there are n categorical

attributes, each taking on mi distinct values, the

context kernel can be defined as:

κd(z, z′) =
n

∑

i=1

ki(z, z′) (2)

where ki is a kernel on the i-th attribute. Denote by

pi(j) the observed frequency of value j in z. Then

18

ki can be defined as a HIK or a PPK respectively:

ki(z, z′) =

mi
∑

j=1

min{pi(j), p
′
i(j)} (3)

ki(z, z′) =

mi
∑

j=1

√

pi(j) · p′i(j) (4)

This setting results in the following general form

of the kernel:

K(x, x′) =
∑

(s, ~z) ∈ R−1(x)

(s′, ~z′) ∈ R−1(x′)

δ(s, s′)
D

∑

d=1

κd(zd, z
′
d) (5)

where we can replace the summation of kernels
with

∏D
d=1

1 + κd(zd, z
′
d).

Compared to kernels that simply count the num-

ber of substructures, the above function weights

different matches between selectors according to

contextual information. The kernel can be after-

wards normalized in [−1, 1] to prevent similarity

to be boosted by the mere size of the structures

being compared.

4 WDK for sequence labeling and

applications to NER

In a sequence labeling task we want to map input

sequences to output sequences, or, more precisely,

we want to map each element of an input sequence

that takes label from a source alphabet to an ele-

ment with label in a destination alphabet.

Here we cast the sequence labeling task into

position specific classification, where different se-

quence positions give independent examples. This

is different from previous approaches in the lit-

erature where the sequence labeling problem is

solved by searching in the output space (Tsochan-

taridis et al., 2004; Daumé III and Marcu, 2005).

Although the method lacks the potential for col-

lectively labeling all positions simultaneously, it

results in a much more efficient algorithm.

In the remainder of the section we introduce

a specialized version of the weighted decompo-

sition kernel suitable for a sequence transduction

task originating in the natural language process-

ing domain: the named entity recognition (NER)

problem, where we map sentences to sequences of

a reduced number of named entities (see Sec.4.1).

More formally, given a finite dictionary Σ of

words and an input sentence x ∈ Σ∗, our input ob-

jects are pairs of sentences and indices r = (x, t)

Figure 1: Sentence decomposition.

where r ∈ Σ∗ × IN. Given a sentence x, two in-

tegers b ≥ 1 and b ≤ e ≤ |x|, let x[b] denote the

word at position b and x[b..e] the sub-sequence of

x spanning positions from b to e. Finally we will

denote by ξ(x[b]) a word attribute such as a mor-

phological trait (is a number or has capital initial,

see 4.1) for the word in sentence x at position b.

We introduce two versions of WDK: one with

four context types (D = 4) and one with in-

creased contextual information (D = 6) (see

Eq. 5). The relation R depends on two integers

t and i ∈ {1, . . . , |x|}, where t indicates the po-

sition of the word we want to classify and i the

position of a generic word in the sentence. The

relation for the first kernel version is defined as:

R = {(s, zLL, zLR, zRL, zRR, r)} such that the

selector s = x[i] is the word at position i, the zLL

(LeftLeft) part is a sequence defined as x[1..i] if

i < t or the null sequence ε otherwise and the

zLR (LeftRight) part is the sequence x[i + 1..t] if

i < t or ε otherwise. Informally, zLL is the initial

portion of the sentence up to word of position i,

and zLR is the portion of the sentence from word

at position i + 1 up to t (see Fig. 1). Note that

when we are dealing with a word that lies to the

left of the target word t, its zRL and zRR parts are

empty. Symmetrical definitions hold for zRL and

zRR when i > t. We define the weighted decom-

position kernel for sequences as

K(r, r′)=

|x|
∑

t=1

|x′|
∑

t′=1

δξ(s, s
′)

∑

d∈{LL,LR,RL,RR}

κ(zd, z
′
d) (6)

where δξ(s, s
′) = 1 if ξ(s) = ξ(s′) and 0 oth-

erwise (that is δξ checks whether the two selector

words have the same morphological trait) and κ

is Eq. 2 with only one attribute which then boils

down to Eq. 3 or Eq. 4, that is a kernel over the his-

togram for word occurrences over a specific part.

Intuitively, when applied to word sequences,

this kernel considers separately words to the left

19

of the entry we want to transduce and those to

its right. The kernel computes the similarity for

each sub-sequence by matching the corresponding

bag of enriched words: each word is matched only

with words that have the same trait as extracted by

ξ and the match is then weighted proportionally to

the frequency count of identical words preceding

and following it.

The kernel version with D=6 adds two parts

called zLO (LeftOther) and zRO (RightOther) de-

fined as x[t+1..|r|] and x[1..t] respectively; these

represent the remaining sequence parts so that x =
zLL ◦ zLR ◦ zLO and x = zRL ◦ zRR ◦ zRO.

Note that the WDK transforms the sentence

in a bag of enriched words computed in a pre-

processing phase thus achieving a significant re-

duction in computational complexity (compared to

the recursive procedure in (Lodhi et al., 2002)).

4.1 Named Entity Recognition Experimental

Results

Named entities are phrases that contain the names

of persons, organizations, locations, times and

quantities. For example in the following sentence:

[PER Wolff] , currently a journalist in [LOC

Argentina] , played with [PER Del Bosque] in the

final years of the seventies in [ORG Real Madrid].

we are interested in predicting that Wolff and Del

Bosque are people’s names, that Argentina is a

name of a location and that Real Madrid is a name

of an organization.

The chosen dataset is provided by the shared

task of CoNLL–2002 (Saunders et al., 2002)

which concerns language–independent named en-

tity recognition. There are four types of phrases:

person names (PER), organizations (ORG), loca-

tions (LOC) and miscellaneous names (MISC),

combined with two tags, B to denote the first item

of a phrase and I for any non–initial word; all other

phrases are classified as (OTHER). Of the two

available languages (Spanish and Dutch), we run

experiments only on the Spanish dataset which is a

collection of news wire articles made available by

the Spanish EFE News Agency. We select a sub-

set of 300 sentences for training and we evaluate

the performance on test set. For each category, we

evaluate the Fβ=1 measure of 4 versions of WDK:

word histograms are matched using HIK (Eq. 3)

and the kernels on various parts (zLL, zLR,etc) are

combined with a summation SUMHIK or product

PROHIK; alternatively the histograms are com-

Table 1: NER experiment D=4

CLASS SUMHIS PROHIS SUMPRO PROPRO

B-LOC 74.33 68.68 72.12 66.47
I-LOC 58.18 52.76 59.24 52.62
B-MISC 52.77 43.31 46.86 39.00
I-MISC 79.98 80.15 77.85 79.65
B-ORG 69.00 66.87 68.42 67.52
I-ORG 76.25 75.30 75.12 74.76
B-PER 60.11 56.60 59.33 54.80
I-PER 65.71 63.39 65.67 60.98

MICRO Fβ=1 69.28 66.33 68.03 65.30

Table 2: NER experiment with D=6

CLASS SUMHIS PROHIS SUMPRO PROPRO

B-LOC 74.81 73.30 73.65 73.69
I-LOC 57.28 58.87 57.76 59.44
B-MISC 56.54 64.11 57.72 62.11
I-MISC 78.74 84.23 79.27 83.04
B-ORG 70.80 73.02 70.48 73.10
I-ORG 76.17 78.70 74.26 77.51
B-PER 66.25 66.84 66.04 67.46
I-PER 68.06 71.81 69.55 69.55

MICRO Fβ=1 70.69 72.90 70.32 72.38

bined with a PPK (Eq. 4) obtaining SUMPPK,

PROPPK.

The word attribute considered for the selector

is a word morphologic trait that classifies a word

in one of five possible categories: normal word,

number, all capital letters, only capital initial and

contains non alphabetic characters, while the con-

text histograms are computed counting the exact

word frequencies.

Results reported in Tab. 1 and Tab. 2 show that

performance is mildly affected by the different

choices on how to combine information on the var-

ious contexts, though it seems clear that increasing

contextual information has a positive influence.

Note that interesting preliminary results can be

obtained even without the use of any refined lan-

guage knowledge, such as part of speech tagging

or shallow/deep parsing.

5 Kernels for word semantic ambiguity

Parsing a natural language sentence often involves

the choice between different syntax structures that

are equally admissible in the given grammar. One

of the most studied ambiguity arise when deciding

between attaching a prepositional phrase either to

the noun phrase or to the verb phrase. An example

could be:

1. eat salad with forks (attach to verb)

2. eat salad with tomatoes (attach to noun)

20

The resolution of such ambiguities is usually per-

formed by the human reader using its past expe-

riences and the knowledge of the words mean-

ing. Machine learning can simulate human experi-

ence by using corpora of disambiguated phrases to

compute a decision on new cases. However, given

the number of different words that are currently

used in texts, there would never be a sufficient

dataset from which to learn. Adding semantic in-

formation on the possible word meanings would

permit the learning of rules that apply to entire cat-

egories and can be generalized to all the member

words.

5.1 Adding Semantic with WordNet

WordNet (Fellbaum, 1998) is an electronic lexi-

cal database of English words built and annotated

by linguistic researchers. WordNet is an exten-

sive and reliable source of semantic information

that can be used to enrich the representation of a

word. Each word is represented in the database by

a group of synonym sets (synset), with each synset

corresponding to an individual linguistic concept.

All the synsets contained in WordNet are linked by

relations of various types. An important relation

connects a synset to its hypernyms, that are its im-

mediately broader concepts. The hypernym (and

its opposite hyponym) relation defines a semantic

hierarchy of synsets that can be represented as a

directed acyclic graph. The different lexical cat-

egories (verbs, nouns, adjectives and adverbs) are

contained in distinct hierarchies and each one is

rooted by many synsets.

Several metrics have been devised to compute

a similarity score between two words using Word-

Net. In the following we resort to a multiset ver-

sion of the proximity measure used in (Siolas and

d’Alche Buc, 2000), though more refined alterna-

tives are also possible (for example using the con-

ceptual density as in (Basili et al., 2005)). Given

the acyclic nature of the semantic hierarchies, each

synset can be represented by a group of paths that

follows the hypernym relations and finish in one of

the top level concepts. Two paths can then be com-

pared by counting how many steps from the roots

they have in common. This number must then be

normalized dividing by the square root of the prod-

uct between the path lengths. In this way one can

accounts for the unbalancing that arise from dif-

ferent parts of the hierarchies being differently de-

tailed. Given two paths π and π′, let l and l′ be

their lengths and n be the size of their common

part, the resulting kernel is:

k(π, π′) =
n√
l · l′

(7)

The demonstration that k is positive definite arise

from the fact that n can be computed as a posi-

tive kernel k∗ by summing the exact match ker-

nels between the corresponding positions in π and

π′ seen as sequences of synset identifiers. The

lengths l and l′ can then be evaluated as k∗(π, π)
and k∗(π′, π′) and k is the resulting normalized

version of k∗.

The kernel between two synsets σ and σ′ can

then be computed by the multi-set kernel (Gärtner

et al., 2002a) between their corresponding paths.

Synsets are organized into forty-five lexicogra-

pher files based on syntactic category and logical

groupings. Additional information can be derived

by comparing the identifiers λ and λ′ of these file

associated to σ and σ′. The resulting synset kernel

is:

κσ(σ, σ′) = δ(λ, λ′) +
∑

π∈Π

∑

π′∈Π′

k(π, π′) (8)

where Π is the set of paths originating from σ and

the exact match kernel δ(λ, λ′) is 1 if λ ≡ λ′ and

0 otherwise. Finally, the kernel κω between two

words is itself a multi-set kernel between the cor-

responding sets of synsets:

κω(ω, ω′) =
∑

σ∈Σ

∑

σ′∈Σ′

κσ(σ, σ′) (9)

where Σ are the synsets associated to the word ω.

5.2 PP Attachment Experimental Results

The experiments have been performed using the

Wall-Street Journal dataset described in (Ratna-

parkhi et al., 1994). This dataset contains 20, 800
training examples and 3, 097 testing examples.

Each phrase x in the dataset is reduced to a verb

xv, its object noun xn1
and prepositional phrase

formed by a preposition xp and a noun xn2
. The

target is either V or N whether the phrase is at-

tached to the verb or the noun. Data have been pre-

processed by assigning to all the words their cor-

responding synsets. Additional meanings derived

from specific synsets have been attached to the

words as described in (Stetina and Nagao, 1997).

The kernel between two phrases x and x′ is then

computed by combining the kernels between sin-

gle words using either the sum or the product.

21

Method Acc Pre Rec

S 84.6% ± 0.65% 90.8% 82.2%

P 84.8% ± 0.65% 92.2% 81.0%

SW 85.4% ± 0.64% 90.9% 83.6%

SWL 85.3% ± 0.64% 91.1% 83.2%

PW 85.9% ± 0.63% 92.2% 83.1%

PWL 86.2% ± 0.62% 92.1% 83.7%

Table 3: Summary of the experimental results on

the PP attachment problem for various kernel pa-

rameters.

Results of the experiments are reported in Tab. 3

for various kernels parameters: S or P denote if

the sum or product of the kernels between words

are used, W denotes that WordNet semantic infor-

mation is added (otherwise the kernel between two

words is just the exact match kernel) and L denotes

that lexicographer files identifiers are used. An ad-

ditional gaussian kernel is used on top of Kpp. The

C and γ parameters are selected using an inde-

pendent validation set. For each setting, accuracy,

precision and recall values on the test data are re-

ported, along with the standard deviation of the es-

timated binomial distribution of errors. The results

demonstrate that semantic information can help in

resolving PP ambiguities. A small difference ex-

ists between taking the product instead of the sum

of word kernels, and an additional increase in the

amount of information available to the learner is

given by the use of lexicographer files identifiers.

6 Using declarative knowledge for NLP

kernel integration

Data objects in NLP often require complex repre-

sentations; suffice it to say that a sentence is nat-

urally represented as a variable length sequence

of word tokens and that shallow/deep parsers are

reliably used to enrich these representations with

links between words to form parse trees. Finally,

additional complexity can be introduced by in-

cluding semantic information. Various facets of

this richness of representations have been exten-

sively investigated, including the expressiveness

of various grammar formalisms, the exploitation

of lexical representation (e.g. verb subcategoriza-

tion, semantic tagging), and the use of machine

readable sources of generic or specialized knowl-

edge (dictionaries, thesauri, domain specific on-

tologies). All these efforts are capable to address

language specific sub-problems but their integra-

tion into a coherent framework is a difficult feat.

Recent ideas for constructing kernel functions

starting from logical representations may offer an

appealing solution. Gärtner et al. (2002) have pro-

posed a framework for defining kernels on higher-

order logic individuals. Cumby and Roth (2003)

used description logics to represent knowledge

jointly with propositionalization for defining a ker-

nel function. Frasconi et al. (2004) proposed

kernels for handling supervised learning in a set-

ting similar to that of inductive logic programming

where data is represented as a collection of facts

and background knowledge by a declarative pro-

gram in first-order logic. In this section, we briefly

review this approach and suggest a possible way of

exploiting it for the integration of different sources

of knowledge that may be available in NLP.

6.1 Declarative Kernels

The definition of decomposition kernels as re-

ported in Section 2 is very general and covers al-

most all kernels for discrete structured data de-

veloped in the literature so far. Different kernels

are designed by defining the relation decompos-

ing an example into its “parts”, and specifying

kernels for individual parts. In (Frasconi et al.,

2004) we proposed a systematic approach to such

design, consisting in formally defining a relation

by the set of axioms it must satisfy. We relied

on mereotopology (Varzi, 1996) (i.e. the theory

of parts and places) in order to give a formal def-

inition of the intuitive concepts of parthood and

connection. The formalization of mereotopolog-

ical relations allows to automatically deduce in-

stances of such relations on the data, by exploit-

ing the background knowledge which is typically

available on structured domains. In (Frasconi et

al., 2004) we introduced declarative kernels (DK)

as a set of kernels working on mereotopological

relations, such as that of proper parthood (≺P) or

more complex relations based on connected parts.

A typed syntax for objects was introduced in order

to provide additional flexibility in defining kernels

on instances of the given relation. A basic kernel

on parts KP was defined as follows:

KP (x, x′)=
∑

s≺P x

s′
≺P x′

δT (s, s′)
(

κ(s, s′)+KP (s, s′)
)

(10)

where δT matches objects of the same type and κ

is a kernel over object attributes.

22

Declarative kernels were tested in (Frasconi et

al., 2004) on a number of domains with promising

results, including a biomedical information extrac-

tion task (Goadrich et al., 2004) aimed at detecting

protein-localization relationships within Medline

abstracts. A DK on parts as the one defined in

Eq. (10) outperformed state-of-the-art ILP-based

systems Aleph and Gleaner (Goadrich et al., 2004)

in such information extraction task, and required

about three orders of magnitude less training time.

6.2 Weighted Decomposition Declarative

Kernels

Declarative kernels can be combined with WDK

in a rather straightforward way, thus taking the ad-

vantages of both methods. A simple approach is

that of using proper parthood in place of selec-

tors, and topology to recover the context of each

proper part. A weighted decomposition declara-

tive kernel (WD2K) of this kind would be defined

as in Eq. (10) simply adding to the attribute ker-

nel κ a context kernel that compares the surround-

ing of a pair of objects—as defined by the topol-

ogy relation—using some aggregate kernel such as

PPK or HIK (see Section 3). Note that such defini-

tion extends WDK by adding recursion to the con-

cept of comparison by selector, and DK by adding

contexts to the kernel between parts. Multiple con-

texts can be easily introduced by employing differ-

ent notions of topology, provided they are consis-

tent with mereotopological axioms. As an exam-

ple, if objects are words in a textual document, we

can define l-connection as the relation for which

two words are l-connected if there are consequen-

tial within the text with at most l words in be-

tween, and obtain growingly large contexts by in-

creasing l. Moreover, an extended representation

of words, as the one employing WordNet semantic

information, could be easily plugged in by includ-

ing a kernel for synsets such as that in Section 5.1

into the kernel κ on word attributes. Additional

relations could be easily formalized in order to ex-

ploit specific linguisitc knowledge: a causal rela-

tion would allow to distinguish between preceding

and following context so to take into consideration

word order; an underlap relation, associating two

objects being parts of the same super-object (i.e.

pre-terminals dominated by the same non-terminal

node), would be able to express commanding no-

tions.

The promising results obtained with declarative

kernels (where only very simple lexical informa-

tion was used) together with the declarative ease

to integrate arbitrary kernels on specific parts are

all encouraging signs that boost our confidence in

this line of research.

References

Roberto Basili, Marco Cammisa, and Alessandro Mos-
chitti. 2005. Effective use of wordnet seman-
tics via kernel-based learning. In 9th Conference
on Computational Natural Language Learning, Ann
Arbor(MI), USA.

S. Ben-David, N. Eiron, and H. U. Simon. 2002. Lim-
itations of learning via embeddings in euclidean half
spaces. J. of Mach. Learning Research, 3:441–461.

M. Collins and N. Duffy. 2002. New ranking algo-
rithms for parsing and tagging: Kernels over dis-
crete structures, and the voted perceptron. In Pro-
ceedings of the Fortieth Annual Meeting on Associa-
tion for Computational Linguistics, pages 263–270,
Philadelphia, PA, USA.

C. Cortes, P. Haffner, and M. Mohri. 2004. Ratio-
nal kernels: Theory and algorithms. J. of Machine
Learning Research, 5:1035–1062.

A. Culotta and J. Sorensen. 2004. Dependency tree
kernels for relation extraction. In Proc. of the 42nd
Annual Meeting of the Association for Computa-
tional Linguistics, pages 423–429.

C. M. Cumby and D. Roth. 2003. On kernel meth-
ods for relational learning. In Proc. Int. Conference
on Machine Learning (ICML’03), pages 107–114,
Washington, DC, USA.

H. Daumé III and D. Marcu. 2005. Learning as search
optimization: Approximate large margin methods
for structured prediction. In International Confer-
ence on Machine Learning (ICML), pages 169–176,
Bonn, Germany.

C. Fellbaum, editor. 1998. WordNet: An Electronic
Lexical Database. The MIT Press.

P. Frasconi, S. Muggleton, H. Lodhi, and A. Passerini.
2004. Declarative kernels. Technical Report RT
2/2004, Università di Firenze.

T. Gärtner, P. A. Flach, A. Kowalczyk, and A. J. Smola.
2002a. Multi-instance kernels. In C. Sammut and
A. Hoffmann, editors, Proceedings of the 19th In-
ternational Conference on Machine Learning, pages
179–186. Morgan Kaufmann.

T. Gärtner, J.W. Lloyd, and P.A. Flach. 2002b. Ker-
nels for structured data. In S. Matwin and C. Sam-
mut, editors, Proceedings of the 12th International
Conference on Inductive Logic Programming, vol-
ume 2583 of Lecture Notes in Artificial Intelligence,
pages 66–83. Springer-Verlag.

23

T. Gärtner. 2003. A survey of kernels for structured
data. SIGKDD Explorations Newsletter, 5(1):49–
58.

M. Goadrich, L. Oliphant, and J. W. Shavlik. 2004.
Learning ensembles of first-order clauses for recall-
precision curves: A case study in biomedical infor-
mation extraction. In Proc. 14th Int. Conf. on Induc-
tive Logic Programming, ILP ’04, pages 98–115.

D. Haussler. 1999. Convolution kernels on discrete
structures. Technical Report UCSC-CRL-99-10,
University of California, Santa Cruz.

T. Horváth, T. Gärtner, and S. Wrobel. 2004. Cyclic
pattern kernels for predictive graph mining. In Pro-
ceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, pages 158–167. ACM Press.

T. Jebara, R. Kondor, and A. Howard. 2004. Proba-
bility product kernels. J. Mach. Learn. Res., 5:819–
844.

H. Kashima and T. Koyanagi. 2002. Kernels for
Semi–Structured Data. In Proceedings of the Nine-
teenth International Conference on Machine Learn-
ing, pages 291–298.

H. Kashima, K. Tsuda, and A. Inokuchi. 2003.
Marginalized kernels between labeled graphs. In
Proceedings of the Twentieth International Confer-
ence on Machine Learning, pages 321–328, Wash-
ington, DC, USA.

C. S. Leslie, E. Eskin, and W. S. Noble. 2002. The
spectrum kernel: A string kernel for SVM protein
classification. In Pacific Symposium on Biocomput-
ing, pages 566–575.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristian-
ini, and C. Watkins. 2002. Text classification us-
ing string kernels. Journal of Machine Learning Re-
search, 2:419–444.

S. Menchetti, F. Costa, and P. Frasconi. 2005.
Weighted decomposition kernels. In Proceedings of
the Twenty-second International Conference on Ma-
chine Learning, pages 585–592, Bonn, Germany.

Alessandro Moschitti. 2004. A study on convolution
kernels for shallow semantic parsing. In 42-th Con-
ference on Association for Computational Linguis-
tic, Barcelona, Spain.

F. Odone, A. Barla, and A. Verri. 2005. Building ker-
nels from binary strings for image matching. IEEE
Transactions on Image Processing, 14(2):169–180.

A Ratnaparkhi, J. Reynar, and S. Roukos. 1994. A
maximum entropy model for prepositional phrase
attachment. In Proceedings of the ARPA Human
Language Technology Workshop, pages 250–255,
Plainsboro, NJ.

C. Saunders, H. Tschach, and J. Shawe-Taylor. 2002.
Syllables and other string kernel extensions. In Pro-
ceedings of the Nineteenth International Conference
on Machine Learning, pages 530–537.

B. Schölkopf, J. Weston, E. Eskin, C. S. Leslie, and
W. S. Noble. 2002. A kernel approach for learn-
ing from almost orthogonal patterns. In Proc. of
ECML’02, pages 511–528.

J. Shawe-Taylor and N. Cristianini. 2004. Kernel
Methods for Pattern Analysis. Cambridge Univer-
sity Press.

G. Siolas and F. d’Alche Buc. 2000. Support vector
machines based on a semantic kernel for text cate-
gorization. In Proceedings of the IEEE-INNS-ENNS
International Joint Conference on Neural Networks,
volume 5, pages 205 – 209.

A.J. Smola and R. Kondor. 2003. Kernels and regular-
ization on graphs. In B. Schölkopf and M.K. War-
muth, editors, 16th Annual Conference on Compu-
tational Learning Theory and 7th Kernel Workshop,
COLT/Kernel 2003, volume 2777 of Lecture Notes
in Computer Science, pages 144–158. Springer.

J Stetina and M Nagao. 1997. Corpus based pp attach-
ment ambiguity resolution with a semantic dictio-
nary. In Proceedings of the Fifth Workshop on Very
Large Corpora, pages 66–80, Beijing, China.

J. Suzuki, H. Isozaki, and E. Maeda. 2004. Convo-
lution kernels with feature selection for natural lan-
guage processing tasks. In Proc. of the 42nd Annual
Meeting of the Association for Computational Lin-
guistics, pages 119–126.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Al-
tun. 2004. Support vector machine learning for in-
terdependent and structured output spaces. In Proc.
21st Int. Conf. on Machine Learning, pages 823–
830, Banff, Alberta, Canada.

A.C. Varzi. 1996. Parts, wholes, and part-whole re-
lations: the prospects of mereotopology. Data and
Knowledge Engineering, 20:259–286.

D. Zelenko, C. Aone, and A. Richardella. 2003. Ker-
nel methods for relation extraction. Journal of Ma-
chine Learning Research, 3:1083–1106.

24

A Multiclassifier based Document Categorization System: profiting from
the Singular Value Decomposition Dimensionality Reduction Technique

Ana Zelaia

UPV-EHU

Basque Country

ccpzejaa@si.ehu.es

Iñaki Alegria

UPV-EHU

Basque Country

acpalloi@si.ehu.es

Olatz Arregi

UPV-EHU

Basque Country

acparuro@si.ehu.es

Basilio Sierra

UPV-EHU

Basque Country

ccpsiarb@si.ehu.es

Abstract

In this paper we present a multiclassifier

approach for multilabel document classifi-

cation problems, where a set of k-NN clas-

sifiers is used to predict the category of

text documents based on different training

subsampling databases. These databases

are obtained from the original training

database by random subsampling. In or-

der to combine the predictions generated

by the multiclassifier, Bayesian voting is

applied. Through all the classification pro-

cess, a reduced dimension vector represen-

tation obtained by Singular Value Decom-

position (SVD) is used for training and

testing documents. The good results of our

experiments give an indication of the po-

tentiality of the proposed approach.

1 Introduction

Document Categorization, the assignment of nat-

ural language texts to one or more predefined

categories based on their content, is an impor-

tant component in many information organization

and management tasks. Researchers have con-

centrated their efforts in finding the appropriate

way to represent documents, index them and con-

struct classifiers to assign the correct categories to

each document. Both, document representation

and classification method are crucial steps in the

categorization process.

In this paper we concentrate on both issues. On

the one hand, we use Latent Semantic Indexing

(LSI) (Deerwester et al., 1990), which is a vari-

ant of the vector space model (VSM) (Salton and

McGill, 1983), in order to obtain the vector rep-

resentation of documents. This technique com-

presses vectors representing documents into vec-

tors of a lower-dimensional space. LSI, which

is based on Singular Value Decomposition (SVD)

of matrices, has showed to have the ability to ex-

tract the relations among words and documents by

means of their context of use, and has been suc-

cessfully applied to Information Retrieval tasks.

On the other hand, we construct a multiclassi-

fier (Ho et al., 1994) which uses different train-

ing databases. These databases are obtained from

the original training set by random subsampling.

We implement this approach by bagging, and use

the k-NN classification algorithm to make the cat-

egory predictions for testing documents. Finally,

we combine all predictions made for a given doc-

ument by Bayesian voting.

The experiment we present has been evaluated

for Reuters-21578 standard document collection.

Reuters-21578 is a multilabel document collec-

tion, which means that categories are not mutu-

ally exclusive because the same document may be

relevant to more than one category. Being aware

of the results published in the most recent litera-

ture, and having obtained good results in our ex-

periments, we consider the categorization method

presented in this paper an interesting contribution

for text categorization tasks.

The remainder of this paper is organized as fol-

lows: Section 2, discusses related work on docu-

ment categorization for Reuters-21578 collection.

In Section 3, we present our approach to deal with

the multilabel text categorization task. In Section

4 the experimental setup is introduced, and details

about the Reuters database, the preprocessing ap-

plied and some parameter setting are provided. In

Section 5, experimental results are presented and

discussed. Finally, Section 6 contains some con-

clusions and comments on future work.

25

2 Related Work

As previously mentioned in the introduction, text

categorization consists in assigning predefined

categories to text documents. In the past two

decades, document categorization has received

much attention and a considerable number of ma-

chine learning based approaches have been pro-

posed. A good tutorial on the state-of-the-art of

document categorization techniques can be found

in (Sebastiani, 2002).

In the document categorization task we can find

two cases; (1) the multilabel case, which means

that categories are not mutually exclusive, because

the same document may be relevant to more than

one category (1 to m category labels may be as-

signed to the same document, being m the to-

tal number of predefined categories), and (2) the

single-label case, where exactly one category is

assigned to each document. While most machine

learning systems are designated to handle multi-

class data1, much less common are systems that

can handle multilabel data.

For experimentation purposes, there are stan-

dard document collections available in the pub-

lic domain that can be used for document catego-

rization. The most widely used is Reuters-21578

collection, which is a multiclass (135 categories)

and multilabel (the mean number of categories as-

signed to a document is 1.2) dataset. Many ex-

periments have been carried out for the Reuters

collection. However, they have been performed in

different experimental conditions. This makes re-

sults difficult to compare among them. In fact, ef-

fectiveness results can only be compared between

studies that use the same training and testing sets.

In order to lead researchers to use the same train-

ing/testing divisions, the Reuters documents have

been specifically tagged, and researchers are en-

couraged to use one of those divisions. In our

experiment we use the “ModApte” split (Lewis,

2004).

In this section, we analize the category sub-

sets, evaluation measures and results obtained in

the past and in the recent years for Reuters-21578

ModApte split.

2.1 Category subsets

Concerning the evaluation of the classification

system, we restrict our attention to the TOPICS

1Categorization problems where there are more than two
possible categories.

group of categories that labels Reuters dataset,

which contains 135 categories. However, many

categories appear in no document and conse-

quently, and because inductive based learning

classifiers learn from training examples, these cat-

egories are not usually considered at evaluation

time. The most widely used subsets are the fol-

lowing:

• Top-10: It is the set of the 10 categories

which have the highest number of documents

in the training set.

• R(90): It is the set of 90 categories which

have at least one document in the training set

and one in the testing set.

• R(115): It is the set of 115 categories which

have at least one document in the training set.

In order to analyze the relative hardness of the

three category subsets, a very recent paper has

been published by Debole and Sebastiani (Debole

and Sebastiani, 2005) where a systematic, compar-

ative experimental study has been carried out.

The results of the classification system we pro-

pose are evaluated according to these three cate-

gory subsets.

2.2 Evaluation measures

The evaluation of a text categorization system is

usually done experimentally, by measuring the ef-

fectiveness, i.e. average correctness of the catego-

rization. In binary text categorization, two known

statistics are widely used to measure this effective-

ness: precision and recall. Precision (Prec) is the

percentage of documents correctly classified into a

given category, and recall (Rec) is the percentage

of documents belonging to a given category that

are indeed classified into it.

In general, there is a trade-off between preci-

sion and recall. Thus, a classifier is usually evalu-

ated by means of a measure which combines pre-

cision and recall. Various such measures have

been proposed. The breakeven point, the value at

which precision equals recall, has been frequently

used during the past decade. However, it has

been recently criticized by its proposer ((Sebas-

tiani, 2002) footnote 19). Nowadays, the F1 score

is more frequently used. The F1 score combines

recall and precision with an equal weight in the

following way:

F1 =
2 · Prec · Rec

Prec + Rec

26

Since precision and recall are defined only for

binary classification tasks, for multiclass problems

results need to be averaged to get a single perfor-

mance value. This will be done using microav-

eraging and macroaveraging. In microaveraging,

which is calculated by globally summing over all

individual cases, categories count proportionally

to the number of their positive testing examples.

In macroaveraging, which is calculated by aver-

aging over the results of the different categories,

all categories count the same. See (Debole and

Sebastiani, 2005; Yang, 1999) for more detailed

explanation of the evaluation measures mentioned

above.

2.3 Comparative Results

Sebastiani (Sebastiani, 2002) presents a table

where lists results of experiments for various train-

ing/testing divisions of Reuters. Although we are

aware that the results listed are microaveraged

breakeven point measures, and consequently, are

not directly comparable to the ones we present in

this paper, F1, we want to remark some of them.

In Table 1 we summarize the best results reported

for the ModApte split listed by Sebastiani.

Results reported by R(90) Top-10

(Joachims, 1998) 86.4

(Dumais et al., 1998) 87.0 92.0

(Weiss et.al., 1999) 87.8

Table 1: Microaveraged breakeven point results

reported by Sebastiani for the Reuters-21578

ModApte split.

In Table 2 we include some more recent re-

sults, evaluated according to the microaveraged

F1 score. For R(115) there is also a good result,

F1 = 87.2, obtained by (Zhang and Oles, 2001)2.

3 Proposed Approach

In this paper we propose a multiclassifier based

document categorization system. Documents in

the training and testing sets are represented in a

reduced dimensional vector space. Different train-

ing databases are generated from the original train-

2Actually, this result is obtained for 118 categories which
correspond to the 115 mentioned before and three more cat-
egories which have testing documents but no training docu-
ment assigned.

Results reported by R(90) Top-10

(Gao et al., 2003) 88.42 93.07

(Kim et al., 2005) 87.11 92.21

(Gliozzo and Strapparava, 2005) 92.80

Table 2: F1 results reported for the Reuters-21578

ModApte split.

ing dataset in order to construct the multiclassifier.

We use the k-NN classification algorithm, which

according to each training database makes a pre-

diction for testing documents. Finally, a Bayesian

voting scheme is used in order to definitively as-

sign category labels to testing documents.

In the rest of this section we make a brief re-

view of the SVD dimensionality reduction tech-

nique, the k-NN algorithm and the combination of

classifiers used.

3.1 The SVD Dimensionality Reduction

Technique

The classical Vector Space Model (VSM) has been

successfully employed to represent documents in

text categorization tasks. The newer method of

Latent Semantic Indexing (LSI) 3 (Deerwester et

al., 1990) is a variant of the VSM in which doc-

uments are represented in a lower dimensional

space created from the input training dataset. It

is based on the assumption that there is some

underlying latent semantic structure in the term-

document matrix that is corrupted by the wide va-

riety of words used in documents. This is referred

to as the problem of polysemy and synonymy. The

basic idea is that if two document vectors represent

two very similar topics, many words will co-occur

on them, and they will have very close semantic

structures after dimension reduction.

The SVD technique used by LSI consists in fac-

toring term-document matrix M into the product

of three matrices, M = UΣV T where Σ is a di-

agonal matrix of singular values in non-increasing

order, and U and V are orthogonal matrices of sin-

gular vectors (term and document vectors, respec-

tively). Matrix M can be approximated by a lower

rank Mp which is calculated by using the p largest

singular values of M . This operation is called

dimensionality reduction, and the p-dimensional

3http://lsi.research.telcordia.com,
http://www.cs.utk.edu/∼lsi

27

space to which document vectors are projected is

called the reduced space. Choosing the right di-

mension p is required for successful application

of the LSI/SVD technique. However, since there

is no theoretical optimum value for it, potentially

expensive experimentation may be required to de-

termine it (Berry and Browne, 1999).

For document categorization purposes (Dumais,

2004), the testing document q is also projected to

the p-dimensional space, qp = qT UpΣ
−1
p , and the

cosine is usually calculated to measure the seman-

tic similarity between training and testing docu-

ment vectors.

In Figure 1 we can see an ilustration of the doc-

ument vector projection. Documents in the train-

ing collection are represented by using the term-

document matrix M , and each one of the docu-

ments is represented by a vector in the R
m vec-

tor space like in the traditional vector space model

(VSM) scheme. Afterwards, the dimension p is se-

lected, and by applying SVD vectors are projected

to the reduced space. Documents in the testing

collection will also be projected to the same re-

duced space.

d1 d2

d3

d4d5

d2

d3

d4
d5d6

d7

d9603 d1

d9603

d6d7

...

..
.

R
m

Reuters-21578, ModApte, Training

VSM

SVD

M

R
p

d1 d2 d9603

Mp = UpΣpV
T
p

Figure 1: Vectors in the VSM are projected to the

reduced space by using SVD.

3.2 The k nearest neighbor classification

algorithm (k-NN)

k-NN is a distance based classification approach.

According to this approach, given an arbitrary test-

ing document, the k-NN classifier ranks its near-

est neighbors among the training documents, and

uses the categories of the k top-ranking neighbors

to predict the categories of the testing document

(Dasarathy, 1991). In this paper, the training and

testing documents are represented as reduced di-

mensional vectors in the lower dimensional space,

and in order to find the nearest neighbors of a

given document, we calculate the cosine similar-

ity measure.

In Figure 2 an ilustration of this phase can be

seen, where some training documents and a test-

ing document q are projected in the R
p reduced

space. The nearest to the qp testing document are

considered to be the vectors which have the small-

est angle with qp. According to the category labels

of the nearest documents, a category label predic-

tion, c, will be made for testing document q.

d34

d61

d23

d135

d509

k−NN

R
p

c

qp

Figure 2: The k-NN classifier is applied to qp test-

ing document and c category label is predicted.

We have decided to use the k-NN classifier be-

cause it has been found that on the Reuters-21578

database it performs best among the conventional

methods (Joachims, 1998; Yang, 1999) and be-

cause we have obtained good results in our pre-

vious work on text categorization for documents

written in Basque, a highly inflected language (Ze-

laia et al., 2005). Besides, the k-NN classification

algorithm can be easily adapted to multilabel cat-

egorization problems such as Reuters.

3.3 Combination of classifiers

The combination of multiple classifiers has been

intensively studied with the aim of improving the

accuracy of individual components (Ho et al.,

1994). Two widely used techniques to implement

this approach are bagging (Breiman, 1996), that

uses more than one model of the same paradigm;

and boosting (Freund and Schapire, 1999), in

which a different weight is given to different train-

ing examples looking for a better accuracy.

In our experiment we have decided to construct

a multiclassifier via bagging. In bagging, a set of

training databases TDi is generated by selecting n

training examples drawn randomly with replace-

ment from the original training database TD of n

examples. When a set of n1 training examples,

28

n1 < n, is chosen from the original training col-

lection, the bagging is said to be applied by ran-

dom subsampling. This is the approach used in our

work. The n1 parameter has been selected via tun-

ing. In Section 4.3 the selection will be explained

in a more extended way.

According to the random subsampling, given a

testing document q, the classifier will make a la-

bel prediction ci based on each one of the train-

ing databases TDi. One way to combine the pre-

dictions is by Bayesian voting (Dietterich, 1998),

where a confidence value cvi
cj

is calculated for

each training database TDi and category cj to be

predicted. These confidence values have been cal-

culated based on the original training collection.

Confidence values are summed by category. The

category cj that gets the highest value is finally

proposed as a prediction for the testing document.

In Figure 3 an ilustration of the whole ex-

periment can be seen. First, vectors in the

VSM are projected to the reduced space by using

SVD. Next, random subsampling is applied to the

training database TD to obtain different training

databases TDi. Afterwards the k-NN classifier is

applied for each TDi to make category label pre-

dictions. Finally, Bayesian voting is used to com-

bine predictions, and cj , and in some cases ck as

well, will be the final category label prediction of

the categorization system for testing document q.

In Section 4.3 the cases when a second category

label prediction ck is given are explained.

d1 d2 d9603

d1 d2

d3

d4d5

d2

d3

d4
d5d6

d7

d9603 d1

Reuters−21578, ModApte, Test

d9603

d6d7

...

q1 q2 q3299

q

q

d34
d61

d23

d135

d509

TD2TD1 TD30

Reuters−21578, ModApte, Train

..
.

k−NN k−NN

d50

d778

d848d638d256

d98

d2787

d33

d1989

d55

d4612

d9

VSM

VSM

SVD

k−NN

Random

Subsampling

Bayesian voting

TD

R
m R

m

R
p

R
p

R
p

R
p

M

Mp=UpΣpV T
p

qp=qT UpΣ−1
p

c1 c2 c30 cj ,(ck)

qp
qpqp

Figure 3: Proposed approach for multilabel docu-

ment categorization tasks.

4 Experimental Setup

The aim of this section is to describe the document

collection used in our experiment and to give an

account of the preprocessing techniques and pa-

rameter settings we have applied.

When machine learning and other approaches

are applied to text categorization problems, a com-

mon technique has been to decompose the mul-

ticlass problem into multiple, independent binary

classification problems. In this paper, we adopt a

different approach. We will be primarily interested

in a classifier which produces a ranking of possi-

ble labels for a given document, with the hope that

the appropriate labels will appear at the top of the

ranking.

4.1 Document Collection

As previously mentioned, the experiment reported

in this paper has been carried out for the Reuters-

21578 dataset4 compiled by David Lewis and orig-

inally collected by the Carnegie group from the

Reuters newswire in 1987. We use one of the

most widely used training/testing divisions, the

“ModApte” split, in which 75 % of the documents

(9,603 documents) are selected for training and the

remaining 25 % (3299 documents) to test the ac-

curacy of the classifier.

Document distribution over categories in both

the training and the testing sets is very unbalanced:

the 10 most frequent categories, top-10, account

75% of the training documents; the rest is dis-

tributed among the other 108 categories.

According to the number of labels assigned to

each document, many of them (19% in training

and 8.48% in testing) are not assigned to any cat-

egory, and some of them are assigned to 12. We

have decided to keep the unlabeled documents in

both the training and testing collections, as it is

suggested in (Lewis, 2004)5.

4.2 Preprocessing

The original format of the text documents is in

SGML. We perform some preprocessing to fil-

ter out the unused parts of a document. We pre-

served only the title and the body text, punctua-

tion and numbers have been removed and all let-

ters have been converted to lowercase. We have

4http://daviddlewis.com/resources/testcollections
5In the ”ModApte” Split section it is suggested as fol-

lows: “If you are using a learning algorithm that requires
each training document to have at least TOPICS category,
you can screen out the training documents with no TOPICS
categories. Please do NOT screen out any of the 3,299 docu-
ments - that will make your results incomparable with other
studies.”

29

used the tools provided in the web6 in order to ex-

tract text and categories from each document. We

have stemmed the training and testing documents

by using the Porter stemmer (Porter, 1980)7. By

using it, case and flection information are removed

from words. Consequently, the same experiment

has been carried out for the two forms of the doc-

ument collection: word-forms and Porter stems.

According to the dimension reduction, we have

created the matrices for the two mentioned doc-

ument collection forms. The sizes of the train-

ing matrices created are 15591 × 9603 for word-

forms and 11114 × 9603 for Porter stems. Differ-

ent number of dimensions have been experimented

(p = 100, 300, 500, 700).

4.3 Parameter setting

We have designed our experiment in order to op-

timize the microaveraged F1 score. Based on pre-

vious experiments (Zelaia et al., 2005), we have

set parameter k for the k-NN algorithm to k = 3.

This way, the k-NN classifier will give a category

label prediction based on the categories of the 3

nearest ones.

On the other hand, we also needed to decide

the number of training databases TDi to create. It

has to be taken into account that a high number of

training databases implies an increasing computa-

tional cost for the final classification system. We

decided to create 30 training databases. However,

this is a parameter that has not been optimized.

There are two other parameters which have been

tuned: the size of each training database and the

threshold for multilabeling. We now briefly give

some cues about the tuning performed.

4.3.1 The size of the training databases

As we have previously mentioned, documents

have been randomly selected from the original

training database in order to construct the 30 train-

ing databases TDi used in our classification sys-

tem. There are n = 9, 603 documents in the orig-

inal Reuters training collection. We had to decide

the number of documents to select in order to con-

struct each TDi. The number of documents se-

lected from each category preserves the propor-

tion of documents in the original one. We have

experimented to select different numbers n1 < n

6http://www.lins.fju.edu.tw/∼tseng/Collections/Reuters-
21578.html

7http://tartarus.org/martin/PorterStemmer/

of documents, according to the following formula:

n1 =
115∑

i=1

2 +
ti

j
, j = 10, 20, . . . , 70,

where ti is the total number of training documents

in category i. In Figure 4 it can be seen the vari-

ation of the n1 parameter depending on the value

of parameter j. We have experimented different j

values, and evaluated the results. Based on the re-

sults obtained we decided to select j = 60, which

means that each one of the 30 training databases

will have n1 = 298 documents. As we can see,

the final classification system will be using train-

ing databases which are quite smaller that the orig-

inal one. This gives a lower computational cost,

and makes the classification system faster.

P
ar

am
et

er
 n

1

Parameter j

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 10 20 30 40 50 60 70

Figure 4: Random subsampling rate.

4.3.2 Threshold for multilabeling

The k-NN algorithm predicts a unique cate-

gory label for each testing document, based on the

ranked list of categories obtained for each training

database TDi
8. As previously mentioned, we use

Bayesian voting to combine the predictions.

The Reuters-21578 is a multilabel database, and

therefore, we had to decide in which cases to as-

sign a second category label to a testing document.

Given that cj is the category with the highest value

in Bayesian voting and ck the next one, the second

ck category label will be assigned when the fol-

lowing relation is true:

cvck
> cvcj

× r, r = 0.1, 0.2, . . . , 0.9, 1

In Figure 5 we can see the mean number of cate-

gories assigned to a document for different values

8It has to be noted that unlabeled documents have been
preserved, and thus, our classification system treats unlabeled
documents as documents of a new category

30

of r. Results obtained were evaluated and based

on them we decided to select r = 0.4, which cor-

responds to a ratio of 1.05 categories.

Parameter r

M
u

lt
il

ab
el

in
g

 R
at

io

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5: Threshold for multilabeling.

5 Experimental Results

In Table 3 microaveraged F1 scores obtained

in our experiment are shown. As it could be

expected, a simple stemming process increases

slightly results, and it can be observed that the best

result for the three category subsets has been ob-

tained for the stemmed corpus, even though gain

is low (less than 0.6).

The evaluation for the Top-10 category subset

gives the best results, reaching up to 93.57%. In

fact, this is the expected behavior, as the number of

categories to be evaluated is small and the number

of documents in each category is high. For this

subset the best result has been obtained for 100

dimensions, although the variation is low among

results for 100, 300 and 500 dimensions. When

using higher dimensions results become poorer.

According to the R(90) and R(115) subsets, the

best results are 87.27% and 87.01% respectively.

Given that the difficulty of these subsets is quite

similar, their behavior is also analogous. As we

can see in the table, most of the best results for

these subsets have been obtained by reducing the

dimension of the space to 500.

6 Conclusions and Future Work

In this paper we present an approach for multilabel

document categorization problems which consists

in a multiclassifier system based on the k-NN al-

gorithm. The documents are represented in a re-

duced dimensional space calculated by SVD. We

want to emphasize that, due to the multilabel char-

acter of the database used, we have adapted the

Dimension reduction

Corpus 100 300 500 700

Words(10) 93.06 93.17 93.44 92.00

Porter(10) 93.57 93.20 93.50 92.57

Words(90) 84.90 86.71 87.09 86.18

Porter(90) 85.34 86.64 87.27 86.30

Words(115) 84.66 86.44 86.73 85.84

Porter(115) 85.13 86.47 87.01 86.00

Table 3: Microaveraged F1 scores for Reuters-

21578 ModApte split.

classification system in order for it to be multilabel

too. The learning of the system has been unique

(9603 training documents) and the category label

predictions made by the classifier have been eval-

uated on the testing set according to the three cat-

egory sets: top-10, R(90) and R(115). The mi-

croaveraged F1 scores we obtain are among the

best reported for the Reuters-21578.

As future work, we want to experiment with

generating more than 30 training databases, and

in a preliminary phase select the best among them.

The predictions made using the selected training

databases will be combined to obtain the final pre-

dictions.

When there is a low number of documents avail-

able for a given category, the power of LSI gets

limited to create a space that reflects interesting

properties of the data. As future work we want

to include background text in the training col-

lection and use an expanded term-document ma-

trix that includes, besides the 9603 training doc-

uments, some other relevant texts. This may in-

crease results, specially for the categories with less

documents (Zelikovitz and Hirsh, 2001).

In order to see the consistency of our classi-

fier, we also plan to repeat the experiment for the

RCV1 (Lewis et al., 2004), a new benchmark col-

lection for text categorization tasks which consists

of 800,000 manually categorized newswire stories

recently made available by Reuters.

7 Acknowledgements

This research was supported by the Univer-

sity of the Basque Country (UPV00141.226-T-

15948/2004) and Gipuzkoa Council in a European

31

Union Program.

References

Berry, M.W. and Browne, M.: Understanding Search
Engines: Mathematical Modeling and Text Re-
trieval. SIAM Society for Industrial and Applied
Mathematics, ISBN: 0-89871-437-0, Philadelphia,
(1999)

Breiman, L.: Bagging Predictors. Machine Learning,
24(2), 123–140, (1996)

Cristianini, N., Shawe-Taylor, J. and Lodhi, H.: Latent
Semantic Kernels. Proceedings of ICML’01, 18th
International Conference on Machine Learning, 66–
73, Morgan Kaufmann Publishers, (2001)

Dasarathy, B.V.: Nearest Neighbor (NN) Norms:
NN Pattern Recognition Classification Techniques.
IEEE Computer Society Press, (1991)

Debole, F. and Sebastiani, F.: An Analysis of the Rela-
tive Hardness of Reuters-21578 Subsets. Journal of
the American Society for Information Science and
Technology, 56(6),584–596, (2005)

Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer,
T.K. and Harshman, R.: Indexing by Latent Seman-
tic Analysis. Journal of the American Society for
Information Science, 41, 391–407, (1990)

Dietterich, T.G.: Machine-Learning Research: Four
Current Directions. The AI Magazine, 18(4), 97–
136, (1998)

Dumais, S.T., Platt, J., Heckerman, D. and Sahami,
M.: Inductive Learning Algorithms and Repre-
sentations for Text Categorization. Proceedings of
CIKM’98: 7th International Conference on Infor-
mation and Knowledge Management, ACM Press,
148–155 (1998)

Dumais, S.: Latent Semantic Analysis. ARIST, An-
nual Review of Information Science Technology, 38,
189–230, (2004)

Freund, Y. and Schapire, R.E.: A Short Introduction to
Boosting. Journal of Japanese Society for Artificial
Intelligence, 14(5), 771-780, (1999)

Gao, S., Wu, W., Lee, C.H. and Chua, T.S.: A Maxi-
mal Figure-of-Merit Learning Approach to Text Cat-
egorization. Proceedings of SIGIR’03: 26th An-
nual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
174–181, ACM Press, (2003)

Gliozzo, A. and Strapparava, C.: Domain Kernels
for Text Categorization. Proceedings of CoNLL’05:
9th Conference on Computational Natural Language
Learning, 56–63, (2005)

Ho, T.K., Hull, J.J. and Srihari, S.N.: Decision Combi-
nation in Multiple Classifier Systems. IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence, 16(1), 66–75, (1994)

Joachims, T. Text Categorization with Support Vector
Machines: Learning with Many Relevant Features.
Proceedings of ECML’98: 10th European Confer-
ence on Machine Learning, Springer 1398, 137–142,
(1998)

Kim, H., Howland, P. and Park, H.: Dimension Re-
duction in Text Classification with Support Vector
Machines. Journal of Machine Learning Research,
6, 37–53, MIT Press, (2005)

Lewis, D.D.: Reuters-21578 Text Catego-
rization Test Collection, Distribution 1.0.
http://daviddlewis.com/resources/testcollections
README file (v 1.3), (2004)

Lewis, D.D., Yang, Y., Rose, T.G. and Li, F.: RCV1: A
New Benchmark Collection for Text Categorization
Research. Journal of Machine Learning Research,
5, 361–397, (2004)

Porter, M.F.: An Algorithm for Suffix Stripping. Pro-
gram, 14(3), 130–137, (1980)

Salton, G. and McGill, M.: Introduction to Modern
Information Retrieval. McGraw-Hill, New York,
(1983)

Sebastiani, F.: Machine Learning in Automated Text
Categorization. ACM Computing Surveys, 34(1),
1–47, (2002)

Weiss, S.M., Apte, C., Damerau, F.J., Johnson, D.E.,
Oles, F.J., Goetz, T. and Hampp, T.: Maximizing
Text-Mining Performance. IEEE Intelligent Sys-
tems, 14(4),63–69, (1999)

Yang, Y. An Evaluation of Statistical Approaches to
Text Categorization. Journal of Information Re-
trieval. Kluwer Academic Publishers, 1,(1/2), 69–
90, (1999)

Zelaia, A., Alegria, I., Arregi, O. and Sierra, B.: An-
alyzing the Effect of Dimensionality Reduction in
Document Categorization for Basque. Proceedings
of L&TC’05: 2nd Language & Technology Confer-
ence, 72–75, (2005)

Zelikovitz, S. and Hirsh, H.: Using LSI for Text
Classification in the Presence of Background Text.
Proceedings of CIKM’01: 10th ACM International
Conference on Information and Knowledge Man-
agement, ACM Press, 113–118, (2001)

Zhang, T. and Oles, F.J.: Text Categorization Based
on Regularized Linear Classification Methods. In-
formation Retrieval, 4(1): 5–31, Kluwer Academic
Publishers, (2001)

32

Discourse Parsing: Learning FOL Rules based on Rich Verb Semantic
Representations to automatically label Rhetorical Relations

Rajen Subba

Computer Science

University of Illinois

Chicago, IL, USA

rsubba@cs.uic.edu

Barbara Di Eugenio

Computer Science

University of Illinois

Chicago, IL, USA

bdieugen@cs.uic.edu

Su Nam Kim

Department of CSSE

University of Melbourne

Carlton, VIC, Australia

snkim@csse.unimelb.edu.au

Abstract

We report on our work to build a dis-

course parser (SemDP) that uses seman-

tic features of sentences. We use an In-

ductive Logic Programming (ILP) System

to exploit rich verb semantics of clauses

to induce rules for discourse parsing. We

demonstrate that ILP can be used to learn

from highly structured natural language

data and that the performance of a dis-

course parsing model that only uses se-

mantic information is comparable to that

of the state of the art syntactic discourse

parsers.

1 Introduction

The availability of corpora annotated with syntac-

tic information have facilitated the use of prob-

abilistic models on tasks such as syntactic pars-

ing. Current state of the art syntactic parsers

reach accuracies between 86% and 90%, as mea-

sured by different types of precision and recall

(for more details see (Collins, 2003)). Recent

semantic (Kingsbury and Palmer, 2002) and dis-

course (Carlson et al., 2003) annotation projects

are paving the way for developments in seman-

tic and discourse parsing as well. However unlike

syntactic parsing, significant development in dis-

course parsing remains at large.

Previous work on discourse parsing ((Soricut

and Marcu, 2003) and (Forbes et al., 2001))

have focused on syntactic and lexical features

only. However, discourse relations connect

clauses/sentences, hence, descriptions of events

and states. It makes linguistic sense that the

semantics of the two clauses —generally built

around the semantics of the verbs, composed with

that of their arguments— affects the discourse re-

lation(s) connecting the clauses. This may be

even more evident in our instructional domain,

where relations derived from planning such as

Precondition-Act may relate clauses.

Of course, since semantic information is hard

to come by, it is not surprising that previous work

on discourse parsing did not use it, or only used

shallow word level ontological semantics as spec-

ified in WordNet (Polanyi et al., 2004). But when

rich sentence level semantics is available, it makes

sense to experiment with it for discourse parsing.

A second major difficulty with using such rich

verb semantic information, is that it is rep-

resented using complex data structures. Tradi-

tional Machine Learning methods cannot han-

dle highly structured data such as First Or-

der Logic (FOL), a representation that is suit-

ably used to represent sentence level seman-

tics. Such FOL representations cannot be reduced

to a vector of attribute/value pairs as the rela-

tions/interdependencies that exist among the pred-

icates would be lost.

Inductive Logic Programming (ILP) can learn

structured descriptions since it learns FOL de-

scriptions. In this paper, we present our first steps

using ILP to learn semantic descriptions of dis-

course relations. Also of relevance to the topic of

this workshop, is that discourse structure is inher-

ently highly structured, since discourse structure

is generally described in hierarchical terms: ba-

sic units of analysis, generally clauses, are related

by discourse relations, resulting in more complex

units, which in turn can be related via discourse re-

lations. At the moment, we do not yet address the

problem of parsing at higher levels of discourse.

We intend to build on the work we present in this

paper to achieve that goal.

The task of discourse parsing can be di-

vided into two disjoint sub-problems ((Soricut and

Marcu, 2003) and (Polanyi et al., 2004)). The two

sub-problems are automatic identification of seg-

ment boundaries and the labeling of rhetorical re-

lations. Though we consider the problem of auto-

matic segmentation to be an important part in dis-

course parsing, we have focused entirely on the

latter problem of automatically labeling rhetorical

33

Figure 1: SemDP System Architecture (Discourse Parser)

relations only. Our approach uses rich verb seman-

tics1 of elementary discourse units (EDUs)2 based

on VerbNet(Kipper et al., 2000) as background

knowledge and manually annotated rhetorical re-

lations as training examples. It is trained on a lot

fewer examples than the state of the art syntax-

based discourse parser (Soricut and Marcu, 2003).

Nevertheless, it achieves a comparable level of

performance with an F-Score of 60.24. Figure 1

shows a block diagram of SemDP’s system archi-

tecture. Segmentation, annotation of rhetorical re-

lations and parsing constitute the data collection

phase of the system. Learning is accomplished

using an ILP based system, Progol (Muggleton,

1995). As can be seen in Figure 1, Progol takes

as input both rich verb semantic information of

pairs of EDUs and the rhetorical relations between

them. The goal was to learn rules using the se-

mantic information from pairs of EDUs as in Ex-

ample 1:

(1) EDU1: ”Sometimes, you can add a liquid to the water

EDU2: ”to hasten the process”

relation(EDU1,EDU2,”Act:goal”).

to automatically label unseen examples with the

correct rhetorical relation.

The rest of the paper is organized as follows.

Section 2 describes our data collection methodol-

ogy. In section 3, Progol, the ILP system that we

1The semantic information we used is composed of Verb-
Net semantic predicates that capture event semantics as well
as thematic roles.

2EDUs are minimal discourse units produced as a result
of discourse segmentation.

used to induce rules for discourse parsing is de-

tailed. Evaluation results are presented in section

4 followed by the conclusion in section 5.

2 Data Collection

The lack of corpora annotated with both rhetorical

relations as well as sentence level semantic rep-

resentation led us to create our own corpus. Re-

sources such as (Kingsbury and Palmer, 2002) and

(Carlson et al., 2003) have been developed man-

ually. Since such efforts are time consuming and

costly, we decided to semi-automatically build our

annotated corpus. We used an existing corpus of

instructional text that is about 9MB in size and is

made up entirely of written English instructions.

The two largest components are home repair man-

uals (5Mb) and cooking recipes (1.7Mb). 3

Segmentation. The segmentation of the corpus

was done manually by a human coder. Our seg-

mentation rules are based on those defined in

(Mann and Thompson, 1988). For example, (as

shown in Example 2) we segment sentences in

which a conjunction is used with a clause at the

conjunction site.

(2) You can copy files (//) as well as cut messages.

(//) is the segmentation marker. Sentences are

segmented into EDUs. Not all the segmentation

3It was collected opportunistically off the internet and
from other sources, and originally assembled at the Informa-
tion Technology Research Institute, University of Brighton.

34

rules from (Mann and Thompson, 1988) are im-

ported into our coding scheme. For example, we

do not segment relative clauses. In total, our seg-

mentation resulted in 10,084 EDUs. The seg-

mented EDUs were then annotated with rhetorical

relations by the human coder4 and also forwarded

to the parser as they had to be annotated with se-

mantic information.

2.1 Parsing of Verb Semantics

We integrated LCFLEX (Rosé and Lavie, 2000),

a robust left-corner parser, with VerbNet (Kipper

et al., 2000) and CoreLex (Buitelaar, 1998). Our

interest in decompositional theories of lexical se-

mantics led us to base our semantic representation

on VerbNet.

VerbNet operationalizes Levin’s work and ac-

counts for 4962 distinct verbs classified into 237

main classes. Moreover, VerbNet’s strong syntac-

tic components allow it to be easily coupled with a

parser in order to automatically generate a seman-

tically annotated corpus.

To provide semantics for nouns, we use

CoreLex (Buitelaar, 1998), in turn based on the

generative lexicon(Pustejovsky, 1991). CoreLex

defines basic types such as art (artifact) or com

(communication). Nouns that share the same bun-

dle of basic types are grouped in the same System-

atic Polysemous Class (SPC). The resulting 126

SPCs cover about 40,000 nouns.

We modified and augmented LCFLEX’s exist-

ing lexicon to incorporate VerbNet and CoreLex.

The lexicon is based on COMLEX (Grishman et

al., 1994). Verb and noun entries in the lexicon

contain a link to a semantic type defined in the on-

tology. VerbNet classes (including subclasses and

frames) and CoreLex SPCs are realized as types in

the ontology. The deep syntactic roles are mapped

to the thematic roles, which are defined as vari-

ables in the ontology types. For more details on

the parser see (Terenzi and Di Eugenio, 2003).

Each of the 10,084 EDUs was parsed using the

parser. The parser generates both a syntactic tree

and the associated semantic representation – for

the purpose of this paper, we only focus on the

latter. Figure 2 shows the semantic representation

generated for EDU1 from Example 1, ”sometimes,

you can add a liquid to the water”.

The semantic representation in Figure 2 is part

4Double annotation and segmentation is currently being
done to assess inter-annotator agreement using kappa.

(*SEM*

((AGENT YOU)

(VERBCLASS ((VNCLASS MIX-22.1-2))) (EVENT +)

(EVENT0

((END

((ARG1 (LIQUID))

(FRAME *TOGETHER) (ARG0 PHYSICAL)

(ARG2 (WATER)))))))

(EVENTSEM

((FRAME *CAUSE) (ARG1 E) (ARG0 (YOU)))))

(PATIENT1 LIQUID)

(PATIENT2 WATER)

(ROOT-VERB ADD))

Figure 2: Parser Output (Semantic Information)

of the F-Structure produced by the parser. The

verb add is parsed for a transitive frame with a PP

modifier that belongs to the verb class ’MIX-22.1-

2’. The sentence contains two PATIENTs, namely

liquid and water. you is identified as the AGENT

by the parser. *TOGETHER and *CAUSE are the

primitive semantic predicates used by VerbNet.

Verb Semantics in VerbNet are defined as events

that are decomposed into stages, namely start, end,

during and result. The semantic representation in

Figure 2 states that there is an event EVENT0 in

which the two PATIENTs are together at the end.

An independent evaluation on a set of 200 sen-

tences from our instructional corpus was con-

ducted. 5 It was able to generate complete parses

for 72.2% and partial parses for 10.9% of the verb

frames that we expected it to parse, given the re-

sources. The parser cannot parse those sentences

(or EDUs) that contain a verb that is not cov-

ered by VerbNet. This coverage issue, coupled

with parser errors, exacerbates the problem of data

sparseness. This is further worsened by the fact

that we require both the EDUs in a relation set

to be parsed for the Machine Learning part of our

work. Addressing data sparseness is an issue left

for future work.

2.2 Annotation of Rhetorical Relations

The annotation of rhetorical relations was done

manually by a human coder. Our coding scheme

builds on Relational Discourse Analysis (RDA)

(Moser and Moore, 1995), to which we made mi-

5The parser evaluation was not based on EDUs but rather
on unsegmented sentences. A sentence contained one or
more EDUs.

35

nor modifications; in turn, as far as discourse rela-

tions are concerned, RDA was inspired by Rhetor-

ical Structure Theory (RST) (Mann and Thomp-

son, 1988).

Rhetorical relations were categorized as infor-

mational, elaborational, temporal and others. In-

formational relations describe how contents in

two relata are related in the domain. These re-

lations are further subdivided into two groups;

causality and similarity. The former group con-

sists of relations between an action and other ac-

tions or between actions and their conditions or

effects. Relations like ’act:goal’, ’criterion:act’

fall under this group. The latter group con-

sists of relations between two EDUs according

to some notion of similarity such as ’restate-

ment’ and ’contrast1:contrast2’. Elaborational

relations are interpropositional relations in which

a proposition(s) provides detail relating to some

aspect of another proposition (Mann and Thomp-

son, 1988). Relations like ’general:specific’ and

’circumstance:situation’ belong to this category.

Temporal relations like ’before:after’ capture time

differences between two EDUs. Lastly, the cate-

gory others includes relations not covered by the

previous three categories such as ’joint’ and ’inde-

terminate’.

Based on the modified coding scheme manual,

we segmented and annotated our instructional cor-

pus using the augmented RST tool from (Marcu et

al., 1999). The RST tool was modified to incor-

porate our relation set. Since we were only inter-

ested in rhetorical relations that spanned between

two adjacent EDUs 6, we obtained 3115 sets of

potential relations from the set of all relations that

we could use as training and testing data.

The parser was able to provide complete parses

for both EDUs in 908 of the 3115 relation sets.

These constitute the training and test set for Pro-

gol.

The semantic representation for the EDUs along

with the manually annotated rhetorical relations

were further processed (as shown in Figure 4) and

used by Progol as input.

3 The Inductive Logic Programming

Framework

We chose to use Progol, an Inductive Logic Pro-

gramming system (ILP), to learn rules based on

6At the moment, we are concerned with learning relations
between two EDUs at the base level of a Discourse Parse Tree
(DPT) and not at higher levels of the hierarchy.

the data we collected. ILP is an area of research

at the intersection of Machine Learning (ML) and

Logic Programming. The general problem speci-

fication in ILP is given by the following property:

B ∧ H |= E (3)

Given the background knowledge B and the ex-

amples E, ILP systems find the simplest consistent

hypothesis H, such that B and H entails E.

While most of the work in NLP that involves

learning has used more traditional ML paradigms

like decision-tree algorithms and SVMs, we did

not find them suitable for our data which is rep-

resented as Horn clauses. The requirement of us-

ing a ML system that could handle first order logic

data led us to explore ILP based systems of which

we found Progol most appropriate.

Progol combines Inverse Entailment with

general-to-specific search through a refinement

graph. A most specific clause is derived using

mode declarations along with Inverse Entailment.

All clauses that subsume the most specific clause

form the hypothesis space. An A*-like search

is used to search for the most probable theory

through the hypothesis space. Progol allows arbi-

trary programs as background knowledge and ar-

bitrary definite clauses as examples.

3.1 Learning from positive data only

One of the features we found appealing about Pro-

gol, besides being able to handle first order logic

data, is that it can learn from positive examples

alone.

Learning in natural language is a universal hu-

man process based on positive data only. How-

ever, the usual traditional learning models do not

work well without negative examples. On the

other hand, negative examples are not easy to ob-

tain. Moreover, we found learning from positive

data only to be a natural way to model the task of

discourse parsing.

To make the learning from positive data only

feasible, Progol uses a Bayesian framework. Pro-

gol learns logic programs with an arbitrarily low

expected error using only positive data. Of course,

we could have synthetically labeled examples of

relation sets (pairs of EDUs), that did not belong

to a particular relation, as negative examples. We

plan to explore this approach in the future.

A key issue in learning from positive data

only using a Bayesian framework is the ability

to learn complex logic programs. Without any

36

negative examples, the simplest rule or logic

program, which in our case would be a single

definite clause, would be assigned the highest

score as it captures the most number of examples.

In order to handle this problem, Progol’s scoring

function exercises a trade-off between the size of

the function and the generality of the hypothesis.

The score for a given hypothesis is calculated

according to formula 4.

ln p(H | E) = m ln

(

1

g(H)

)

−sz(H)+dm (4)

sz(H) and g(H) computes the size of the hy-

pothesis and the its generality respectively. The

size of a hypothesis is measured as the number

of atoms in the hypothesis whereas generality is

measured by the number of positive examples the

hypothesis covers. m is the number of examples

covered by the hypothesis and dm is a normaliz-

ing constant. The function ln p(H|E) decreases

with increases in sz(H) and g(H). As the number

of examples covered (m) grow, the requirements

on g(H) become even stricter. This property fa-

cilitates the ability to learn more complex rules

as they are supported by more positive examples.

For more information on Progol and the computa-

tion of Bayes’ posterior estimation, please refer to

(Muggleton, 1995).

3.2 Discourse Parsing with Progol

We model the problem of assigning the correct

rhetorical relation as a classification task within

the ILP framework. The rich verb semantic repre-

sentation of pairs of EDUs, as shown in Figure 3 7,

form the background knowledge and the manually

annotated rhetorical relations between the pairs of

EDUs, as shown in Figure 4, serve as the positive

examples in our learning framework. The num-

bers in the definite clauses are ids used to identify

the EDUs.

Progol constructs logic programs based on the

background knowledge and the examples in Fig-

ures 3 and 4. Mode declarations in the Progol in-

put file determines which clause to be used as the

head (i.e. modeh) and which ones to be used in

the body (i.e. modeb) of the hypotheses. Figure 5

shows an abridged set of our mode declarations.

7The output from the parser was further processed into
definite clauses.

...

agent(97,you).

together(97,event0,end,physical,liquid,water).

cause(97,you,e).

patient1(97,liquid).

patient2(97,water).

theme(98,process).

rushed(98,event0,during,process).

cause(98,AGENT98,e).

...

Figure 3: Background Knowledge for Example 1

...

relation(18,19,’Act:goal’).

relation(97,98,’Act:goal’).

relation(1279,1280,’Step1:step2’).

relation(1300,1301,’Step1:step2’).

relation(1310,1311,’Step1:step2’).

relation(412,413,’Before:after’).

relation(441,442,’Before:after’).

...

Figure 4: Positive Examples

Our mode declarations dictate that the predicate

relation be used as the head and the other pred-

icates (has possession, transfer and visible) form

the body of the hypotheses. ’*’ indicates that the

number of hypotheses to learn for a given relation

is unlimited. ’+’ and ’-’ signs indicate variables

within the predicates of which the former is an in-

put variable and the latter an output variable. ’#’

is used to denote a constant. Each argument of the

predicate is a type, whether a constant or a vari-

able. Types are defined as a single definite clause.

Our goal is to learn rules where the LHS of the

rule contains the relation that we wish to learn and

:- modeh(*,relation(+edu,+edu,#relationtype))?

:- modeb(*,has possession(+edu,#event,
#eventstage,+verbarg,+verbarg))?

:- modeb(*,has possession(+edu,#event,
#eventstage,+verbarg,-verbarg))?

:- modeb(*,transfer(+edu,#event,#eventstage,-verbarg))?
:- modeb(*,visible(+edu,#event,#eventstage,+verbarg))?
:- modeb(*,together(+edu,#event,

#eventstage,+verbarg,+verbarg,+verbarg))?
:- modeb(*,rushed(+edu,#event,#eventstage,+verbarg))?

Figure 5: Mode Declarations

37

RULE1:

relation(EDU1,EDU2,’Act:goal’) :-

degradation material integrity(EDU1,event0,result,C),

allow(EDU2,event0,during,C,D).

RULE2:

relation(EDU1,EDU2,’Act:goal’) :-

cause(EDU1,C,D),

together(EDU1,event0,end,E,F,G),

cause(EDU2,C,D).

RULE3:

relation(EDU1,EDU2,’Step1:step2’) :-

together(EDU2,event0,end,C,D,E),

has possession(EDU1,event0,during,C,F).

RULE4:

relation(EDU1,EDU2,’Before:after’) :-

motion(EDU1,event0,during,C),

location(EDU2,event0,start,C,D).

RULE6:

relation(EDU1,EDU2,’Act:goal’) :-

motion(EDU1,event0,during,C).

Figure 6: Rules Learned

the RHS is a CNF of the semantic predicates de-

fined in VerbNet with their arguments. Given the

amount of training data we have, the nature of the

data itself and the Bayesian framework used, Pro-

gol learns simple rules that contain just one or two

clauses on the RHS. 6 of the 68 rules that Progol

manages to learn are shown in Figure 6. RULE4

states that there is a theme in motion during the

event in EDU A (which is the first EDU) and that

the theme is located in location D at the start of

the event in EDU B (the second EDU). RULE2 is

learned from pairs of EDUs such as in Example

1. The simple rules in Figure 6 may not readily

appeal to our intuitive notion of what such rules

should include. It is not clear at this point as to

how elaborate these rules should be, in order to

correctly identify the relation in question. One

of the reasons why more complex rules are not

learned by Progol is that there aren’t enough train-

ing examples. As we add more training data in the

future, we will see if rules that are more elaborate

than the ones in Figure 6 are learned .

4 Evaluation of the Discourse Parser

Table 1 shows the sets of relations for which we

managed to obtain semantic representations (i.e.

for both the EDUs).

Relations like Preparation:act did not yield any

Relation Total Train Test

Set Set

Step1:step2: 232 188 44

Joint: 190

Goal:act: 170 147 23

General:specific: 77

Criterion:act: 53 46 7

Before:after: 53 42 11

Act:side-effect: 38

Co-temp1:co-temp2: 22

Cause:effect: 19

Prescribe-act:wrong-act: 14

Obstacle:situation: 11

Reason:act: 9

Restatement: 6

Contrast1:contrast2: 6

Circumstance:situation: 3

Act:constraint: 2

Criterion:wrong-act: 2

Set:member: 1

Act:justification: 0

Comparison: 0

Preparation:act: 0

Object:attribute: 0

Part:whole: 0

Same-unit: 0

Indeterminate: 0

908 423 85

Table 1: Relation Set Count (Total Counts include ex-

amples that yielded semantic representations for both EDUs)

examples that could potentially be used. For a

number of relations, the total number of examples

we could use were less than 50. For the time being,

we decided to use only those relation sets that had

more than 50 examples. In addition, we chose not

to use Joint and General:specific relations. They

will be included in the future. Hence, our training

and testing data consisted of the following four re-

lations: Goal:act, Step1:step2, Criterion:act and

Before:after. The total number of examples we

used was 508 of which 423 were used for training

and 85 were used for testing.

Table 2, Table 3 and Table 4 show the results

from running the system on our test data. A total

of 85 positive examples were used for testing the

system.

Table 2 evaluates our SemDP system against a

baseline. Our baseline is the majority function,

which performs at a 51.7 F-Score. SemDP outper-

forms the baseline by almost 10 percentage points

38

Discourse Precision Recall F-Score

Parser

SemDP 61.7 58.8 60.24

Baseline* 51.7 51.7 51.7

Table 2: Evaluation vs Baseline (* our baseline is

the majority function)

Relation Precision Recall F-Score

Goal:act 31.57 26.08 28.57

Step1:step2 75 75 75

Before:after 54.5 54.5 54.5

Criterion:act 71.4 71.4 71.4

Total 61.7 58.8 60.24

Table 3: Test Results for SemDP

with an F-Score of 60.24. To the best of our

knowledge, we are also not aware of any work that

uses rich semantic information for discourse pars-

ing. (Polanyi et al., 2004) do not provide any eval-

uation results at all. (Soricut and Marcu, 2003) re-

port that their SynDP parser achieved up to 63.8 F-

Score on human-segmented test data. Our result of

60.24 F-Score shows that a Discourse Parser based

purely on semantics can perform as well. How-

ever, since the corpus, the size of training data and

the set of rhetorical relations we have used differ

from (Soricut and Marcu, 2003), a direct compar-

ison cannot be made.

Table 3 breaks down the results in detail for

each of the four rhetorical relations we tested on.

Since we are learning from positive data only and

the rules we learn depend heavily on the amount

of training data we have, we expected the system

to be more accurate with the relations that have

more training examples. As expected, SemDP did

very well in labeling Step1:step2 relations. Sur-

prisingly though, it did not perform as well with

Goal:act, even though it had the second highest

number of training examples (147 in total). In fact,

SemDP misclassified more positive test examples

for Goal:act than Before:after or Criterion:act, re-

lations which had almost one third the number of

Relation Goal:act Step1:step2 Before:after Criterion:act

Goal:act 6 8 5 0

Step1:step2 6 33 5 0

Before:after 0 4 6 1

Criterion:act 0 0 2 5

Table 4: Confusion Matrix for SemDP Test Result

training examples. Overall SemDP achieved a pre-

cision of 61.7 and a Recall of 58.8.

In order to find out how the positive test exam-

ples were misclassified, we investigated the dis-

tribution of the relations classified by SemDP. Ta-

ble 4 is the confusion matrix that highlights this

issue. A majority of the actual Goal:act relations

are incorrectly classified as Step1:step1 and Be-

fore:after. Likewise, most of the misclassification

of actual Step1:step1 seems to labeled as Goal:act

or Before:after. Such misclassification occurs be-

cause the simple rules learned by SemDP are not

able to accurately distinguish cases where positive

examples of two different relations share similar

semantic predicates. Moreover, since we are learn-

ing using positive examples only, it is possible that

a positive example may satisfy two or more rules

for different relations. In such cases, the rule that

has the highest score (as calculated by formula 4)

is used to label the unseen example.

5 Conclusions and Future Work

We have shown that it is possible to learn First Or-

der Logic rules from complex semantic data us-

ing an ILP based methodology. These rules can

be used to automatically label rhetorical relations.

Moreover, our results show that a Discourse Parser

that uses only semantic information can perform

as well as the state of the art Discourse Parsers

based on syntactic and lexical information.

Future work will involve the use of syntactic in-

formation as well. We also plan to run a more thor-

ough evaluation on the complete set of relations

that we have used in our coding scheme. It is also

important that the manual segmentation and an-

notation of rhetorical relations be subject to inter-

annotator agreement. A second human annotator

is currently annotating a sample of the annotated

corpus. Upon completion, the annotated corpus

will be checked for reliability.

Data sparseness is a well known problem in Ma-

chine Learning. Like most paradigms, our learn-

ing model is also affected by it. We also plan to

explore techniques to deal with this issue.

39

Lastly, we have not tackled the problem of dis-

course parsing at higher levels of the DPT and seg-

mentation in this paper. Our ultimate goal is to

build a Discourse Parser that will automatically

segment a full text as well as annotate it with

rhetorical relations at every level of the DPT using

semantic as well as syntactic information. Much

work needs to be done but we are excited to see

what the aforesaid future work will yield.

Acknowledgments

This work is supported by award 0133123 from the National
Science Foundation. Thanks to C.P. Rosé for LCFLEX, M.
Palmer and K. Kipper for VerbNet, C. Buitelaar for CoreLex,
and Stephen Muggleton for Progol.

References

Paul Buitelaar. 1998. CoreLex: Systematic Polysemy
and Underspecification. Ph.D. thesis, Computer Science,
Brandeis University, February.

Lynn Carlson, Daniel Marcu, and Mary Ellen Okurowski.
2003. Building a discourse-tagged corpus in the frame-
work of Rhetorical Structure Theory. In Current Direc-
tions in Discourse and Dialogue, pp. 85-112, Jan van Kup-
pevelt and Ronnie Smith eds., Kluwer Academic Publish-
ers.

Michael Collins. 2003. Head-driven statistical methods for
natural language parsing. Computational Linguistics, 29.

Katherine Forbes, Eleni Miltsakaki, Rashmi Prasad, Anoop
Sarkar, Aravind Joshi and Bonnie Webber. 2001. D-
LTAG System - Discourse Parsing with a Lexicalized Tree
Adjoining Grammar. Information Stucture, Discourse
Structure and Discourse Semantics, ESSLLI, 2001.

Ralph Grishman, Catherine Macleod, and Adam Meyers.
1994. COMLEX syntax: Building a computational lex-
icon. In COLING 94, Proceedings of the 15th Interna-
tional Conference on Computational Linguistics, pages
472–477, Kyoto, Japan, August.

Paul Kingsbury and Martha Palmer. 2000. From Treebank
to Propbank. In Third International Conference on Lan-
guage Resources and Evaluation, LREC-02, Las Palmas,
Canary Islands, Spain, May 28 - June 3, 2002.

Karin Kipper, Hoa Trang Dang, and Martha Palmer. 2000.
Class-based construction of a verb lexicon. In AAAI-2000,
Proceedings of the Seventeenth National Conference on
Artificial Intelligence, Austin, TX.

Beth Levin and Malka Rappaport Hovav. 1992. Wiping the
slate clean: a lexical semantic exploration. In Beth Levin
and Steven Pinker, editors, Lexical and Conceptual Se-
mantics, Special Issue of Cognition: International Journal
of Cognitive Science. Blackwell Publishers.

William C. Mann and Sandra Thompson. 1988. Rhetorical
Structure Theory: toward a Functional Theory of Text Or-
ganization. Text, 8(3):243–281.

Daniel Marcu and Abdessamad Echihabi. 2002. An unsuper-
vised approach to recognizing discourse relations. In Pro-
ceedings of the 40th Annual Meeting of the Association for

Computational Linguistics (ACL-2002), Philadelphia, PA,
July.

Daniel Marcu, Magdalena Romera and Estibaliz Amorrortu.
1999. Experiments in Constructing a Corpus of Discourse
Trees: Problems, Annotation Choices, Issues. In The
Workshop on Levels of Representation in Discourse, pages
71-78, Edinburgh, Scotland, July.

M. G. Moser, and J. D. Moore. 1995. Using Discourse
Analysis and Automatic Text Generation to Study Dis-
course Cue Usage. In AAAI Spring Symposium on Empir-
ical Methods in Discourse Interpretation and Generation,
1995.

Stephen H. Muggleton. 1995. Inverse Entailment and Pro-
gol. In New Generation Computing Journal, Vol. 13, pp.
245-286, 1995.

Martha Palmer, Daniel Gildea and, Paul Kingsbury. 2005.
The Proposition Bank: An Annotated Corpus of Semantic
Roles. Computational Linguistics, 31(1):71–105.

Livia Polanyi, Christopher Culy, Martin H. van den Berg,
Gian Lorenzo Thione, and David Ahn. 2004. Senten-
tial Structure and Discourse Parsing. Proceedings of the
ACL2004 Workshop on Discourse Annotation, Barcelona,
Spain, July 25, 2004.

James Pustejovsky. 1991. The generative lexicon. Computa-
tional Linguistics, 17(4):409–441.

Carolyn Penstein Rosé and Alon Lavie. 2000. Balancing ro-
bustness and efficiency in unification-augmented context-
free parsers for large practical applications. In Jean-
Clause Junqua and Gertjan van Noord, editors, Robustness
in Language and Speech Technology. Kluwer Academic
Press.

Radu Soricut and Daniel Marcu. 2003. Sentence Level Dis-
course Parsing using Syntactic and Lexical Information.
In Proceedings of the Human Language Technology and
North American Assiciation for Computational Linguis-
tics Conference (HLT/NAACL-2003), Edmonton, Canada,
May-June.

Elena Terenzi and Barbara Di Eugenio. 2003. Building lex-
ical semantic representations for natural language instruc-
tions. In HLT-NAACL03, 2003 Human Language Tech-
nology Conference, pages 100–102, Edmonton, Canada,
May. (Short Paper).

40

Reranking Translation Hypotheses Using Structural Properties

Saša Hasan, Oliver Bender, Hermann Ney

Chair of Computer Science VI

RWTH Aachen University

D-52056 Aachen, Germany

{hasan,bender,ney}@cs.rwth-aachen.de

Abstract

We investigate methods that add syntac-

tically motivated features to a statistical

machine translation system in a reranking

framework. The goal is to analyze whether

shallow parsing techniques help in iden-

tifying ungrammatical hypotheses. We

show that improvements are possible by

utilizing supertagging, lightweight depen-

dency analysis, a link grammar parser and

a maximum-entropy based chunk parser.

Adding features to n-best lists and dis-

criminatively training the system on a de-

velopment set increases the BLEU score

up to 0.7% on the test set.

1 Introduction

Statistically driven machine translation systems

are currently the dominant type of system in the

MT community. Though much better than tradi-

tional rule-based approaches, these systems still

make a lot of errors that seem, at least from a hu-

man point of view, illogical.

The main purpose of this paper is to investigate

a means of identifying ungrammatical hypotheses

from the output of a machine translation system

by using grammatical knowledge that expresses

syntactic dependencies of words or word groups.

We introduce several methods that try to establish

this kind of linkage between the words of a hy-

pothesis and, thus, determine its well-formedness,

or “fluency”. We perform rescoring experiments

that rerank n-best lists according to the presented

framework.

As methodologies deriving well-formedness of

a sentence we use supertagging (Bangalore and

Joshi, 1999) with lightweight dependency anal-

ysis (LDA)1 (Bangalore, 2000), link grammars

(Sleator and Temperley, 1993) and a maximum-

entropy (ME) based chunk parser (Bender et al.,

2003). The former two approaches explicitly

model the syntactic dependencies between words.

Each hypothesis that contains irregularities, such

as broken linkages or non-satisfied dependencies,

should be penalized or rejected accordingly. For

the ME chunker, the idea is to train n-gram mod-

els on the chunk or POS sequences and directly

use the log-probability as feature score.

In general, these concepts and the underlying

programs should be robust and fast in order to be

able to cope with large amounts of data (as it is the

case for n-best lists). The experiments presented

show a small though consistent improvement in

terms of automatic evaluation measures chosen for

evaluation. BLEU score improvements, for in-

stance, lie in the range from 0.3 to 0.7% on the

test set.

In the following, Section 2 gives an overview

on related work in this domain. In Section 3

we review our general approach to statistical ma-

chine translation (SMT) and introduce the main

methodologies used for deriving syntactic depen-

dencies on words or word groups, namely su-

pertagging/LDA, link grammars and ME chunk-

ing. The corpora and the experiments are dis-

cussed in Section 4. The paper is concluded in

Section 5.

2 Related work

In (Och et al., 2004), the effects of integrating

syntactic structure into a state-of-the-art statistical

machine translation system are investigated. The

approach is similar to the approach presented here:

1In the context of this work, the term LDA is not to be
confused with linear discriminant analysis.

41

firstly, a word graph is generated using the base-

line SMT system and n-best lists are extracted ac-

cordingly, then additional feature functions repre-

senting syntactic knowledge are added and the cor-

responding scaling factors are trained discrimina-

tively on a development n-best list.

Och and colleagues investigated a large amount

of different feature functions. The field of appli-

cation varies from simple syntactic features, such

as IBM model 1 score, over shallow parsing tech-

niques to more complex methods using grammars

and intricate parsing procedures. The results were

rather disappointing. Only one of the simplest

models, i.e. the implicit syntactic feature derived

from IBM model 1 score, yielded consistent and

significant improvements. All other methods had

only a very small effect on the overall perfor-

mance.

3 Framework

In the following sections, the theoretical frame-

work of statistical machine translation using a di-

rect approach is reviewed. We introduce the su-

pertagging and lightweight dependency analysis

approach, link grammars and maximum-entropy

based chunking technique.

3.1 Direct approach to SMT

In statistical machine translation, the best trans-

lation êÎ
1 = ê1 . . . êi . . . êÎ

of source words fJ
1 =

f1 . . . fj . . . fJ is obtained by maximizing the con-

ditional probability

êÎ
1 = argmax

I,eI

1

{Pr(eI
1|f

J
1)}

= argmax
I,eI

1

{Pr(fJ
1 |e

I
1) · Pr(eI

1)}
(1)

using Bayes decision rule. The first probability

on the right-hand side of the equation denotes the

translation model whereas the second is the target

language model.

An alternative to this classical source-channel

approach is the direct modeling of the posterior

probability Pr(eI
1|f

J
1) which is utilized here. Us-

ing a log-linear model (Och and Ney, 2002), we

obtain

Pr(eI
1|f

J
1) =

exp
(

∑M
m=1

λmhm(eI
1, f

J
1)

)

∑

e′I
′

1

exp
(

∑M
m=1

λmhm(e′I
′

1 , fJ
1
)
) ,

(2)

where λm are the scaling factors of the models de-

noted by feature functions hm(·). The denomina-

tor represents a normalization factor that depends

only on the source sentence fJ
1 . Therefore, we can

omit it during the search process, leading to the

following decision rule:

êÎ
1 = argmax

I,eI

1

{

M
∑

m=1

λmhm(eI
1, f

J
1)

}

(3)

This approach is a generalization of the source-

channel approach. It has the advantage that ad-

ditional models h(·) can be easily integrated into

the overall system. The model scaling factors

λM
1 are trained according to the maximum en-

tropy principle, e.g., using the GIS algorithm. Al-

ternatively, one can train them with respect to

the final translation quality measured by an error

criterion (Och, 2003). For the results reported

in this paper, we optimized the scaling factors

with respect to a linear interpolation of word error

rate (WER), position-independent word error rate

(PER), BLEU and NIST score using the Downhill

Simplex algorithm (Press et al., 2002).

3.2 Supertagging/LDA

Supertagging (Bangalore and Joshi, 1999) uses the

Lexicalized Tree Adjoining Grammar formalism

(LTAG) (XTAG Research Group, 2001). Tree Ad-

joining Grammars incorporate a tree-rewriting for-

malism using elementary trees that can be com-

bined by two operations, namely substitution and

adjunction, to derive more complex tree structures

of the sentence considered. Lexicalization allows

us to associate each elementary tree with a lexical

item called the anchor. In LTAGs, every elemen-

tary tree has such a lexical anchor, also called head

word. It is possible that there is more than one el-

ementary structure associated with a lexical item,

as e.g. for the case of verbs with different subcat-

egorization frames.

The elementary structures, called initial and

auxiliary trees, hold all dependent elements within

the same structure, thus imposing constraints on

the lexical anchors in a local context. Basically,

supertagging is very similar to part-of-speech tag-

ging. Instead of POS tags, richer descriptions,

namely the elementary structures of LTAGs, are

annotated to the words of a sentence. For this pur-

pose, they are called supertags in order to distin-

guish them from ordinary POS tags. The result

is an “almost parse” because of the dependencies

42

very[β2]

food[α1] delicious[α3]

the[β1]

was[α2]

Figure 1: LDA: example of a derivation tree, β

nodes are the result of the adjunction operation on

auxiliary trees, α nodes of substitution on initial

trees.

coded within the supertags. Usually, a lexical item

can have many supertags, depending on the vari-

ous contexts it appears in. Therefore, the local am-

biguity is larger than for the case of POS tags. An

LTAG parser for this scenario can be very slow, i.e.

its computational complexity is in O(n6), because

of the large number of supertags, i.e. elementary

trees, that have to be examined during a parse. In

order to speed up the parsing process, we can ap-

ply n-gram models on a supertag basis in order to

filter out incompatible descriptions and thus im-

prove the performance of the parser. In (Banga-

lore and Joshi, 1999), a trigram supertagger with

smoothing and back-off is reported that achieves

an accuracy of 92.2% when trained on one million

running words.

There is another aspect to the dependencies

coded in the elementary structures. We can use

them to actually derive a shallow parse of the sen-

tence in linear time. The procedure is presented

in (Bangalore, 2000) and is called lightweight de-

pendency analysis. The concept is comparable to

chunking. The lightweight dependency analyzer

(LDA) finds the arguments for the encoded depen-

dency requirements. There exist two types of slots

that can be filled. On the one hand, nodes marked

for substitution (in α-trees) have to be filled by the

complements of the lexical anchor. On the other

hand, the foot nodes (i.e. nodes marked for adjunc-

tion in β-trees) take words that are being modified

by the supertag. Figure 1 shows a tree derived by

LDA on the sentence the food was very delicious

from the C-Star’03 corpus (cf. Section 4.1).

The supertagging and LDA tools are available

from the XTAG research group website.2

As features considered for the reranking exper-

iments we choose:

2http://www.cis.upenn.edu/˜xtag/

D D EA EA

P P

SS

the food very deliciouswas

Figure 2: Link grammar: example of a valid link-

age satisfying all constraints.

• Supertagger output: directly use the log-

likelihoods as feature score. This did not im-

prove performance significantly, so the model

was discarded from the final system.

• LDA output:

– dependency coverage: determine the

number of covered elements, i.e. where

the dependency slots are filled to the left

and right

– separate features for the number of mod-

ifiers and complements determined by

the LDA

3.3 Link grammar

Similar to the ideas presented in the previous sec-

tion, link grammars also explicitly code depen-

dencies between words (Sleator and Temperley,

1993). These dependencies are called links which

reflect the local requirements of each word. Sev-

eral constraints have to be satisfied within the link

grammar formalism to derive correct linkages, i.e.

sets of links, of a sequence of words:

1. Planarity: links are not allowed to cross each

other

2. Connectivity: links suffice to connect all

words of a sentence

3. Satisfaction: linking requirements of each

word are satisfied

An example of a valid linkage is shown in Fig-

ure 2. The link grammar parser that we use is

freely available from the authors’ website.3 Sim-

ilar to LTAG, the link grammar formalism is lex-

icalized which allows for enhancing the methods

with probabilistic n-gram models (as is also the

case for supertagging). In (Lafferty et al., 1992),

the link grammar is used to derive a new class of

3http://www.link.cs.cmu.edu/link/

43

[NP the food] [VP was] [ADJP very delicious]

the/DT food/NN was/VBD very/RB delicious/JJ

Figure 3: Chunking and POS tagging: a tag next

to the opening bracket denotes the type of chunk,

whereas the corresponding POS tag is given after

the word.

language models that, in comparison to traditional

n-gram LMs, incorporate capabilities for express-

ing long-range dependencies between words.

The link grammar dictionary that specifies the

words and their corresponding valid links cur-

rently holds approximately 60 000 entries and han-

dles a wide variety of phenomena in English. It is

derived from newspaper texts.

Within our reranking framework, we use link

grammar features that express a possible well-

formedness of the translation hypothesis. The sim-

plest feature is a binary one stating whether the

link grammar parser could derive a complete link-

age or not, which should be a strong indicator of

a syntactically correct sentence. Additionally, we

added a normalized cost of the matching process

which turned out not to be very helpful for rescor-

ing, so it was discarded.

3.4 ME chunking

Like the methods described in the two preced-

ing sections, text chunking consists of dividing a

text into syntactically correlated non-overlapping

groups of words. Figure 3 shows again our ex-

ample sentence illustrating this task. Chunks are

represented as groups of words between square

brackets. We employ the 11 chunk types as de-

fined for the CoNLL-2000 shared task (Tjong Kim

Sang and Buchholz, 2000).

For the experiments, we apply a maximum-

entropy based tagger which has been successfully

evaluated on natural language understanding and

named entity recognition (Bender et al., 2003).

Within this tool, we directly factorize the poste-

rior probability and determine the corresponding

chunk tag for each word of an input sequence. We

assume that the decisions depend only on a lim-

ited window ei+2

i−2
= ei−2...ei+2 around the current

word ei and on the two predecessor chunk tags

ci−1

i−2
. In addition, part-of-speech (POS) tags gI

1

are assigned and incorporated into the model (cf.

Figure 3). Thus, we obtain the following second-

order model:

Pr(cI
1|e

I
1, g

I
1) =

=

I
∏

i=1

Pr(ci|c
i−1

1
, eI

1, g
I
1) (4)

=

I
∏

i=1

p(ci|c
i−1

i−2
, ei+2

i−2
, gi+2

i−2
), (5)

where the step from Eq. 4 to 5 reflects our model

assumptions.

Furthermore, we have implemented a set of bi-

nary valued feature functions for our system, in-

cluding lexical, word and transition features, prior

features, and compound features, cf. (Bender et

al., 2003). We run simple count-based feature

reduction and train the model parameters using

the Generalized Iterative Scaling (GIS) algorithm

(Darroch and Ratcliff, 1972). In practice, the

training procedure tends to result in an overfitted

model. To avoid this, a smoothing method is ap-

plied where a Gaussian prior on the parameters is

assumed (Chen and Rosenfeld, 1999).

Within our reranking framework, we firstly use

the ME based tagger to produce the POS and

chunk sequences for the different n-best list hy-

potheses. Given several n-gram models trained on

the WSJ corpus for both POS and chunk models,

we then rescore the n-best hypotheses and simply

use the log-probabilities as additional features. In

order to adapt our system to the characteristics of

the data used, we build POS and chunk n-gram

models on the training corpus part. These domain-

specific models are also added to the n-best lists.

The ME chunking approach does not model ex-

plicit syntactic linkages of words. Instead, it in-

corporates a statistical framework to exploit valid

and syntactically coherent groups of words by ad-

ditionally looking at the word classes.

4 Experiments

For the experiments, we use the translation sys-

tem described in (Zens et al., 2005). Our phrase-

based decoder uses several models during search

that are interpolated in a log-linear way (as ex-

pressed in Eq. 3), such as phrase-based translation

models, word-based lexicon models, a language,

deletion and simple reordering model and word

and phrase penalties. A word graph containing

the most likely translation hypotheses is generated

during the search process. Out of this compact

44

Supplied Data Track

Arabic Chinese Japanese English

Train Sentences 20 000

Running Words 180 075 176 199 198 453 189 927

Vocabulary 15 371 8 687 9 277 6 870

Singletons 8 319 4 006 4 431 2 888

C-Star’03 Sentences 506

Running Words 3 552 3 630 4 130 3 823

OOVs (Running Words) 133 114 61 65

IWSLT’04 Sentences 500

Running Words 3 597 3 681 4 131 3 837

OOVs (Running Words) 142 83 71 58

Table 1: Corpus statistics after preprocessing.

representation, we extract n-best lists as described

in (Zens and Ney, 2005). These n-best lists serve

as a starting point for our experiments. The meth-

ods presented in Section 3 produce scores that are

used as additional features for the n-best lists.

4.1 Corpora

The experiments are carried out on a subset

of the Basic Travel Expression Corpus (BTEC)

(Takezawa et al., 2002), as it is used for the sup-

plied data track condition of the IWSLT evaluation

campaign. BTEC is a multilingual speech corpus

which contains tourism-related sentences similar

to those that are found in phrase books. For the

supplied data track, the training corpus contains

20 000 sentences. Two test sets, C-Star’03 and

IWSLT’04, are available for the language pairs

Arabic-English, Chinese-English and Japanese-

English.

The corpus statistics are shown in Table 1. The

average source sentence length is between seven

and eight words for all languages. So the task is

rather limited and very domain-specific. The ad-

vantage is that many different reranking experi-

ments with varying feature function settings can

be carried out easily and quickly in order to ana-

lyze the effects of the different models.

In the following, we use the C-Star’03 set for

development and tuning of the system’s parame-

ters. After that, the IWSLT’04 set is used as a

blind test set in order to measure the performance

of the models.

4.2 Rescoring experiments

The use of n-best lists in machine translation has

several advantages. It alleviates the effects of the

huge search space which is represented in word

graphs by using a compact excerpt of the n best

hypotheses generated by the system. Especially

for limited domain tasks, the size of the n-best list

can be rather small but still yield good oracle er-

ror rates. Empirically, n-best lists should have an

appropriate size such that the oracle error rate, i.e.

the error rate of the best hypothesis with respect to

an error measure (such as WER or PER) is approx-

imately half the baseline error rate of the system.

N -best lists are suitable for easily applying several

rescoring techniques since the hypotheses are al-

ready fully generated. In comparison, word graph

rescoring techniques need specialized tools which

can traverse the graph accordingly. Since a node

within a word graph allows for many histories, one

can only apply local rescoring techniques, whereas

for n-best lists, techniques can be used that con-

sider properties of the whole sentence.

For the Chinese-English and Arabic-English

task, we set the n-best list size to n = 1500. For

Japanese-English, n = 1000 produces oracle er-

ror rates that are deemed to be sufficiently low,

namely 17.7% and 14.8% for WER and PER, re-

spectively. The single-best output for Japanese-

English has a word error rate of 33.3% and

position-independent word error rate of 25.9%.

For the experiments, we add additional fea-

tures to the initial models of our decoder that have

shown to be particularly useful in the past, such as

IBM model 1 score, a clustered language model

score and a word penalty that prevents the hy-

potheses to become too short. A detailed defini-

tion of these additional features is given in (Zens

et al., 2005). Thus, the baseline we start with is

45

Chinese → English, C-Star’03 NIST BLEU[%] mWER[%] mPER[%]

Baseline 8.17 46.2 48.6 41.4

with supertagging/LDA 8.29 46.5 48.4 41.0

with link grammar 8.43 45.6 47.9 41.1

with supertagging/LDA + link grammar 8.22 47.5 47.7 40.8

with ME chunker 8.65 47.3 47.4 40.4

with all models 8.42 47.0 47.4 40.5

Chinese → English, IWSLT’04 NIST BLEU[%] mWER[%] mPER[%]

Baseline 8.67 45.5 49.1 39.8

with supertagging/LDA 8.68 45.4 49.8 40.3

with link grammar 8.81 45.0 49.0 40.2

with supertagging/LDA+link grammar 8.56 46.0 49.1 40.6

with ME chunker 9.00 44.6 49.3 40.6

with all models 8.89 46.2 48.1 39.6

Table 2: Effect of successively adding syntactic features to the Chinese-English n-best list for C-Star’03

(development set) and IWSLT’04 (test set).

BASE Any messages for me?

RESC Do you have any messages for me?

REFE Do you have any messages for me?

BASE She, not yet?

RESC She has not come yet?

REFE Lenny, she has not come in?

BASE How much is it to the?

RESC How much is it to the local call?

REFE How much is it to the city centre?

BASE This blot or.

RESC This is not clean.

REFE This still is not clean.

Table 3: Translation examples for the Chinese-

English test set (IWSLT’04): baseline system

(BASE) vs. rescored hypotheses (RESC) and refer-

ence translation (REFE).

already a very strong one. The log-linear inter-

polation weights λm from Eq. 3 are directly opti-

mized using the Downhill Simplex algorithm on a

linear combination of WER (word error rate), PER

(position-independent word error rate), NIST and

BLEU score.

In Table 2, we show the effect of adding the

presented features successively to the baseline.

Separate entries for experiments using supertag-

ging/LDA and link grammars show that a combi-

nation of these syntactic approaches always yields

some gain in translation quality (regarding BLEU

score). The performance of the maximum-entropy

based chunking is comparable. A combination of

all three models still yields a small improvement.

Table 3 shows some examples for the Chinese-

English test set. The rescored translations are syn-

tactically coherent, though semantical correctness

cannot be guaranteed. On the test data, we achieve

an overall improvement of 0.7%, 0.5% and 0.3%

in BLEU score for Chinese-English, Japanese-

English and Arabic-English, respectively (cf. Ta-

bles 4 and 5).

4.3 Discussion

From the tables, it can be seen that the use of

syntactically motivated feature functions within

a reranking concept helps to slightly reduce the

number of translation errors of the overall trans-

lation system. Although the improvement on the

IWSLT’04 set is only moderate, the results are

nevertheless comparable or better to the ones from

(Och et al., 2004), where, starting from IBM

model 1 baseline, an additional improvement of

only 0.4% BLEU was achieved using more com-

plex methods.

For the maximum-entropy based chunking ap-

proach, n-grams with n = 4 work best for the

chunker that is trained on WSJ data. The domain-

specific rescoring model which results from the

chunker being trained on the BTEC corpora turns

out to prefer higher order n-grams, with n = 6 or

more. This might be an indicator of the domain-

specific rescoring model successfully capturing

more local context.

The training of the other models, i.e. supertag-

ging/LDA and link grammar, is also performed on

46

Japanese → English, C-Star’03 NIST BLEU[%] mWER[%] mPER[%]

Baseline 9.09 57.8 31.3 25.0

with supertagging/LDA 9.13 57.8 31.3 24.8

with link grammar 9.46 57.6 31.9 25.3

with supertagging/LDA + link grammar 9.24 58.2 31.0 24.8

with ME chunker 9.31 58.7 30.9 24.4

with all models 9.21 58.9 30.5 24.3

Japanese → English, IWSLT’04 NIST BLEU[%] mWER[%] mPER[%]

Baseline 9.22 54.7 34.1 25.5

with supertagging/LDA 9.27 54.8 34.2 25.6

with link grammar 9.37 54.9 34.3 25.9

with supertagging/LDA + link grammar 9.30 55.0 34.0 25.6

with ME chunker 9.27 55.0 34.2 25.5

with all models 9.27 55.2 33.9 25.5

Table 4: Effect of successively adding syntactic features to the Japanese-English n-best list for C-Star’03

(development set) and IWSLT’04 (test set).

Arabic → English, C-Star’03 NIST BLEU[%] mWER[%] mPER[%]

Baseline 10.18 64.3 23.9 20.6

with supertagging/LDA 10.13 64.6 23.4 20.1

with link grammar 10.06 64.7 23.4 20.3

with supertagging/LDA + link grammar 10.20 65.0 23.2 20.2

with ME chunker 10.11 65.1 23.0 19.9

with all models 10.23 65.2 23.0 19.9

Arabic → English, IWSLT’04 NIST BLEU[%] mWER[%] mPER[%]

Baseline 9.75 59.8 26.1 21.9

with supertagging/LDA 9.77 60.5 25.6 21.5

with link grammar 9.74 60.5 25.9 21.7

with supertagging/LDA + link grammar 9.86 60.8 26.0 21.6

with ME chunker 9.71 59.9 25.9 21.8

with all models 9.84 60.1 26.4 21.9

Table 5: Effect of successively adding syntactic features to the Arabic-English n-best list for C-Star’03

(development set) and IWSLT’04 (test set).

out-of-domain data. Thus, further improvements

should be possible if the models were adapted to

the BTEC domain. This would require the prepa-

ration of an annotated corpus for the supertagger

and a specialized link grammar, which are both

time-consuming tasks.

The syntactically motivated methods (supertag-

ging/LDA and link grammars) perform similarly

to the maximum-entropy based chunker. It seems

that both approaches successfully exploit struc-

tural properties of language. However, one outlier

is ME chunking on the Chinese-English test data,

where we observe a lower BLEU but a larger NIST

score. For Arabic-English, the combination of all

methods does not seem to generalize well on the

test set. In that case, supertagging/LDA and link

grammar outperforms the ME chunker: the over-

all improvement is 1% absolute in terms of BLEU

score.

5 Conclusion

We added syntactically motivated features to a sta-

tistical machine translation system in a rerank-

ing framework. The goal was to analyze whether

shallow parsing techniques help in identifying un-

grammatical hypotheses. We showed that some

improvements are possible by utilizing supertag-

ging, lightweight dependency analysis, a link

47

grammar parser and a maximum-entropy based

chunk parser. Adding features to n-best lists and

discriminatively training the system on a develop-

ment set helped to gain up to 0.7% in BLEU score

on the test set.

Future work could include developing an

adapted LTAG for the BTEC domain or incor-

porating n-gram models into the link grammar

concept in order to derive a long-range language

model (Lafferty et al., 1992). However, we feel

that the current improvements are not significant

enough to justify these efforts. Additionally, we

will apply these reranking methods to larger cor-

pora in order to study the effects on longer sen-

tences from more complex domains.

Acknowledgments

This work has been partly funded by the

European Union under the integrated project

TC-Star (Technology and Corpora for Speech

to Speech Translation, IST-2002-FP6-506738,

http://www.tc-star.org), and by the R&D project

TRAMES managed by Bertin Technologies as

prime contractor and operated by the french DGA

(Délégation Générale pour l’Armement).

References

Srinivas Bangalore and Aravind K. Joshi. 1999. Su-
pertagging: An approach to almost parsing. Com-
putational Linguistics, 25(2):237–265.

Srinivas Bangalore. 2000. A lightweight dependency
analyzer for partial parsing. Computational Linguis-
tics, 6(2):113–138.

Oliver Bender, Klaus Macherey, Franz Josef Och, and
Hermann Ney. 2003. Comparison of alignment
templates and maximum entropy models for natural
language understanding. In EACL03: 10th Conf. of
the Europ. Chapter of the Association for Computa-
tional Linguistics, pages 11–18, Budapest, Hungary,
April.

Stanley F. Chen and Ronald Rosenfeld. 1999. A gaus-
sian prior for smoothing maximum entropy models.
Technical Report CMUCS-99-108, Carnegie Mellon
University, Pittsburgh, PA.

J. N. Darroch and D. Ratcliff. 1972. Generalized iter-
ative scaling for log-linear models. Annals of Math-
ematical Statistics, 43:1470–1480.

John Lafferty, Daniel Sleator, and Davy Temperley.
1992. Grammatical trigrams: A probabilistic model
of link grammar. In Proc. of the AAAI Fall Sympo-
sium on Probabilistic Approaches to Natural Lan-
guage, pages 89–97, Cambridge, MA.

Franz Josef Och and Hermann Ney. 2002. Discrimina-
tive training and maximum entropy models for sta-
tistical machine translation. In Proc. of the 40th An-
nual Meeting of the Association for Computational
Linguistics (ACL), pages 295–302, Philadelphia, PA,
July.

Franz Josef Och, Daniel Gildea, Sanjeev Khudanpur,
Anoop Sarkar, Kenji Yamada, Alex Fraser, Shankar
Kumar, Libin Shen, David Smith, Katherine Eng,
Viren Jain, Zhen Jin, and Dragomir Radev. 2004.
A smorgasbord of features for statistical machine
translation. In Proc. 2004 Meeting of the North
American chapter of the Association for Compu-
tational Linguistics (HLT-NAACL), pages 161–168,
Boston, MA.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Proc. of the
41st Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 160–167, Sapporo,
Japan, July.

William H. Press, Saul A. Teukolsky, William T. Vet-
terling, and Brian P. Flannery. 2002. Numerical
Recipes in C++. Cambridge University Press, Cam-
bridge, UK.

Daniel Sleator and Davy Temperley. 1993. Parsing
English with a link grammar. In Third International
Workshop on Parsing Technologies, Tilburg/Durbuy,
The Netherlands/Belgium, August.

Toshiyuki Takezawa, Eiichiro Sumita, F. Sugaya,
H. Yamamoto, and S. Yamamoto. 2002. Toward
a broad-coverage bilingual corpus for speech trans-
lation of travel conversations in the real world. In
Proc. of the Third Int. Conf. on Language Resources
and Evaluation (LREC), pages 147–152, Las Pal-
mas, Spain, May.

Erik F. Tjong Kim Sang and Sabine Buchholz.
2000. Introduction to the CoNLL-2000 shared
task: Chunking. In Proceedings of CoNLL-2000
and LLL-2000, pages 127–132, Lisbon, Portugal,
September.

XTAG Research Group. 2001. A Lexicalized Tree
Adjoining Grammar for English. Technical Re-
port IRCS-01-03, IRCS, University of Pennsylvania,
Philadelphia, PA, USA.

Richard Zens and Hermann Ney. 2005. Word graphs
for statistical machine translation. In 43rd Annual
Meeting of the Assoc. for Computational Linguis-
tics: Proc. Workshop on Building and Using Par-
allel Texts: Data-Driven Machine Translation and
Beyond, pages 191–198, Ann Arbor, MI, June.

Richard Zens, Oliver Bender, Saša Hasan, Shahram
Khadivi, Evgeny Matusov, Jia Xu, Yuqi Zhang, and
Hermann Ney. 2005. The RWTH phrase-based
statistical machine translation system. In Proceed-
ings of the International Workshop on Spoken Lan-
guage Translation (IWSLT), pages 155–162, Pitts-
burgh, PA, October.

48

Tree Kernel Engineering in Semantic Role Labeling Systems

Alessandro Moschitti and Daniele Pighin and Roberto Basili

University of Rome, Tor Vergata

{moschitti,basili}@info.uniroma2.it
daniele.pighin@gmail.com

Abstract

Recent work on the design of automatic

systems for semantic role labeling has

shown that feature engineering is a com-

plex task from a modeling and implemen-

tation point of view. Tree kernels alleviate

such complexity as kernel functions gener-

ate features automatically and require less

software development for data extraction.

In this paper, we study several tree kernel

approaches for both boundary detection

and argument classification. The compar-

ative experiments on Support Vector Ma-

chines with such kernels on the CoNLL

2005 dataset show that very simple tree

manipulations trigger automatic feature

engineering that highly improves accuracy

and efficiency in both phases. Moreover,

the use of different classifiers for internal

and pre-terminal nodes maintains the same

accuracy and highly improves efficiency.

1 Introduction

A lot of attention has been recently devoted to

the design of systems for the automatic label-

ing of semantic roles (SRL) as defined in two

important projects: FrameNet (Johnson and Fill-

more, 2000), inspired by Frame Semantics, and

PropBank (Kingsbury and Palmer, 2002) based

on Levin’s verb classes. In general, given a sen-

tence in natural language, the annotation of a pred-

icate’s semantic roles requires (1) the detection of

the target word that embodies the predicate and

(2) the detection and classification of the word se-

quences constituting the predicate’s arguments. In

particular, step (2) can be divided into two differ-

ent phases: (a) boundary detection, in which the

words of the sequence are detected and (b) argu-

ment classification, in which the type of the argu-

ment is selected.

Most machine learning models adopted for the

SRL task have shown that (shallow or deep) syn-

tactic information is necessary to achieve a good

labeling accuracy. This research brings a wide

empirical evidence in favor of the linking theories

between semantics and syntax, e.g. (Jackendoff,

1990). However, as no theory provides a sound

and complete treatment of such issue, the choice

and design of syntactic features for the automatic

learning of semantic structures requires remark-

able research efforts and intuition.

For example, the earlier studies concerning lin-

guistic features suitable for semantic role labeling

were carried out in (Gildea and Jurasfky, 2002).

Since then, researchers have proposed diverse syn-

tactic feature sets that only slightly enhance the

previous ones, e.g. (Xue and Palmer, 2004) or

(Carreras and Màrquez, 2005). A careful analy-

sis of such features reveals that most of them are

syntactic tree fragments of training sentences, thus

a natural way to represent them is the adoption of

tree kernels as described in (Moschitti, 2004). The

idea is to associate with each argument the mini-

mal subtree that includes the target predicate with

one of its arguments, and to use a tree kernel func-

tion to evaluate the number of common substruc-

tures between two such trees. Such approach is in

line with current research on the use of tree kernels

for natural language learning, e.g. syntactic pars-

ing re-ranking (Collins and Duffy, 2002), relation

extraction (Zelenko et al., 2003) and named entity

recognition (Cumby and Roth, 2003; Culotta and

Sorensen, 2004).

Regarding the use of tree kernels for SRL, in

(Moschitti, 2004) two main drawbacks have been

49

pointed out:

• Highly accurate boundary detection cannot

be carried out by a tree kernel model since

correct and incorrect arguments may share a

large portion of the encoding trees, i.e. they

may share many substructures.

• Manually derived features (extended with a

polynomial kernel) have been shown to be su-

perior to tree kernel approaches.

Nevertheless, we believe that modeling a com-

pletely kernelized SRL system is useful for the fol-

lowing reasons:

• We can implement it very quickly as the fea-

ture extractor module only requires the writ-

ing of the subtree extraction procedure. Tra-

ditional SRL systems are, in contrast, based

on the extraction of more than thirty features

(Pradhan et al., 2005), which require the writ-

ing of at least thirty different procedures.

• Combining it with a traditional attribute-

value SRL system allows us to obtain a more

accurate system. Usually the combination of

two traditional systems (based on the same

machine learning model) does not result in

an improvement as their features are more

or less equivalent as shown in (Carreras and

Màrquez, 2005).

• The study of the effective structural features

can inspire the design of novel linear fea-

tures which can be used with a more efficient

model (i.e. linear SVMs).

In this paper, we carry out tree kernel engineer-

ing (Moschitti et al., 2005) to increase both ac-

curacy and speed of the boundary detection and

argument classification phases. The engineering

approach relates to marking the nodes of the en-

coding subtrees in order to generate substructures

more strictly correlated with a particular argu-

ment, boundary or predicate. For example, mark-

ing the node that exactly covers the target ar-

gument helps tree kernels to generate different

substructures for correct and incorrect argument

boundaries.

The other technique that we applied to engineer

different kernels is the subdivision of internal and

pre-terminal nodes. We show that designing dif-

ferent classifiers for these two different node types

slightly increases the accuracy and remarkably de-

creases the learning and classification time.

An extensive experimentation of our tree ker-

nels with Support Vector Machines on the CoNLL

2005 data set provides interesting insights on the

design of performant SRL systems entirely based

on tree kernels.

In the remainder of this paper, Section 2 intro-

duces basic notions on SRL systems and tree ker-

nels. Section 3 illustrates our new kernels for both

boundary and classification tasks. Section 4 shows

the experiments of SVMs with the above tree ker-

nel based classifiers.

2 Preliminary Concepts

In this section we briefly define the SRL model

that we intend to design and the kernel function

that we use to evaluate the similarity between sub-

trees.

2.1 Basic SRL approach

The SRL approach that we adopt is based on the

deep syntactic parse (Charniak, 2000) of the sen-

tence that we intend to annotate semantically. The

standard algorithm is to classify the tree node pair

〈p, a〉, where p and a are the nodes that exactly

cover the target predicate and a potential argu-

ment, respectively. If 〈p, a〉 is labeled with an ar-

gument, then the terminal nodes dominated by a

will be considered as the words constituting such

argument. The number of pairs for each sentence

can be hundreds, thus, if we consider training cor-

pora of thousands of sentences, we have to deal

with millions of training instances.

The usual solution to limit such complexity is to

divide the labeling task in two subtasks:

• Boundary detection, in which a single clas-

sifier is trained on many instances to detect

if a node is an argument or not, i.e. if the

sequence of words dominated by the target

node constitutes a correct boundary.

• Argument classification: only the set of

nodes corresponding to correct boundaries

are considered. These can be used to train a

multiclassifier that, for such nodes, only de-

cides the type of the argument. For example,

we can train n classifiers in the style One-vs-

All. At classification time, for each argument

node, we can select the argument type asso-

ciated with the maximum among the n scores

provided by the single classifiers.

50

We adopt this solution as it enables us to use

only one computationally expensive classifier, i.e.

the boundary detection one. This, as well as the

argument classifiers, requires a feature represen-

tation of the predicate-argument pair. Such fea-

tures are mainly extracted from the parse trees of

the target sentence, e.g. Phrase Type, Predicate

Word, Head Word, Governing Category, Position

and Voice proposed in (Gildea and Jurasfky, 2002).

As most of the features proposed in literature

are subsumed by tree fragments, tree-kernel func-

tions are a natural way to produce them automati-

cally.

2.2 Tree kernel functions

Tree-kernel functions simply evaluate the number

of substructures shared between two trees T1 and

T2. Such functions can be seen as a scalar product

in the huge vector space constituted by all possi-

ble substructures of the training set. Thus, kernel

functions implicitly define a large feature space.

Formally, given a tree fragment space

{f1, f2, ..} = F , we can define an indica-

tor function Ii(n), which is equal to 1 if the

target fi is rooted at node n and equal to

0 otherwise. Therefore, a tree-kernel func-

tion K over T1 and T2 can be defined as

K(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2),
where NT1

and NT2
are the sets of the

T1’s and T2’s nodes, respectively and

∆(n1, n2) =
∑|F|

i=1 Ii(n1)Ii(n2). This latter

is equal to the number of common fragments

rooted at nodes n1 and n2 and, according to

(Collins and Duffy, 2002), it can be computed as

follows:

1. if the productions at n1 and n2 are different

then ∆(n1, n2) = 0;

2. if the productions at n1 and n2 are the

same, and n1 and n2 have only leaf chil-

dren (i.e. they are pre-terminal symbols) then

∆(n1, n2) = λ;

3. if the productions at n1 and n2 are the same,

and n1 and n2 are not pre-terminal then

∆(n1, n2) = λ
∏nc(n1)

j=1 (1 + ∆(cj
n1

, cj
n2

)).

where λ is the decay factor to scale down the im-

pact of large structures, nc(n1) is the number of

the children of n1 and cj
n is the j-th child of the

node n. Note that, as the productions are the same,

nc(n1) = nc(n2). Additionally, to map similar-

ity scores in the [0,1] range, we applied a nor-

Figure 1: The PAF subtree associated with A1.

Figure 2: Example of CMST.

malization in the kernel space, i.e. K ′(T1, T2) =
K(T1,T2)√

K(T1,T1)×K(T2,T2)
.

Once a kernel function is defined, we need to

characterize the predicate-argument pair with a

subtree. This allows kernel machines to generate a

large number of syntactic features related to such

pair. The approach proposed in (Moschitti, 2004)

selects the minimal subtree that includes a predi-

cate with its argument. We follow such approach

by studying and proposing novel, interesting solu-

tions.

3 Novel Kernels for SRL

The basic structure used to characterize the predi-

cate argument relation is the smallest subtree that

includes a predicate with one of its argument. For

example, in Figure 1, the dashed line encloses a

predicate argument feature (PAF) over the parse

tree of the sentence: ”Paul delivers a talk in for-

mal style”. This PAF is a subtree that characterizes

the predicate to deliver with its argument a talk.

In this section, we improve PAFs, propose dif-

ferent kernels for internal and pre-terminal nodes

and new kernels based on complete predicate ar-

51

Figure 3: Differences between PAF (a) and MPAF (b) structures.

gument structures.

3.1 Improving PAF

PAFs have shown to be very effective for argu-

ment classification but not for boundary detection.

The reason is that two nodes that encode correct

and incorrect boundaries may generate very sim-

ilar PAFs. For example, Figure 3.A shows two

PAFs corresponding to a correct (PAF+) and an

incorrect (PAF-) choice of the boundary for A1:

PAF+ from the NP vs. PAF- from the N nodes. The

number of their common substructures is high, i.e.

the four subtrees shown in Frame C. This prevents

the algorithm from making different decisions for

such cases.

To solve this problem, we specify which is the

node that exactly covers the argument (also called

argument node) by simply marking it with the la-

bel B denoting the boundary property. Figure 3.B

shows the two new marked PAFs (MPAFs). The

features generated from the two subtrees are now

very different so that there is only one substructure

in common (see Frame D). Note that, each markup

strategy impacts on the output of a kernel function

in terms of the number of structures common to

two trees. The same output can be obtained us-

ing unmarked trees and redefining consistently the

kernel function, e.g. the algorithm described in

Section 2.2.

An alternative way to partially solve the struc-

ture overlapping problem is the use of two differ-

ent classifiers, one for the internal nodes and one

for the pre-terminal nodes, and combining their

decisions. In this way, the negative example of

Figure 3 would not be used to train the same clas-

sifier that uses PAF+. Of course, similar structures

can both be rooted on internal nodes, therefore

they can belong to the training data of the same

classifier. However, the use of different classi-

fiers is motivated also by the fact that many ar-

gument types can be found mostly in pre-terminal

nodes, e.g. modifier or negation arguments, and

do not necessitate training data extracted from in-

ternal nodes. Consequently, it is more convenient

(at least from a computational point of view) to

use two different boundary classifiers, hereinafter

referred to as combined classifier.

3.2 Kernels on complete predicate argument

structures

The type of a target argument strongly depends on

the type and number of the predicate’s arguments1

(Punyakanok et al., 2005; Toutanova et al., 2005).

Consequently, to correctly label an argument, we

should extract features from the complete predi-

cate argument structure it belongs to. In contrast,

PAFs completely neglect the information (i.e. the

tree portions) related to non-target arguments.

One way to use this further information with

tree kernels is to use the minimum subtree that

spans all the predicate’s arguments. The whole

parse tree in Figure 1 is an example of such Min-

imum Spanning Tree (MST) as it includes all and

only the argument structures of the predicate ”to

deliver”. However, MSTs pose some problems:

• We cannot use them for the boundary detec-

tion task since we do not know the predi-

cate’s argument structure yet. However, we

can derive the MST (its approximation) from

the nodes selected by a boundary classifier,

i.e. the nodes that correspond to potential ar-

guments. Such approximated MSTs can be

easily used in the argument type classifica-

tion phase. They can also be used to re-rank

the most probable m sequences of arguments

for both labeling phases.

• Obviously, an MST is the same for all the

arguments it includes, thus we need a way

to differentiate it for each target argument.

1This is true at least for core arguments.

52

Again, we can mark the node that exactly

covers the target argument as shown in the

previous section. We refer to this subtree as

marked MST (MMST). However, for large

arguments (i.e. spread on a large part of the

sentence tree) the substructures’ likelihood of

being part of other arguments is quite high.

To address this latter problem, we can mark all

nodes that descend from the target argument node.

Figure 2 shows a MST in which the subtree as-

sociated with the target argument (AM) has the

nodes marked. We refer to this structure as a

completely marked MST (CMST). CMSTs may

be seen as PAFs enriched with new information

coming from the other arguments (i.e. the non-

marked subtrees). Note that if we consider only

the PAF subtree from a CMST we obtain a differ-

ently marked subtree which we refer to as CPAF.

In the next section we study the impact of the

proposed kernels on the boundary detection and

argument classification performance.

4 Experiments

In these experiments we evaluate the impact of our

proposed kernels in terms of accuracy and effi-

ciency. The accuracy improvement confirms that

the node marking approach enables the automatic

engineering of effective SRL features. The effi-

ciency improvement depends on (a) the less train-

ing data used when applying two distinct type clas-

sifiers for internal and pre-terminal nodes and (b) a

more adequate feature space which allows SVMs

to converge faster to a model containing a smaller

number of support vectors, i.e. faster training and

classification.

4.1 Experimental set up

The empirical evaluations were carried out within

the setting defined in the CoNLL-2005 Shared

Task (Carreras and Màrquez, 2005). We

used as a target dataset the PropBank corpus

available at www.cis.upenn.edu/∼ace, along

with the Penn TreeBank 2 for the gold trees

(www.cis.upenn.edu/∼treebank) (Marcus et al.,

1993), which includes about 53,700 sentences.

Since the aim of this study was to design a real

SRL system we adopted the Charniak parse trees

from the CoNLL 2005 Shared Task data (available

at www.lsi.upc.edu/∼srlconll/).

We used Section 02, 03 and 24 from the Penn

TreeBank in most of the experiments. Their char-

acteristics are shown in Table 1. Pos and Neg in-

dicate the number of nodes corresponding or not

to a correct argument boundary. Rows 3 and 4 re-

port such number for the internal and pre-terminal

nodes separately. We note that the latter are much

fewer than the former; this results in a very fast

pre-terminal classifier.

As the automatic parse trees contain errors,

some arguments cannot be associated with any

covering node. This prevents us to extract a tree

representation for them. Consequently, we do not

consider them in our evaluation. In sections 2, 3

and 24 there are 454, 347 and 731 such cases, re-

spectively.

The experiments were carried out with

the SVM-light-TK software available at

http://ai-nlp.info.uniroma2.it/moschitti/

which encodes fast tree kernel evaluation (Mos-

chitti, 2006) in the SVM-light software (Joachims,

1999). We used a regularization parameter (option

-c) equal to 1 and λ = 0.4 (see (Moschitti,

2004)).

4.2 Boundary Detection Results

In these experiments, we used Section 02 for train-

ing and Section 24 for testing. The results using

the PAF and the MPAF based kernels are reported

in Table 2 in rows 2 and 3, respectively. Columns

3 and 4 show the CPU testing time (in seconds)

and the F1 of the monolithic boundary classifier.

The next 3 columns show the CPU time for the in-

ternal (Int) and pre-terminal (Pre) node classifiers,

as well as their total (All). The F1 measures are

reported in the 3 rightmost columns. In particular,

the third column refers to the F1 of the combined

classifier. This has been computed by summing

correct, incorrect and not retrieved examples of the

two distinct classifiers.

We note that: first, the monolithic classifier ap-

plied to MPAF improves both the efficiency, i.e.

about 3,131 seconds vs. 5,179, of PAF and the

F1, i.e. 82.07 vs. 75.24. This suggests that mark-

ing the argument node simplifies the generaliza-

tion process.

Second, by dividing the boundary classifica-

tion in two tasks, internal and pre-terminal nodes,

we furthermore improve the classification time for

both PAF and MPAF kernels, i.e. 5,179 vs. 1,851

(PAF) and 3,131 vs. 1,471 (MPAF). The sepa-

rated classifiers are much faster, especially the pre-

terminal one (about 61 seconds to classify 81,075

nodes).

53

Section 2 Section 3 Section 24

Nodes pos neg tot pos neg tot pos neg tot

Internal 11,847 71,126 82,973 6,403 53,591 59,994 7,525 50,123 57,648

Pre-terminal 894 114,052 114,946 620 86,232 86,852 709 80,366 81,075

Both 12,741 185,178 197,919 7,023 139,823 146,846 8,234 130,489 138,723

Table 1: Tree nodes of the sentences from sections 2, 3 and 24 of the PropBank. pos and neg are the

nodes that exactly cover arguments and all the other nodes, respectively.

Monolithic Combined

Tagging strategy CPUtime F1
CPUtime F1

Int Pre All Int Pre All

PAF 5,179.18 75.24 1,794.92 56.72 1,851.64 79.93 79.39 79.89

MPAF 3,131.56 82.07 1,410.10 60.99 1,471.09 82.20 79.14 81.96

Table 2: F1 comparison between PAF and MPAF based kernels using different classification strategies.

Int, Pre and ALL are the internal, pre-terminal and combined classifiers. The CPU time refers to the

classification time in seconds of all Section 24.

Figure 4: Learning curve comparison between the

PAF and MPAF F1 measures using the combined

classifier.

Third, the combined classifier approach seems

quite feasible as its F1 is almost equal to the mono-

lithic one (81.96 vs. 82.07) in case of MPAF and

even superior when using PAF (79.89 vs. 75.34).

This result confirms the observation given in Sec-

tion 3.1 about the importance of reducing the num-

ber of substructures common to PAFs associated

with correct and incorrect boundaries.

Finally, we trained the combined boundary clas-

sifiers with sets of increasing size to derive the

learning curves of the PAF and MPAF models.

To have more significant results, we increased the

training set by using also sections from 03 to 07.

Figure 4 shows that the MPAF approach is con-

stantly over the PAF. Consider also that the mark-

ing strategy has a lesser impact on the combined

classifier.

4.3 Argument Classification Results

In these experiments we tested different kernels

on the argument classification task. As some ar-

guments have a very small number of training in-

stances in a single section, we also used Section

03 for training and we continued to test on only

Section 24.

The results of the multiclassifiers on 59 argu-

ment types2 (e.g. constituted by 59 binary clas-

sifiers in the monolithic approach) are reported in

Table 3. The rows from 3 to 5 report the accuracy

when using the PAF, MPAF and CPAF whereas the

rows from 6 to 8 show the accuracy for the com-

plete argument structure approaches, i.e. MST,

MMST and CMST.

More in detail, Column 2 shows the accuracy of

the monolithic multi-argument classifiers whereas

Columns 3, 4 and 5 report the accuracy of the in-

ternal, pre-terminal and combined multi-argument

classifiers, respectively.

We note that:

First, the two classifier approach does not im-

prove the monolithic approach accuracy. Indeed,

the subtrees describing different argument types

are quite different and this property holds also for

the pre-terminal nodes. However, we still mea-

sured a remarkable improvement in efficiency.

Second, MPAF is the best kernel. This con-

firms the outcome on boundary detection ex-

periments. The fact that it is more accu-

rate than CPAF reveals that we need to distin-

27 for the core arguments (A0...AA), 13 for the adjunct
arguments (AM-*), 19 for the argument references (R-*) and
20 for the continuations (C-*).

54

Monolithic
Combined

Tagging strategy Internal nodes Pre-terminals Overall

PAF 75.06 74.16 85.61 75.15

MPAF 77.17 76.25 85.76 77.07

CPAF 76.79 75.68 85.76 76.54

MST 34.80 36.52 78.14 40.10

MMST 72.55 71.59 86.32 72.86

CMST 73.21 71.93 86.32 73.17

Table 3: Accuracy produced by different tree kernels on argument classification. We trained on sections

02 and 03 and tested on Section 24.

guish the argument node from the other nodes.

To explain this, suppose that two argument

nodes, NP1 and NP2, dominate the follow-

ing structures: [NP1 [NP [DT NN]][PP]]

and [NP2 [DT NN]]. If we mark only the

argument node we obtain [NP-B [NP [DT

NN]][PP]] and [NP-B [DT NN]] which

have no structure in common. In contrast, if

we mark them completely, i.e. [NP-B [NP-B

[DT-B NN-B]][PP-B]] and [NP-B [DT-B

NN-B]], they will share the subtree [NP-B

[DT-B NN-B]]. Thus, although it may seem

counterintuitive, by marking only one node, we

obtain more specific substructures. Of course, if

we use different labels for the argument nodes and

their descendants, we obtain the same specializa-

tion effect.

Finally, if we do not mark the target argument

in the MSTs, we obtain a very low result (i.e.

40.10%) as expected. When we mark the cover-

ing node or the complete argument subtree we ob-

tain an acceptable accuracy. Unfortunately, such

accuracy is lower than the one produced by PAFs,

e.g. 73.17% vs. 77.07%, thus it may seem that

the additional information provided by the whole

argument structure is not effective. A more care-

ful analysis can be carried out by considering a

CMST as composed by a PAF and the rest of the

argument structure. We observe that some pieces

of information provided by a PAF are not deriv-

able by a CMST (or a MMST). For example, Fig-

ure 1 shows that the PAF contains the subtree [VP

[V NP]] while the associated CMST (see Figure

2) contains [VP [V NP PP]]. The latter struc-

ture is larger and more sparse and consequently,

the learning machine applied to CMSTs (or MM-

STs) performs a more difficult generalization task.

This problem is emphasized by our use of the ad-

juncts in the design of MSTs. As adjuncts tend to

be the same for many predicates they do not pro-

vide a very discriminative information.

5 Discussions and Conclusions

The design of automatic systems for the labeling

of semantic roles requires the solution of complex

problems. Among others, feature engineering is

made difficult by the structural nature of the data,

i.e. features should represent information con-

tained in automatic parse trees. This raises two

problems: (1) the modeling of effective features,

partially solved in the literature work and (2) the

implementation of the software for the extraction

of a large number of such features.

A system completely based on tree kernels al-

leviate both problems as (1) kernel functions au-

tomatically generate features and (2) only a pro-

cedure for subtree extraction is needed. Although

some of the manual designed features seem to be

superior to those derived with tree kernels, their

combination seems still worth applying.

In this paper, we have improved tree kernels

by studying different strategies: MPAF and the

combined classifier (for internal and pre-terminal

nodes) highly improve efficiency and accuracy in

both the boundary detection and argument classi-

fication tasks. In particular, MPAF improves the

old PAF-based tree kernel of about 8 absolute per-

cent points in the boundary classification task, and

when used along the combined classifier approach

the speed of the model increases of 3.5 times. In

case of argument classification the improvement is

less evident but still consistent, about 2%.

We have also studied tree representations based

on complete argument structures (MSTs). Our

preliminary results seem to suggest that additional

information extracted from other arguments is not

effective. However, such findings are affected by

two main problems: (1) We used adjuncts in the

tree representation. They are likely to add more

noise than useful information for the recognition

of the argument type. (2) The traditional PAF

contains subtrees that cannot be derived by the

55

MMSTs, thus we should combine these structures

rather than substituting one with the other.

In the future, we plan to extend this study as

follows:

First, our results are computed individually for

boundary and classification tasks. Moreover, in

our experiments, we removed arguments whose

PAF or MST could not be extracted due to errors

in parse trees. Thus, we provided only indicative

accuracy to compare the different tree kernels. A

final evaluation of the most promising structures

using the CoNLL 2005 evaluator should be carried

out to obtain a sound evaluation.

Second, as PAFs and MSTs should be com-

bined to generate more information, we are go-

ing to carry out a set of experiments that com-

bine different kernels associated with different

subtrees. Moreover, as shown in (Basili and Mos-

chitti, 2005; Moschitti, 2006), there are other tree

kernel functions that generate different fragment

types. The combination of such functions with the

marking strategies may provide more general and

effective kernels.

Third, once the final set of the most promising

kernels is established, we would like to use all the

available CoNLL 2005 data. This would allow us

to study the potentiality of our approach by exactly

comparing with literature work.

Next, our fast tree kernel function along with

the combined classification approach and the im-

proved tree representation make the learning and

classification much faster so that the overall run-

ning time is comparable with polynomial kernels.

However, when these latter are used with SVMs

the running time is prohibitive when very large

datasets (e.g. millions of instances) are targeted.

Exploiting tree kernel derived features in a more

efficient way is thus an interesting line of future

research.

Finally, as CoNLL 2005 has shown that the

most important contribution relates on re-ranking

predicate argument structures based on one single

tree (Toutanova et al., 2005) or several trees (Pun-

yakanok et al., 2005), we would like to use tree

kernels for the re-ranking task.

Acknowledgments

This research is partially supported by the Euro-

pean project, PrestoSpace (FP6-IST-507336).

References

Roberto Basili and Alessandro Moschitti. 2005. Automatic
Text Categorization: from Information Retrieval to Sup-
port Vector Learning. Aracne Press, Rome, Italy.

Xavier Carreras and Lluı́s Màrquez. 2005. Introduction to
the CoNLL-2005 shared task: Semantic role labeling. In
Proceedings of CoNLL’05.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proceedings of the NACL’00.

Michael Collins and Nigel Duffy. 2002. New ranking al-
gorithms for parsing and tagging: Kernels over discrete
structures, and the voted perceptron. In ACL’02.

Aron Culotta and Jeffrey Sorensen. 2004. Dependency tree
kernels for relation extraction. In Proceedings of ACL’04.

Chad Cumby and Dan Roth. 2003. Kernel methods for rela-
tional learning. In Proceedings of ICML’03.

Daniel Gildea and Daniel Jurasfky. 2002. Automatic
labeling of semantic roles. Computational Linguistic,
28(3):496–530.

R. Jackendoff. 1990. Semantic Structures, Current Studies in
Linguistics series. Cambridge, Massachusetts: The MIT
Press.

T. Joachims. 1999. Making large-scale SVM learning prac-
tical. In B. Schölkopf, C. Burges, and A. Smola, editors,
Advances in Kernel Methods - Support Vector Learning.

Christopher R. Johnson and Charles J. Fillmore. 2000. The
framenet tagset for frame-semantic and syntactic coding
of predicate-argument structure. In In the Proceedings
ANLP-NAACL.

Paul Kingsbury and Martha Palmer. 2002. From Treebank to
PropBank. In Proceedings of LREC’02.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. 1993.
Building a large annotated corpus of english: The Penn
Treebank. Computational Linguistics, 19:313–330.

Alessandro Moschitti. 2004. A study on convolution kernels
for shallow semantic parsing. In Proceedings of ACL’04,
Barcelona, Spain.

Alessandro Moschitti, Bonaventura Coppola, Daniele Pighin,
and Roberto Basili. 2005. Engineering of syntactic fea-
tures for shallow semantic parsing. In of the ACL05 Work-
shop on Feature Engineering for Machine Learning in
Natural Language Processing, USA.

Alessandro Moschitti. 2006. Making tree kernels practical
for natural language learning. In Proceedings of EACL’06,
Trento, Italy.

Sameer Pradhan, Kadri Hacioglu, Valeri Krugler, Wayne
Ward, James H. Martin, and Daniel Jurafsky. 2005. Sup-
port vector learning for semantic argument classification.
Machine Learning Journal.

V. Punyakanok, D. Roth, and W. Yih. 2005. The necessity of
syntactic parsing for semantic role labeling. In Proceed-
ings of IJCAI’05.

Kristina Toutanova, Aria Haghighi, and Christopher Man-
ning. 2005. Joint learning improves semantic role label-
ing. In Proceedings of ACL’05.

Nianwen Xue and Martha Palmer. 2004. Calibrating features
for semantic role labeling. In Proceedings of EMNLP
2004.

D. Zelenko, C. Aone, and A. Richardella. 2003. Ker-

nel methods for relation extraction. Journal of Machine

Learning Research.

56

Syntagmatic Kernels:
a Word Sense Disambiguation Case Study

Claudio Giuliano and Alfio Gliozzo and Carlo Strapparava

ITC-irst, Istituto per la Ricerca Scientifica e Tecnologica

I-38050, Trento, ITALY

{giuliano,gliozzo,strappa}@itc.it

Abstract

In this paper we present a family of ker-

nel functions, named Syntagmatic Ker-

nels, which can be used to model syn-

tagmatic relations. Syntagmatic relations

hold among words that are typically collo-

cated in a sequential order, and thus they

can be acquired by analyzing word se-

quences. In particular, Syntagmatic Ker-

nels are defined by applying a Word Se-

quence Kernel to the local contexts of the

words to be analyzed. In addition, this

approach allows us to define a semi su-

pervised learning schema where external

lexical knowledge is plugged into the su-

pervised learning process. Lexical knowl-

edge is acquired from both unlabeled data

and hand-made lexical resources, such as

WordNet. We evaluated the syntagmatic

kernel on two standard Word Sense Dis-

ambiguation tasks (i.e. English and Ital-

ian lexical-sample tasks of Senseval-3),

where the syntagmatic information plays

a crucial role. We compared the Syntag-

matic Kernel with the standard approach,

showing promising improvements in per-

formance.

1 Introduction

In computational linguistics, it is usual to deal with

sequences: words are sequences of letters and syn-

tagmatic relations are established by sequences of

words. Sequences are analyzed to measure morpho-

logical similarity, to detect multiwords, to represent

syntagmatic relations, and so on. Hence modeling

syntagmatic relations is crucial for a wide variety

of NLP tasks, such as Named Entity Recognition

(Gliozzo et al., 2005a) and Word Sense Disambigua-

tion (WSD) (Strapparava et al., 2004).

In general, the strategy adopted to model syntag-

matic relations is to provide bigrams and trigrams of

collocated words as features to describe local con-

texts (Yarowsky, 1994), and each word is regarded

as a different instance to classify. For instance, oc-

currences of a given class of named entities (such

as names of persons) can be discriminated in texts

by recognizing word patterns in their local contexts.

For example the token Rossi, whenever is preceded

by the token Prof., often represents the name of a

person. Another task that can benefit from modeling

this kind of relations is WSD. To solve ambiguity it

is necessary to analyze syntagmatic relations in the

local context of the word to be disambiguated. In

this paper we propose a kernel function that can be

used to model such relations, the Syntagmatic Ker-

nel, and we apply it to two (English and Italian)

lexical-sample WSD tasks of the Senseval-3 com-

petition (Mihalcea and Edmonds, 2004).

In a lexical-sample WSD task, training data are

provided as a set of texts, in which for each text

a given target word is manually annotated with a

sense from a predetermined set of possibilities. To

model syntagmatic relations, the typical supervised

learning framework adopts as features bigrams and

trigrams in a local context. The main drawback of

this approach is that non contiguous or shifted col-

57

locations cannot be identified, decreasing the gener-

alization power of the learning algorithm. For ex-

ample, suppose that the verb to score has to be dis-

ambiguated into the sentence “Ronaldo scored the

goal”, and that the sense tagged example “the foot-

ball player scores#1 the first goal” is provided for

training. A traditional feature mapping would ex-

tract the bigram w+1 w+2:the goal to represent the

former, and the bigram w+1 w+2:the first to index

the latter. Evidently such features will not match,

leading the algorithm to a misclassification.

In the present paper we propose the Syntagmatic

Kernel as an attempt to solve this problem. The

Syntagmatic Kernel is based on a Gap-Weighted

Subsequences Kernel (Shawe-Taylor and Cristian-

ini, 2004). In the spirit of Kernel Methods, this

kernel is able to compare sequences directly in the

input space, avoiding any explicit feature mapping.

To perform this operation, it counts how many times

a (non-contiguous) subsequence of symbols u of

length n occurs in the input string s, and penalizes

non-contiguous occurrences according to the num-

ber of the contained gaps. To define our Syntag-

matic Kernel, we adapted the generic definition of

the Sequence Kernels to the problem of recognizing

collocations in local word contexts.

In the above definition of Syntagmatic Kernel,

only exact word-matches contribute to the similar-

ity. One shortcoming of this approach is that (near-

)synonyms will never be considered similar, lead-

ing to a very low generalization power of the learn-

ing algorithm, that requires a huge amount of data

to converge to an accurate prediction. To solve this

problem we provided external lexical knowledge to

the supervised learning algorithm, in order to define

a “soft-matching” schema for the kernel function.

For example, if we consider as equivalent the terms

Ronaldo and football player, the proposition “The

football player scored the first goal” is equivalent to

the sentence “Ronaldo scored the first goal”, pro-

viding a strong evidence to disambiguate the latter

occurrence of the verb.

We propose two alternative soft-matching criteria

exploiting two different knowledge sources: (i) hand

made resources and (ii) unsupervised term similar-

ity measures. The first approach performs a soft-

matching among all those synonyms words in Word-

Net, while the second exploits domain relations, ac-

quired from unlabeled data, for the same purpose.

Our experiments, performed on two standard

WSD benchmarks, show the superiority of the Syn-

tagmatic Kernel with respect to a classical flat vector

representation of bigrams and trigrams.

The paper is structured as follows. Section 2 in-

troduces the Sequence Kernels. In Section 3 the

Syntagmatic Kernel is defined. Section 4 explains

how soft-matching can be exploited by the Collo-

cation Kernel, describing two alternative criteria:

WordNet Synonymy and Domain Proximity. Sec-

tion 5 gives a brief sketch of the complete WSD

system, composed by the combination of different

kernels, dealing with syntagmatic and paradigmatic

aspects. Section 6 evaluates the Syntagmatic Kernel,

and finally Section 7 concludes the paper.

2 Sequence Kernels

The basic idea behind kernel methods is to embed

the data into a suitable feature space F via a map-

ping function φ : X → F , and then use a linear al-

gorithm for discovering nonlinear patterns. Instead

of using the explicit mapping φ, we can use a kernel

function K : X × X → R, that corresponds to the

inner product in a feature space which is, in general,

different from the input space.

Kernel methods allow us to build a modular sys-

tem, as the kernel function acts as an interface be-

tween the data and the learning algorithm. Thus

the kernel function becomes the only domain spe-

cific module of the system, while the learning algo-

rithm is a general purpose component. Potentially

any kernel function can work with any kernel-based

algorithm. In our system we use Support Vector Ma-

chines (Cristianini and Shawe-Taylor, 2000).

Sequence Kernels (or String Kernels) are a fam-

ily of kernel functions developed to compute the

inner product among images of strings in high-

dimensional feature space using dynamic program-

ming techniques (Shawe-Taylor and Cristianini,

2004). The Gap-Weighted Subsequences Kernel is

the most general Sequence Kernel. Roughly speak-

ing, it compares two strings by means of the num-

ber of contiguous and non-contiguous substrings of

a given length they have in common. Non contigu-

ous occurrences are penalized according to the num-

ber of gaps they contain.

58

Formally, let Σ be an alphabet of |Σ| symbols,

and s = s1s2 . . . s|s| a finite sequence over Σ (i.e.

si ∈ Σ, 1 6 i 6 |s|). Let i = [i1, i2, . . . , in], with

1 6 i1 < i2 < . . . < in 6 |s|, be a subset of the

indices in s: we will denote as s[i] ∈ Σn the sub-

sequence si1si2 . . . sin . Note that s[i] does not nec-

essarily form a contiguous subsequence of s. For

example, if s is the sequence “Ronaldo scored the

goal” and i = [2, 4], then s[i] is “scored goal”. The

length spanned by s[i] in s is l(i) = in − i1 + 1.

The feature space associated with the Gap-Weighted

Subsequences Kernel of length n is indexed by I =
Σn, with the embedding given by

φ
n
u(s) =

X

i:u=s[i]

λ
l(i)

, u ∈ Σn
, (1)

where λ ∈]0, 1] is the decay factor used to penalize

non-contiguous subsequences1 . The associate ker-

nel is defined as

Kn(s, t) = 〈φn(s), φn(t)〉 =
X

u∈Σn

φ
n
u(s)φn

u(t). (2)

An explicit computation of Equation 2 is unfea-

sible even for small values of n. To evaluate more

efficiently Kn, we use the recursive formulation pro-

posed in (Lodhi et al., 2002; Saunders et al., 2002;

Cancedda et al., 2003) based on a dynamic program-

ming implementation. It is reported in the following

equations:

K
′
0(s, t) = 1, ∀s, t, (3)

K
′
i(s, t) = 0, if min(|s|, |t|) < i, (4)

K
′′
i (s, t) = 0, if min(|s|, |t|) < i, (5)

K
′′
i (sx, ty) =

(

λK′′
i (sx, t), if x 6= y;

λK′′
i (sx, t) + λ2K′

i−1(s, t), otherwise.

(6)

K
′
i(sx, t) = λK

′
i(s, t) + K

′′
i (sx, t), (7)

Kn(s, t) = 0, if min(|s|, |t|) < n, (8)

Kn(sx, t) = Kn(s, t) +
X

j:tj=x

λ
2
K

′
n−1(s, t[1 : j − 1]),

(9)

K ′
n and K ′′

n are auxiliary functions with a sim-

ilar definition as Kn used to facilitate the compu-

tation. Based on all definitions above, Kn can be

1Notice that by choosing λ = 1 sparse subsequences are
not penalized. On the other hand, the kernel does not take into
account sparse subsequences with λ → 0.

computed in O(n|s||t|). Using the above recursive

definition, it turns out that computing all kernel val-

ues for subsequences of lengths up to n is not signif-

icantly more costly than computing the kernel for n

only.

In the rest of the paper we will use the normalised

version of the kernel (Equation 10) to keep the val-

ues comparable for different values of n and to be

independent from the length of the sequences.

K̂(s, t) =
K(s, t)

p

K(s, s)K(t, t)
. (10)

3 The Syntagmatic Kernel

As stated in Section 1, syntagmatic relations hold

among words arranged in a particular temporal or-

der, hence they can be modeled by Sequence Ker-

nels. The Syntagmatic Kernel is defined as a linear

combination of Gap-Weighted Subsequences Ker-

nels that operate at word and PoS tag level. In partic-

ular, following the approach proposed by Cancedda

et al. (2003), it is possible to adapt sequence kernels

to operate at word level by instancing the alphabet Σ
with the vocabulary V = {w1, w2, . . . , wk}. More-

over, we restricted the generic definition of the Gap-

Weighted Subsequences Kernel to recognize collo-

cations in the local context of a specified word. The

resulting kernel, called n-gram Collocation Kernel

(Kn
Coll), operates on sequences of lemmata around a

specified word l0 (i.e. l−3, l−2, l−1, l0, l+1, l+2, l+3).

This formulation allows us to estimate the number of

common (sparse) subsequences of lemmata (i.e. col-

locations) between two examples, in order to capture

syntagmatic similarity.

Analogously, we defined the PoS Kernel (Kn
PoS)

to operate on sequences of PoS tags p−3, p−2, p−1,

p0, p+1, p+2, p+3, where p0 is the PoS tag of l0.

The Collocation Kernel and the PoS Kernel are

defined by Equations 11 and 12, respectively.

KColl(s, t) =

n
∑

l=1

K l
Coll(s, t) (11)

and

KPoS(s, t) =
n

∑

l=1

K l
P oS(s, t). (12)

Both kernels depend on the parameter n, the length

of the non-contiguous subsequences, and λ, the de-

59

cay factor. For example, K2
Coll allows us to repre-

sent all (sparse) bi-grams in the local context of a

word.

Finally, the Syntagmatic Kernel is defined as

KSynt(s, t) = KColl(s, t) + KPoS(s, t). (13)

We will show that in WSD, the Syntagmatic Ker-

nel is more effective than standard bigrams and tri-

grams of lemmata and PoS tags typically used as

features.

4 Soft-Matching Criteria

In the definition of the Syntagmatic Kernel only ex-

act word matches contribute to the similarity. To

overcome this problem, we further extended the def-

inition of the Gap-Weigthed Subsequences Kernel

given in Section 2 to allow soft-matching between

words. In order to develop soft-matching criteria,

we follow the idea that two words can be substi-

tuted preserving the meaning of the whole sentence

if they are paradigmatically related (e.g. synomyns,

hyponyms or domain related words). If the meaning

of the proposition as a whole is preserved, the mean-

ing of the lexical constituents of the sentence will

necessarily remain unchanged too, providing a vi-

able criterion to define a soft-matching schema. This

can be implemented by “plugging” external paradig-

matic information into the Collocation kernel.

Following the approach proposed by (Shawe-

Taylor and Cristianini, 2004), the soft-matching

Gap-Weighted Subsequences Kernel is now calcu-

lated recursively using Equations 3 to 5, 7 and 8,

replacing Equation 6 by the equation:

K
′′
i (sx, ty) = λK

′′
i (sx, t) + λ

2
axyK

′
i−1(s, t),∀x, y, (14)

and modifying Equation 9 to:

Kn(sx, t) = Kn(s, t) +

|t|
X

j

λ
2
axtj

K
′
n−1(s, t[1 : j − 1]).

(15)

where axy are entries in a similarity matrix A be-

tween symbols (words). In order to ensure that the

resulting kernel is valid, A must be positive semi-

definite.

In the following subsections, we describe two al-

ternative soft-matching criteria based on WordNet

Synonymy and Domain Proximity. In both cases, to

show that the similarity matrices are a positive semi-

definite we use the following result:

Proposition 1 A matrix A is positive semi-definite

if and only if A = B
T
B for some real matrix B.

The proof is given in (Shawe-Taylor and Cristianini,

2004).

4.1 WordNet Synonymy

The first solution we have experimented exploits a

lexical resource representing paradigmatic relations

among terms, i.e. WordNet. In particular, we used

WordNet-1.7.1 for English and the Italian part of

MultiWordNet2.

In order to find a similarity matrix between terms,

we defined a vector space where terms are repre-

sented by the WordNet synsets in which such terms

appear. Hence, we can view a term as vector in

which each dimension is associated with one synset.

The term-by-synset matrix S is then the matrix

whose rows are indexed by the synsets. The en-

try xij of S is 1 if the synset sj contains the term

wi, and 0 otherwise. The term-by-synset matrix S

gives rise to the similarity matrix A = SS
T be-

tween terms. Since A can be rewritten as A =
(ST)T S

T = B
T
B, it follows directly by Proposi-

tion 1 that it is positive semi-definite.

It is straightforward to extend the soft-matching

criterion to include hyponym relation, but we

achieved worse results. In the evaluation section we

will not report such results.

4.2 Domain Proximity

The approach described above requires a large scale

lexical resource. Unfortunately, for many languages,

such a resource is not available. Another possibility

for implementing soft-matching is introducing the

notion of Semantic Domains.

Semantic Domains are groups of strongly

paradigmatically related words, and can be acquired

automatically from corpora in a totally unsuper-

vised way (Gliozzo, 2005). Our proposal is to ex-

ploit a Domain Proximity relation to define a soft-

matching criterion on the basis of an unsupervised

similarity metric defined in a Domain Space. The

Domain Space can be determined once a Domain

2
http://multiwordnet.itc.it

60

Model (DM) is available. This solution is evidently

cheaper, because large collections of unlabeled texts

can be easily found for every language.

A DM is represented by a k × k′ rectangular ma-

trix D, containing the domain relevance for each

term with respect to each domain, as illustrated in

Table 1. DMs can be acquired from texts by exploit-

MEDICINE COMPUTER SCIENCE

HIV 1 0

AIDS 1 0

virus 0.5 0.5

laptop 0 1

Table 1: Example of Domain Model.

ing a lexical coherence assumption (Gliozzo, 2005).

To this aim, Term Clustering algorithms can be used:

a different domain is defined for each cluster, and

the degree of association between terms and clusters,

estimated by the unsupervised learning algorithm,

provides a domain relevance function. As a clus-

tering technique we exploit Latent Semantic Analy-

sis (LSA), following the methodology described in

(Gliozzo et al., 2005b). This operation is done off-

line, and can be efficiently performed on large cor-

pora.

LSA is performed by means of SVD of the term-

by-document matrix T representing the corpus. The

SVD algorithm can be exploited to acquire a domain

matrix D from a large corpus in a totally unsuper-

vised way. SVD decomposes the term-by-document

matrix T into three matrices T = VΣkU
T where

Σk is the diagonal k × k matrix containing the k

singular values of T. D = VΣk′ where k′ � k.

Once a DM has been defined by the matrix D, the

Domain Space is a k′ dimensional space, in which

both texts and terms are represented by means of

Domain Vectors (DVs), i.e. vectors representing the

domain relevances among the linguistic object and

each domain. The DV ~w′
i for the term wi ∈ V is the

ith row of D, where V = {w1, w2, . . . , wk} is the

vocabulary of the corpus.

The term-by-domain matrix D gives rise to the

term-by-term similarity matrix A = DD
T among

terms. It follows from Proposition 1 that A is posi-

tive semi-definite.

5 Kernel Combination for WSD

To improve the performance of a WSD system, it

is possible to combine different kernels. Indeed,

we followed this approach in the participation to

Senseval-3 competition, reaching the state-of-the-

art in many lexical-sample tasks (Strapparava et al.,

2004). While this paper is focused on Syntagmatic

Kernels, in this section we would like to spend some

words on another important component for a com-

plete WSD system: the Domain Kernel, used to

model domain relations.

Syntagmatic information alone is not sufficient to

define a full kernel for WSD. In fact, in (Magnini

et al., 2002), it has been claimed that knowing the

domain of the text in which the word is located is a

crucial information for WSD. For example the (do-

main) polysemy among the COMPUTER SCIENCE

and the MEDICINE senses of the word virus can

be solved by simply considering the domain of the

context in which it is located.

This fundamental aspect of lexical polysemy can

be modeled by defining a kernel function to esti-

mate the domain similarity among the contexts of

the words to be disambiguated, namely the Domain

Kernel. The Domain Kernel measures the similarity

among the topics (domains) of two texts, so to cap-

ture domain aspects of sense distinction. It is a vari-

ation of the Latent Semantic Kernel (Shawe-Taylor

and Cristianini, 2004), in which a DM is exploited

to define an explicit mapping D : R
k → R

k′
from

the Vector Space Model (Salton and McGill, 1983)

into the Domain Space (see Section 4), defined by

the following mapping:

D(~tj) = ~tj(I
IDF

D) = ~t′j (16)

where I
IDF is a k × k diagonal matrix such that

iIDF
i,i = IDF (wi), ~tj is represented as a row vector,

and IDF (wi) is the Inverse Document Frequency of

wi. The Domain Kernel is then defined by:

KD(ti, tj) =
〈D(ti),D(tj)〉

√

〈D(tj),D(tj)〉〈D(ti),D(ti)〉
(17)

The final system for WSD results from a com-

bination of kernels that deal with syntagmatic and

paradigmatic aspects (i.e. PoS, collocations, bag of

words, domains), according to the following kernel

61

combination schema:

KC(xi, xj) =
n

∑

l=1

Kl(xi, xj)
√

Kl(xj , xj)Kl(xi, xi)
(18)

6 Evaluation

In this section we evaluate the Syntagmatic Kernel,

showing that it improves over the standard feature

extraction technique based on bigrams and trigrams

of words and PoS tags.

6.1 Experimental settings

We conducted the experiments on two lexical sam-

ple tasks (English and Italian) of the Senseval-3

competition (Mihalcea and Edmonds, 2004). In

lexical-sample WSD, after selecting some target

words, training data is provided as a set of texts.

For each text a given target word is manually anno-

tated with a sense from a predetermined set of pos-

sibilities. Table 2 describes the tasks by reporting

the number of words to be disambiguated, the mean

polysemy, and the dimension of training, test and

unlabeled corpora. Note that the organizers of the

English task did not provide any unlabeled material.

So for English we used a domain model built from

the training partition of the task (obviously skipping

the sense annotation), while for Italian we acquired

the DM from the unlabeled corpus made available

by the organizers.

#w pol # train # test # unlab

English 57 6.47 7860 3944 7860
Italian 45 6.30 5145 2439 74788

Table 2: Dataset descriptions.

6.2 Performance of the Syntagmatic Kernel

Table 3 shows the performance of the Syntagmatic

Kernel on both data sets. As baseline, we report

the result of a standard approach consisting on ex-

plicit bigrams and trigrams of words and PoS tags

around the words to be disambiguated (Yarowsky,

1994). The results show that the Syntagmatic Ker-

nel outperforms the baseline in any configuration

(hard/soft-matching). The soft-matching criteria

further improve the classification performance. It

is interesting to note that the Domain Proximity

methodology obtained better results than WordNet

Standard approach

English Italian

Bigrams and trigrams 67.3 51.0

Syntagmatic Kernel

Hard matching 67.7 51.9

Soft matching (WordNet) 67.3 51.3
Soft matching (Domain proximity) 68.5 54.0

Table 3: Performance (F1) of the Syntagmatic Ker-

nel.

Synonymy. The different results observed between

Italian and English using the Domain Proximity

soft-matching criterion are probably due to the small

size of the unlabeled English corpus.

In these experiments, the parameters n and λ are

optimized by cross-validation. For Kn
Coll, we ob-

tained the best results with n = 2 and λ = 0.5. For

Kn
PoS , n = 3 and λ → 0. The domain cardinality k′

was set to 50.

Finally, the global performance (F1) of the full

WSD system (see Section 5) on English and Italian

lexical sample tasks is 73.3 for English and 61.3 for

Italian. To our knowledge, these figures represent

the current state-of-the-art on these tasks.

7 Conclusion and Future Work

In this paper we presented the Syntagmatic Kernels,

i.e. a set of kernel functions that can be used to

model syntagmatic relations for a wide variety of

Natural Language Processing tasks. In addition, we

proposed two soft-matching criteria for the sequence

analysis, which can be easily modeled by relax-

ing the constraints in a Gap-Weighted Subsequences

Kernel applied to local contexts of the word to be

analyzed. Experiments, performed on two lexical

sample Word Sense Disambiguation benchmarks,

show that our approach further improves the stan-

dard techniques usually adopted to deal with syntag-

matic relations. In addition, the Domain Proximity

soft-matching criterion allows us to define a semi-

supervised learning schema, improving the overall

results.

For the future, we plan to exploit the Syntagmatic

Kernel for a wide variety of Natural Language Pro-

cessing tasks, such as Entity Recognition and Re-

lation Extraction. In addition we are applying the

soft matching criteria here defined to Tree Kernels,

62

in order to take into account lexical variability in

parse trees. Finally, we are going to further improve

the soft-matching criteria here proposed by explor-

ing the use of entailment criteria for substitutability.

Acknowledgments

The authors were partially supported by the Onto-

Text Project, funded by the Autonomous Province

of Trento under the FUP-2004 research program.

References

N. Cancedda, E. Gaussier, C. Goutte, and J.M. Renders.
2003. Word-sequence kernels. Journal of Machine
Learning Research, 32(6):1059–1082.

N. Cristianini and J. Shawe-Taylor. 2000. An introduc-
tion to Support Vector Machines. Cambridge Univer-
sity Press.

A. Gliozzo, C. Giuliano, and R. Rinaldi. 2005a. Instance
filtering for entity recognition. ACM SIGKDD Explo-
rations, special Issue on Natural Language Processing
and Text Mining, 7(1):11–18, June.

A. Gliozzo, C. Giuliano, and C. Strapparava. 2005b. Do-
main kernels for word sense disambiguation. In Pro-
ceedings of the 43rd annual meeting of the Association
for Computational Linguistics (ACL-05), pages 403–
410, Ann Arbor, Michigan, June.

A. Gliozzo. 2005. Semantic Domains in Computa-
tional Linguistics. Ph.D. thesis, ITC-irst/University of
Trento.

H. Lodhi, J. Shawe-Taylor, N. Cristianini, and
C. Watkins. 2002. Text classification using string
kernels. Journal of Machine Learning Research,
2(3):419–444.

B. Magnini, C. Strapparava, G. Pezzulo, and A. Gliozzo.
2002. The role of domain information in word
sense disambiguation. Natural Language Engineer-
ing, 8(4):359–373.

R. Mihalcea and P. Edmonds, editors. 2004. Proceed-
ings of SENSEVAL-3: Third International Workshop
on the Evaluation of Systems for the Semantic Analy-
sis of Text, Barcelona, Spain, July.

G. Salton and M.H. McGill. 1983. Introduction to mod-
ern information retrieval. McGraw-Hill, New York.

C. Saunders, H. Tschach, and J. Shawe-Taylor. 2002.
Syllables and other string kernel extensions. In Pro-
ceedings of 19th International Conference on Machine
Learning (ICML02).

J. Shawe-Taylor and N. Cristianini. 2004. Kernel Meth-
ods for Pattern Analysis. Cambridge University Press.

C. Strapparava, C. Giuliano, and A. Gliozzo. 2004. Pat-
tern abstraction and term similarity for word sense dis-
ambiguation: IRST at Senseval-3. In Proceedings of
SENSEVAL-3: Third International Workshop on the
Evaluation of Systems for the Semantic Analysis of
Text, Barcelona, Spain, July.

D. Yarowsky. 1994. Decision lists for lexical ambiguity
resolution: Application to accent restoration in span-
ish and french. In Proceedings of the 32nd Annual
Meeting of the ACL, pages 88–95, Las Cruces, New
Mexico.

63

Learning to Identify Definitions using Syntactic Features

Ismail Fahmi and Gosse Bouma

Information Science

Groningen University

{i.fahmi,g.bouma}@rug.nl

Abstract

This paper describes an approach to learn-

ing concept definitions which operates on

fully parsed text. A subcorpus of the

Dutch version of Wikipedia was searched

for sentences which have the syntactic

properties of definitions. Next, we ex-

perimented with various text classifica-

tion techniques to distinguish actual defi-

nitions from other sentences. A maximum

entropy classifier which incorporates fea-

tures referring to the position of the sen-

tence in the document as well as various

syntactic features, gives the best results.

1 Introduction

Answering definition questions is a challenge for

question answering systems. Much work in QA

has focused on answering factoid questions, which

are characterized by the fact that given the ques-

tion, one can typically make strong predictions

about the type of expected answer (i.e. a date,

name of a person, amount, etc.). Definition ques-

tions require a different approach, as a definition

can be a phrase or sentence for which only very

global characteristics hold.

In the CLEF 2005 QA task, 60 out of 200 ques-

tions were asking for the definition of a named

entity (a person or organization) such as Who is

Goodwill Zwelithini? or What is IKEA? Answers

are phrases such as current king of the Zulu nation,

or Swedish home furnishings retailer. For answer-

ing definition questions restricted to named enti-

ties, it generally suffices to search for noun phrases

consisting of the named entity and a preceding or

following nominal phrase. Bouma et al. (2005) ex-

tract all such noun phrases from the Dutch CLEF

corpus off-line, and return the most frequent heads

of co-occurring nominal phrases expanded with

adjectival or prepositional modifiers as answer to

named entity definition questions. The resulting

system answers 50% of the CLEF 2005 definition

questions correctly.

For a Dutch medical QA system, which is being

developed as part of the IMIX project1, several sets

of test questions were collected. Approximately

15% of the questions are definition questions, such

as What is a runner’s knee? and What is cere-

brovascular accident?. Answers to such questions

(asking for the definition of a concept) are typi-

cally found in sentences such as A runner’s knee

is a degenerative condition of the cartilage sur-

face of the back of the knee cap, or patella or A

cerebrovascular accident is a decrease in the num-

ber of circulating white blood cells (leukocytes)

in the blood. One approach to finding answers to

concept definitions simply searches the corpus for

sentences consisting of a subject, a copular verb,

and a predicative phrase. If the concept matches

the subject, the predicative phrase can be returned

as answer. A preliminary evaluation of this tech-

nique in Tjong Kim Sang et al. (2005) revealed

that only 18% of the extracted sentences (from

a corpus consisting of a mixture of encyclopedic

texts and web documents) is actually a definition.

For instance, sentences such as RSI is a major

problem in the Netherlands, every suicide attempt

is an emergency or an infection of the lungs is the

most serious complication are of the relevant syn-

tactic form, but do not constitute definitions.

In this paper, we concentrate on a method for

improving the precision of recognizing definition

sentences. In particular, we investigate to what

1
www.let.rug.nl/˜gosse/Imix

64

extent machine learning techniques can be used

to distinguish definitions from non-definitions in

a corpus of sentences containing a subject, copu-

lar verb, and predicative phrase. A manually an-

notated subsection of the corpus was divided into

definition and non-definition sentences. Next, we

trained various classifiers using unigram and bi-

gram features, and various syntactic features. The

best classifier achieves a 60% error reduction com-

pared to our baseline system.

2 Previous work

Work on identifying definitions from free text ini-

tially relied on manually crafted patterns without

applying any machine learning technique. Kla-

vans and Muresan (2000) set up a pattern extractor

for their Definder system using a tagger and a fi-

nite state grammar. Joho and Sanderson (2000) re-

trieve descriptive phrases (dp) of query nouns (qn)

from text to answer definition questions like Who

is qn? Patterns such as ‘dp especially qn’, as uti-

lized by Hearst (1992), are used to extract names

and their descriptions.

Similar patterns are also applied by Liu et al.

(2003) to mine definitions of topic-specific con-

cepts on the Web. As an additional assumption,

specific documents dedicated to the concepts can

be identified if they have particular HTML and hy-

perlink structures.

Hildebrandt et al. (2004) exploit surface pat-

terns to extract as many relevant ”nuggets” of in-

formation of a concept as possible. Similar to our

work, a copular pattern NP1 be NP2 is used as

one of the extraction patterns. Nuggets which do

not begin with a determiner are discarded to fil-

ter out spurious nuggets (e.g., progressive tense).

Nuggets extracted from every article in a corpus

are then stored in a relational database. In the end,

answering definition questions becomes as simple

as looking up relevant terms from the database.

This strategy is similar to our approach for answer-

ing definition questions.

The use of machine learning techniques can be

found in Miliaraki and Androutsopoulos (2004)

and Androutsopoulos and Galanis (2005) They

use similar patterns as (Joho and Sanderson,

2000) to construct training attributes. Sager and

L’Homme (1994) note that the definition of a

term should at least always contain genus (term’s

category) and species (term’s properties). Blair-

Goldensohn et al. (2004) uses machine learn-

ing and manually crafted lexico-syntactic patterns

to match sentences containing both a genus and

species phrase for a given term.

There is an intuition that most of definition

sentences are located at the beginning of docu-

ments. This lead to the use of sentence num-

ber as a good indicator of potential definition sen-

tences. Joho and Sanderson (2000) use the posi-

tion of the sentences as one of their ranking crite-

ria, while Miliaraki and Androutsopoulos (2004),

Androutsopoulos and Galanis (2005) and Blair-

Goldensohn et al. (2004) apply it as one of their

learning attributes.

3 Syntactic properties of potential

definition sentences

To answer medical definition sentences, we used

the medical pages of Dutch Wikipedia2 as source.

Medical pages were selected by selecting all pages

mentioned on the Healthcare index page, and re-

cursively including pages mentioned on retrieved

pages as well.

The corpus was parsed syntactically by Alpino,

a robust wide-coverage parser for Dutch (Malouf

and van Noord, 2004). The result of parsing (il-

lustrated in Figure 1) is a dependency graph. The

Alpino-parser comes with an integrated named en-

tity classifier which assigns distinct part-of-speech

tags to person, organization, and geographical

named entities.

Potential definition sentences are sentences con-

taining a form of the verb zijn3 (to be) with a

subject and nominal predicative phrase as sisters.

The syntactic pattern does not match sentences in

which zijn is used as a possessive pronoun (his)

and sentences where a form of zijn is used as an

auxiliary. In the latter case, no predicative phrase

complement will be found. On the other hand,

we do include sentences in which the predicative

phrase precedes the subject, as in Onderdeel van

de testis is de Leydig-cel (the Leydig cel is part of

the testis). As word order in Dutch is less strict

than in English, it becomes relevant to include

such non-canonical word orders as well.

A number of non-definition sentences that will

be extracted using this method can be filtered by

simple lexical methods. For instance, if the subject

is headed by (the Dutch equivalents of) cause, con-

2nl.wikipedia.org
3Note that the example uses ben (the first person singular

form of the verb) as root for zijn.

65

–
smain

su
noun

stikstof0

hd
verb
ben1

predc
np

det
det

een2

mod
adj

scheikundig3

hd
noun

element4

mod
pp

hd
prep
met5

obj1
conj

cnj
np

hd
noun

symbool6

app
name

N7

crd
vg
en8

cnj
np

hd
noun

atoom nummer9

app
num
710

Figure 1: Parse of (the Dutch equivalent of) Nitrogen is a chemical element with symbol N and atomic

number 7. Nodes are labelled with depedency relations and categories or part-of-speech tags, root forms,

and string positions.

sequence, example, problem, result, feature, pos-

sibility, symptom, sign, etc., or contains the deter-

miner geen (no), the sentence will not be included

in the list of potential definitions.

However, even after applying the lexical filter,

not all extracted sentences are definitions. In the

next sections, we describe experiments aimed at

increasing the accuracy of the extraction method.

4 Annotating training examples

To create evaluation and training data, 2500 ex-

tracted sentences were manually annotated as def-

inition, non-definition, or undecided. One of the

criteria for undecided sentences is that it mentions

a characteristic of a definition but is not really

a (complete) definition, for example, Benzeen is

carcinogeen (Benzene is a carcinogen). The result

of this annotation is given in Table 1. The anno-

tated data was used both to evaluate the accuracy

of the syntactic extraction method, and to training

and evaluate material for the machine learning ex-

periments as discussed in the next sections.

After discarding the undecided sentences, we

are left with 2299 sentences, 1366 of which are

definitions. This means that the accuracy of the

extraction method using only syntax was 59%.4

4This is considerably higher than the estimated accuracy
of 18% reported in Tjong Kim Sang et al. (2005). This is
probably partly due to the fact that the current corpus con-
sists of encyclopedic material only, whereas the corpus used

If we take sentence postion into account as well,

and classify all first sentences as definitions and

all other sentences as non-definitions, a baseline

accuracy of 75,9% is obtained.

It is obvious from Table 1 that the first sen-

tences of Wikipedia lemmas that match the syn-

tactic pattern are almost always definitions. It

seems that e.g. Google’s5 define query feature,

when restricted to Dutch at least, relies heavily

on this fact to answer definition queries. How-

ever it is also obvious that definition sentences can

also be found in other positions. For documents

from other sources, which are not as structured as

Wikipedia, the first position sentence is likely to

be an even weaker predictor of definition vs. non-

definition sentences.

5 Attributes of definition sentences

We aim at finding the best attributes for classifying

definition sentences. We experimented with com-

binations of the following attributes:

Text properties: bag-of-words, bigrams, and

root forms. Punctuation is included as Klavans

and Muresan (2000) observe that it can be used to

recognize definitions (i.e. definitions tend to con-

in Tjong Kim Sang et al. (2005) contained web material
from various sources, such as patient discussion groups, as
well. The latter tends to contain more subjective and context-
dependent material.

5
google.com

66

Sentence Def Non-def Undecided

position

first 831 18 31

other 535 915 170

Total 1366 933 201

Table 1: Number of sentences in the first and

other position of documents annotated as defini-

tion, non-definition, and undecided.

tain parentheses more often than non-definitions).

No stopword filtering is applied as in our exper-

iments it consistently decreased accuracy. Note

that we include all bigrams in a sentence as fea-

ture. A different use of n-grams has been explored

by Androutsopoulos and Galanis (2005) who add

only n-grams (n ∈ {1,2,3}) occurring frequently

either directly before or after a target term.

Document property: the position of each sen-

tence in the document. This attribute has been fre-

quently used in previous work and is motivated by

the observation that definitions are likely to be lo-

cated in the beginning of a document.

Syntactic properties: position of each sub-

ject in the sentence (initial, e.g. X is Y; or non-

initial, e.g. Y is X), and of each subject and

predicative complement: type of determiner (def-

inite, indefinite, other). These attributes have not

been investigated in previous work. In our exper-

iments, sentence-initial subjects appear in 92% of

the definition sentences and and 76% of the non-

definition sentences. These values show that a

definition sentence with a copular pattern tends

to put its subject in the beginning. Two other

attributes are used to encode the type of deter-

miner of the subject and predicative compelement.

As shown in Table 2, the majority of subjects in

definition sentences have no determiner (62%),

e.g. Paracetamol is een pijnstillend en koortsver-

lagend middel (Paracetamol is an pain alleviat-

ing and a fever reducing medicine), while in non-

definition sentences subject determiners tend to be

definite (50%), e.g. De werkzame stof is acetyl-

salicylzuur (The operative substance is acetylsal-

icylacid). Predicative complements, as shown in

Table 3, tend to contain indefinite determiners in

definition sentences (64%), e.g. een pijnstillend

. . . medicijn (a pain alleviating. . . medicine), while

in non-definition the determiner tends to be def-

inite (33%), e.g. Een fenomeen is de Landsge-

meinde (A phenomenon is the Landsgemeinde).

Type Definition Non-def

definite 23 50

indefinite 13 12

nodeterminer 62 29

other 2 9

Table 2: Percentage of determiner types of sub-

jects in definition and non-definition sentences.

Type Definition Non-def

definite 23 33

indefinite 64 29

nodeterminer 8 1

other 4 28

Table 3: Percentage of determiner types of

predicative complements in definition and non-

definition sentences.

Named entity tags: named entity class (NEC)

of subjects, e.g. location, person, organization,

or no-class. A significant difference in the dis-

tribution of this feature between definition and

non-definition sentences can be observed in Table

4. More definition sentences have named entity

classes contained in their subjects (40.63%) com-

pared to non-definition sentences (11.58%). We

also experimented with named entity classes con-

tained in predicative complements but it turned

out that very few predicates contained named en-

tities, and thus no significant differences in distri-

bution between definition and non-definition sen-

tences could be observed.

Features for lexical patterns, as used in (An-

droutsopoulos and Galanis, 2005), e.g. qn which

(is|was|are|were) dp, are not added because in this

experiment we investigate only a copular pattern.

WordNet-based attributes are also excluded, given

that coverage for Dutch (using EuroWordNet)

tends to be less good than for English, and even for

English their contribution is sometimes insignifi-

cant (Miliaraki and Androutsopoulos, 2004).

Type Definition Non-def

no-nec 59 88

location 10 4

organization 8 3

person 22 4

Table 4: Percentage of named-entity classes of

subjects in definition and non-definition sentences.

67

word bigrams only bigram + synt + pos

is a first sent

a other sent

are is a

is indef pred

) is no det subj

the init subj

is DIGITS a

are the are

this is

or other det pred

is of) is

this/these noninit subj

atomic number def subj

atomic number DIGITS the

with symbol is DIGITS

and atomic number are the

that this

chemical or

a chemical other det subj

chemical element is of

Table 5: 20 most informative features for the sys-

tems using word bigrams only and word bigrams

in combination with syntactic and sentence posi-

tion features (word features have been translated

into English).

We use the text classification tool Rainbow6

(McCallum, 2000) to perform most of our experi-

ments. Each sentence is represented as a string of

words, possibly followed by bigrams, root forms,

(combinations of) syntactic features, etc.

All experiments were performed by selecting

only the 2000 highest ranked features according

to information gain. In the experiments which in-

clude syntactic features, the most informative fea-

tures tend to contain a fair number of syntactic fea-

tures. This is illustrated for the configuration using

bigrams, sentence position, and syntax in table 5.

It supports our intuition that the position of sub-

jects and the type of determiner of subjects and

predicative complements are clues to recognizing

definition sentences.

To investigate the effect of each attribute, we

set up several configurations of training examples

as described in Table 6. We start with using only

bag-of-words or bigrams, and then combine them

with other attribute sets.

6
www.cs.cmu.edu/˜mccallum/bow/rainbow/

Cfg Description

1 using only bag-of-words

2 using only bigrams

3 combining bigrams & bag-of-words

4 adding syntactic properties to

config. 3

5 adding syntactic properties

& NEC to config. 3

6 adding sentence position to

config. 3

7 adding root forms to

config. 3

8 adding syntactic properties &

sentence position to config. 3

9 adding syntactic properties, sentence

position & NEC to config. 3

10 adding syntactic properties, sentence

position & root forms to config. 3)

11 using all attributes (adding NEC

to configuration 10)

Table 6: The description of the attribute configu-

rations.

6 Learning-based methods

We apply three supervised learning methods to

each of the attribute configurations in Table 6,

namely naive Bayes, maximum entropy, and sup-

port vector machines (SVMs). Naive Bayes is a

fast and easy to use classifier based on the prob-

abilistic model of text and has often been used in

text classification tasks as a baseline. Maximum

entropy is a general estimation technique that has

been used in many fields such as information re-

trieval and machine learning. Some experiments

in text classification show that maximum entropy

often outperforms naive Bayes, e.g. on two of

three data sets in Nigam et al. (1999). SVMs are

a new learning method but have been reported by

Joachims (1998) to be well suited for learning in

text classification.

We experiment with three kernel types of

SVMs: linear, polynomial, and radial base func-

tion (RBF). Rainbow (McCallum, 2000) is used to

examine these learning methods, except the RBF

kernel for which libsvm (Chang and Lin, 2001)

is used. Miliaraki and Androutsopoulos (2004)

use a SVM with simple inner product (polyno-

mial of first degree) kernel because higher degree

polynomial kernels were reported as giving no im-

provement. However we want to experiment with

68

Cfg NB ME svm1a svm2b svm3c

1 85.75 ± 0.57 85.35 ± 0.77 77.65 ± 0.87 78.39 ± 0.67 81.95 ± 0.82

2 87.77 ± 0.51 88.65 ± 0.54 84.02 ± 0.47 84.26 ± 0.52 85.38 ± 0.77

3 89.82 ± 0.53 88.82 ± 0.66 83.93 ± 0.57 84.24 ± 0.54 87.04 ± 0.95

4 85.22 ± 0.35 89.08 ± 0.50 84.93 ± 0.57 85.57 ± 0.53 87.77 ± 0.89

5 85.44 ± 0.45 91.38 ± 0.42 86.90 ± 0.48 86.90 ± 0.53 87.60 ± 0.87

6 90.26 ± 0.71 90.70 ± 0.48 85.26 ± 0.56 86.05 ± 0.64 88.52 ± 0.92

7 88.60 ± 0.81 88.99 ± 0.51 83.38 ± 0.38 84.69 ± 0.43 87.08 ± 0.87

8 86.40 ± 0.51 92.21 ± 0.27 86.57 ± 0.42 87.29 ± 0.47 88.77 ± 0.77

9 87.12 ± 0.52 90.83 ± 0.43 87.21 ± 0.42 87.99 ± 0.53 89.04 ± 0.67

10 87.60 ± 0.38 91.16 ± 0.43 86.68 ± 0.40 86.97 ± 0.41 88.91 ± 0.68

11 86.72 ± 0.46 91.16 ± 0.35 87.47 ± 0.40 87.05 ± 0.63 89.47 ± 0.67

aSVM with linear kernel (Rainbow)
bSVM with polynomial kernel (Rainbow)
cSVM with RBF kernel (libsvm)

Table 7: Accuracy and standard error (%) estimates for the dataset using naive Bayes (NB), maximum

entropy (ME), and three SVM settings at the different attribute configurations.

the RBF (gaussian) kernel by selecting model pa-

rameters C (penalty for misclassification) and γ

(function of the deviation of the Gaussian Kernel)

so that the classifier can accurately predict testing

data. This experiment is based on the argument

that if a complete model selection using the gaus-

sian kernel has been conducted, there is no need

to consider linear SVM, because the RBF kernel

with certain parameters (C , γ) has the same per-

formance as the linear kernel with a penalty pa-

rameter C̃ (Keerthi and Lin, 2003).

Given the finite dataset, we use k-fold cross-

validation (k = 20) to estimate the future perfor-

mance of each classifier induced by its learning

method and dataset. This estimation method intro-

duces lower bias compared to a bootstrap method

which has extremely large bias on some problems

(Kohavi, 1995).

7 Evaluation

We evaluated each configuration of Section 5 and

each learning method of Section 6 on the dataset

which consists of 1336 definitions and 963 non-

definitions sentences. Table 7 reports the accuracy

and standard error estimated from this experiment.

In all experiment runs, all of the classifiers in all

configurations outperform our baseline (75.9%).

The best accuracy of each classifier (bold) is be-

tween 11.57% to 16.31% above the baseline.

The bigram only attributes (config. 2) clearly

outperform the simplest setting (bag-of-word only

attributes) for all classifiers. The combination of

both attributes (config. 3) achieves some improve-

ment between 0.17% to 4.41% from configuration

2. It is surprising that naive Bayes shows the best

and relatively high accuracy in this base config-

uration (89.82%) and even outperforms all other

settings.

Adding syntactic properties (config. 4) or posi-

tion of sentences in documents (config. 6) to the

base configuration clearly gives some improve-

ment (in 4 and 5 classifiers respectively for each

configuration). But, adding root forms (config.

7) does not significantly contribute to an improve-

ment. These results show that in general, syntactic

properties can improve the performance of most

classifiers. The results also support the intuition

that the position of sentences in documents plays

important role in identifying definition sentences.

Moreover, this intuition is also supported by the

result that the best performance of naive Bayes is

achieved at configuration 6 (90.26%). Compared

to the syntactic features, sentence positions give

better accuracy in all classifiers.

The above results demonstrate an interesting

finding that a simple attribute set which consists of

bag-of-words, bigrams, and sentence position un-

der a fast and simple classifier (e.g. naive Bayes)

could give a relatively high accuracy. One expla-

nation that we can think of is that candidate sen-

tences have been syntactically very well extracted

with our filter. Thus, the sentences are biased by

the filter from which important words and bigrams

of definitions can be found in most of the sen-

69

tences. For example, the word and bigrams is een

(is a), een (a), zijn (are), is (is), zijn de (are the),

and is van (is of) are good clues to definitions and

consequently have high information gain. We have

to test this result in a future work on candidate def-

inition sentences which are extracted by filters us-

ing various other syntactic patterns.

More improvement is shown when both syntac-

tic properties and sentence position are added to-

gether (config. 8). All of the classifiers in this con-

figuration obtain more error reduction compared

to the base configuration. Moreover, the best ac-

curacy of this experiment is shown by maximum

entropy at this configuration (92.21%). This may

be a sign that our proposed syntactic properties are

good indicators to identify definition sentences.

Other interesting findings can be found in the

addition of named entity classes to configuration

3 (config. 5), to configuration 8 (config. 9) and

to configuration 10 (config. 11). In these con-

figurations, adding NEC increases accuracies of

almost all classifiers. On the other hand, adding

root forms to configuration 3 (config. 7) and to

configuration 8 (config. 10) does not improve ac-

curacies. However, the best accuracies of naive

Bayes (90.26%) and maximum entropy (92.21%)

are achieved when named entity and root forms are

not included as attributes.

We now evaluate the classifiers. It is clear

from the table that SVM1 and SVM2 settings can

not achieve better accuracy compared to the naive

Bayes setting, while SVM3 setting marginally out-

performs naive Bayes (on 6 out of 11 configura-

tions). This result is contrary to the superiority of

SVMs in many text classification tasks. Huang et

al. (2003) reported that both classifiers show sim-

ilar predictive accuracy and AUC (area under the

ROC (Receiver Operating Characteristics) curve)

scores. This performance of naive Bayes supports

the motivation behind its renaisance in machine

learning (Lewis, 1998).

From the three SVM settings, SVM with RBF

kernel appears as the best classifier for our task

in which it outperforms other SVMs settings in

all configurations. This result supports the above

mentioned argument that if the best C and γ can be

selected, we do not need to consider linear SVM

(e.g. the svm1 setting).

Among all of the classifiers, maximum entropy

shows the best accuracy. It wins at 9 out of 11

configurations in all experiments. This result con-

firms previous reports e.g. in Nigam et al. (1999)

that maximum entropy performs better than naive

Bayes in some text classification tasks.

8 Conclusions and future work

We have presented an experiment in identifying

definition sentences using syntactic properties and

learning-based methods. Our method is concen-

trated on improving the precision of recognizing

definition sentences. The first step is extracting

candidate definition sentences from a fully parsed

text using syntactic properties of definitions. To

distinguish definition from non-definition sen-

tences, we investigated several machine learning

methods, namely naive Bayes, maximum entropy,

and SVMs. We also experimented with several at-

tribute configurations. In this selection, we com-

bine text properties, document properties, and syn-

tactic properties of the sentences. We have shown

that adding syntactic properties, in particular the

position of subjects in the sentence, type of de-

terminer of each subject and predicative comple-

ment, improves the accuracy of most machine

learning techniques, and leads to the most accu-

rate result overall.

Our method has been evaluated on a subset of

manually annotated data from Wikipedia. The

combination of highly structured text material and

a syntactic filter leads to a relatively high initial

baseline.

Our results on the performance of SVMs do not

confirm the superiority of this learning method for

(text) classification tasks. Naive Bayes, which is

well known from its simplicity, appears to give

reasonably high accuracy. Moreover, it achieves

a high accuracy on simple attribute configuration

sets (containing no syntactic properties). In gen-

eral, our method will give the best result if all

properties except named entity classes and root

forms are used as attributes and maximum entropy

is applied as a classifier.

We are currently working on using more syn-

tactic patterns to extract candidate definition sen-

tences. This will increase the number of definition

sentences that we can identify from text.

References

I. Androutsopoulos and D. Galanis. 2005. A prac-
tically unsupervised learning method to identify
single-snippet answers to definition questions on the
web. In Human Language Technology Conference

70

and Conference on Empirical Methods in Natural
Language Processing (HLT-EMNLP 2005), Vancou-
ver, Canada.

S. Blair-Goldensohn, K. McKeown, and A.H. Schlaik-
jer. 2004. Answering definitional questions: A hy-
brid approach. In New Directions in Question An-
swering, pages 47–58.

Gosse Bouma, Jori Mur, Gertjan van Noord, Lonneke
van der Plas, and Jörg Tiedemann. 2005. Question
answering for Dutch using dependency relations. In
Working Notes for the CLEF 2005 Workshop, Vi-
enna.

Chih-Chung Chang and Chih-Jen Lin, 2001. LIB-
SVM: a library for support vector machines.
Software available at http://www.csie.ntu.
edu.tw/˜cjlin/libsvm.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proc. of the 14th
COLING, pages 539–545, Nantes, France.

W. Hildebrandt, B. Katz, and J.J. Lin. 2004. An-
swering definition questions with multiple knowl-
edge sources. In HLT-NAACL, pages 49–56.

Jin Huang, Jingjing Lu, and Charles X. Ling. 2003.
Comparing naive bayes, decision trees, and svm
with auc and accuracy. In ICDM ’03: Proceedings
of the Third IEEE International Conference on Data
Mining, Washington, DC, USA. IEEE Computer So-
ciety.

Thorsten Joachims. 1998. Text categorization with
support vector machines: learning with many rele-
vant features. In Claire N’edellec and C’eline Rou-
veirol, editors, Proceedings of ECML-98, 10th Euro-
pean Conference on Machine Learning, pages 137–
142, Chemnitz, DE. Springer Verlag, Heidelberg,
DE.

H. Joho and M. Sanderson. 2000. Retrieving descrip-
tive phrases from large amounts of free text. In
CIKM, pages 180–186.

S. Sathiya Keerthi and Chih-Jen Lin. 2003. Asymp-
totic behaviors of support vector machines with
gaussian kernel. Neural Comput., 15(7):1667–1689.

J.L. Klavans and S. Muresan. 2000. Definder: Rule-
based methods for the extraction of medical termi-
nology and their associated definitions from on-line
text. In American Medical Informatics Assoc 2000.

Ron Kohavi. 1995. A study of cross-validation and
bootstrap for accuracy estimation and model selec-
tion. In IJCAI, pages 1137–1145.

David D. Lewis. 1998. Naive (Bayes) at forty: The in-
dependence assumption in information retrieval. In
Claire Nédellec and Céline Rouveirol, editors, Pro-
ceedings of ECML-98, 10th European Conference
on Machine Learning, pages 4–15, Chemnitz, DE.
Springer Verlag, Heidelberg, DE.

B. Liu, C.W. Chin, and H.T. Ng. 2003. Mining topic-
specific concepts and definitions on the web. In
WWW ’03: Proceedings of the 12th international
conference on World Wide Web, pages 251–260,
New York, NY, USA. ACM Press.

Robert Malouf and Gertjan van Noord. 2004. Wide
coverage parsing with stochastic attribute value
grammars. In IJCNLP-04 Workshop Beyond Shal-
low Analyses - Formalisms and statistical modeling
for deep analyses, Hainan.

A McCallum. 2000. Bow: A toolkit for statisti-
cal language modeling, text retrieval, classification
and clustering. http://www.cs.cmu.edu/

˜mccallum/bow.

S. Miliaraki and I. Androutsopoulos. 2004. Learning
to identify single-snippet answers to definition ques-
tions. In 20th International Conference on Compu-
tational Linguistics (COLING 2004), pages 1360–
1366, Geneva, Switzerland. COLING 2004.

K. Nigam, J. Lafferty, and A. McCallum. 1999. Using
maximum entropy for text classification. In IJCAI-
99 Workshop on Machine Learning for Information
Filtering, pages 61–67.

Juan C. Sager and M.C. L’Homme. 1994. A model
for definition of concepts. Terminology, pages 351–
374.

Erik Tjong Kim Sang, Gosse Bouma, and Maarten
de Rijke. 2005. Developing offline strategies for
answering medical questions. In Diego Mollá and
José Luis Vicedo, editors, AAAI 2005 workshop on
Question Answering in Restricted Domains.

71

An Ontology-Based Approach to Disambiguation of Semantic Relations

Tine Lassen and Thomas Vestskov Terney

Department of Computer Science, Roskilde University, Denmark

tlassen@ruc.dk, tvt@ruc.dk

Abstract

This paper describes experiments in using

machine learning for relation disambiguation.

There have been succesfuld experiments in

combining machine learning and ontologies,

or light-weight ontologies such as WordNet,

for word sense disambiguation. However,

what we are trying to do, is to disambiguate

complex concepts consisting of two simpler

concepts and the relation that holds between

them. The motivation behind the approach is

to expand existing methods for content based

information retrieval. The experiments have

been performed using an annotated extract of

a corpus, consisting of prepositions surroun-

ded by noun phrases, where the prepositions

denote the relation we are trying disambigu-

ate. The results show an unexploited opportu-

nity of including prepositions and the relations

they denote, e.g. in content based information

retrieval.

1 Introduction

What we describe in this paper, which we refer to as re-

lation disambiguation, is in some sense similar to word

sense disambiguation. In traditional word sense disam-

biguation the objective is to associate a distinguishable

sense with a given word (Ide and Véronis, 1998). It

is not a novel idea to use machine learning in con-

nection with traditional word sense disambiguation,

and as such it is not a novel idea to include some kind

of generalization of the concept that a word expres-

ses in the learning task either (Yarowsky, 1992). Ot-

her projects have used light-weight ontologies such as

WordNet in this kind of learning task (Voorhees, 1993;

Agirre and Martinez, 2001). What we believe is our

contribution with this work is the fact that we attempt to

learn complex concepts that consist of two simpler con-

cepts, and the relation that holds between them. Thus,

we start out with the knowledge that some relation

holds between two concepts, which we could express

as REL(concept1,concept2), and what we aim at being

able to do is to fill in a more specific relation type than

the generic REL, and get e.g. POF(concept1,concept2)

in the case where a preposition expresses a partitive re-

lation. This makes it e.g. possible to determine from

the sentence “France is in Europe” that France is a part

of Europe. As in word sense disambiguation we here

presuppose a finite and minimal set of relations, which

is described in greater detail in section 2.

The ability to identify these complex structures in text,

can facilitate a more content based information retri-

eval as opposed to more traditional search engines,

where the information retrieval relies more or less

exclusively on keyword recognition. In the OntoQuery

project1, pertinent text segments are retrieved based on

the conceptual content of the search phrase as well as

the text segments (Andreasen et al., 2002; Andreasen

et al., 2004). Concepts are here identified through their

corresponding surface form (noun phrases), and map-

ped into the ontology. As a result, we come from a flat

structure in a text to a graph structure, which describes

the concepts that are referred to in a given text segment,

in relation to each other.

However, at the moment the ontology is strictly a

subsumption-based hierarchy and, further, only relati-

vely simple noun phrases are recognized and mapped

into the ontology. The work presented here expands

this scope by including other semantic relations be-

tween noun phrases. Our first experiments in this di-

rection have been an analysis of prepositions with sur-

rounding noun phrases (NPs). Our aim is to show that

there is an affinity between the ontological types of the

NP-heads and the relation that the preposition denotes,

which can be used to represent the text as a complex

semantic structure, as opposed to simply running text.

The approach to showing this has been to annotate a

corpus and use standard machine learning methods on

this corpus.

2 Semantic relations

The following account is based on the work of (Jensen

and Nilsson, 2006): Relations exist between entities re-

ferred to in discourse. They can exist at different synta-

ctic levels; across sentence boundaries as in example 1,

or within a sentence, a phrase or a word. The relations

1http://www.ontoquery.dk

72

can be denoted by different parts of speech, such as a

verb, a preposition or an adjective, or they can be impli-

citly present in compounds and genitive constructions

as in example 2.

Semantic relations are n-ary: In example 1 below the

verb form ’owns’ denotes a binary relation between Pe-

ter and a dog, and in example 3, the verb form ’gave’

denotes a ternary relation between Peter, the dog and a

bone. In example 4 the preposition ’in’ denotes a bi-

nary relation between the dog and the yard.

(1) Peter owns a dog. It is a German shepherd.

(2) Peter’s dog.

(3) Peter gave the dog a bone.

(4) The dog in the yard.

In the framework of this machine learning project, we

will only consider binary relations denoted by prepo-

sitions. A preposition, however, can be ambiguous in

regard to which relation it denotes. As an example, let

us consider the Danish preposition i (Eng: in): The sur-

face form i in ‘A i B’ can denote at least five different

relations between A and B:

1. A patient relation PNT; a relation where one of the

arguments’ case role is patient, e.g. “ændringer i

stofskiftet” (changes in the metabolism).

2. A locational relation LOC; a relation that denotes

the location/position of one of the arguments com-

pared to the other argument, e.g. “skader i hjer-

temuskulaturen” (injuries in the heart muscle).

3. A temporal relation TMP; a relation that denotes

the placement in time of one of the arguments

compared to the other, e.g. “mikrobiologien i

1800-tallet” (microbiology in the 19th century).

4. A property ascription relation CHR; a relation that

denotes a characterization relation between one of

the arguments and a property, e.g. “antioxidanter

i renfremstillet form” (antioxidants in a pure form)

5. A ’with respect to’ relation WRT; an underspeci-

fied relation that denotes an ’aboutness’ relation

between the arguments, e.g. “forskelle i saltindta-

gelsen” (differences in the salt intake) .

As presented above, the idea is to perform supervised

machine learning, that will take into account the sur-

face form of the preposition and the ontological type

of the heads of the surrounding noun phrases, and on

this basis be able to determine the relation that holds

between noun phrases surrounding a preposition in un-

seen text.

3 The corpus

In order to establish a training set, a small corpus of ap-

proximately 18,500 running words has been compiled

from texts from the domain of nutrition and afterwards

annotated with the ontological type of the head of the

noun phrases, and the semantic relation denoted by the

preposition 2.

All the text samples in this corpus derive from “The

Danish National Encyclopedia” (Gyldendal, 2004), and

are thus not only limited domain-wise, but also of a

very specific text type which can be classified as expert-

to-non-expert. Thus, we cannot be certain that our re-

sults can be directly transferred to a larger or more ge-

neral domain, or to a different text type. This aspect

would have to be empirically determined.

3.1 Annotation

For the purpose of learning relations, 952 excerpts of

the form:

NP − P − NP (5)

have been extracted from the corpus and annotated with

information about part of speech, ontological type and

relation type for NP heads and prepositions, respecti-

vely. An example of the analyzed text excerpts are gi-

ven in table 1 on the following page, where each row

indicates a level of the analysis.

The POS-tagging and head extraction have been done

automatically, the ontological type assignation partly

automatically (ontology look-up) and partly manually

(for words that do not exist as instantiations of concepts

in the ontology). The relation annotation has been done

manually.

The tags used in the annotation on the three levels are:

POS-tags. Our tagger uses a subset of the PAROLE

tag set, consisting of 43 tags, see (Hansen, 2000),

which means that it is a low level POS tagging

with little morphosyntactic information. We only

use the tags in order to extract NPs and preposi-

tions, and thus do not need a more fine-grained

information level.

SIMPLE-tags. The tags used for the ontological type

annotation consist of abbreviations of the types in

the SIMPLE top ontology. The tag set consists of

151 tags.

Relation-tags. The tags used for the relation anno-

tation derive from a minimal set of relations that

have been used in earlier OntoQuery related work.

The set can be seen in table 2

2Extraction, POS-tagging and initial ontological and re-
lation type annotation was done by Dorte Haltrup Hansen,
CST, University of Copenhagen

73

surface form blodprop (thrombosis) i (in) hjertet (the heart)

syntactic structure head of first NP preposition head of second NP

relation and ontological type disease location body part

Table 1: Example of the text excerpts analyzed in our experiments. Each row indicate a level of analysis

The manual relation annotation has been done by one

annotator for this initial project. The ideal situation

would be to have several annotators annotate the cor-

pus. If two or more people annotate the same corpus,

they are almost certain to disagree on some occasions.

This disagreement can have two sources: first it can be

due to cognitive differences. Two people subjected to

the same utterance are not guaranteed to perceive the

same content, or to perceive the content intended by

the producer of the utterance. Many factors are at play

here; cultural background, knowledge, memory, etc.

Secondly, it can be due to conceptual, lexical or syn-

tactic ambiguity in the utterance. We cannot remove

these sources of disagreement, but we can introduce

tools that make the annotation more consistent. By

using a finite and minimal realtion tag set and, further,

by introducing paraphrase tests, we hope to minimize

the risk of inter-annotator disagreement in a future an-

notation on a larger scale.

3.1.1 The ontological type annotation

As noted above, the ontological types used in the ex-

periments derive from the SIMPLE top ontology (Pe-

dersen, 1999; Lenci et al., 2000). The heads of the

phrases have been annotated with the lowest possible

node, i.e. ontological type, of the top ontology. In the

case of blodprop the annotation of ontological type is

“disease”, since “disease” is the lowest node in the top

ontology in the path from thrombosis to the top. This is

illustrated in figure 1, which shows the path from blod-

prop (thrombosis) to the top level of SIMPLE.

Thus, for the purpose of this project, we only consi-

der one node for each concept: the lowest possible

node in the top ontology. Another approach would

be to consider the the full path to the top node, and

also including the path from the leaf node to the

lowest node in the top ontology. In the example depi-

cted in figure 1, the full path from trombosis to the

top node would be trombosis–cardiovascular disease–

disease–phenomenon–event–entity–top or trombosis–

cardiovascular disease–disease–agentive–top.

3.1.2 The set of relations

For the purpose of the manual relation annotation, we

needed to decide on a finite set of possible relations that

can be denoted by prepositions. This is a non-trivial

task, as it is almost impossible to foresee which rela-

tions prepositions can denote generally, and in the text

type at hand specifically, by introspection alone. The

method that we decided to use was the following: An

top

entity

eventagentive

phenomenon

disease

thrombosis

y
�

I

:

6

6

6

cardiovascular disease

6
Top ontology

Domain ontology
...

Figure 1: An illustration of the path from blodprop

(thrombosis) to the top level of the SIMPLE ontology.

initial set of relations that have all been used in prior

OntoQuery-related work (Nilsson, 2001; Madsen et al.,

2001; Madsen et al., 2000), were chosen as a point of

departure. The final set was found by annotating the

text segments using this set as the possible relation ty-

pes, and the relations that are actually manifested in

the data then form the final subset that was used as in-

put for a machine learning algorithm. The final subset

is shown in table 2.

Role Description

AGT Agent of act or process

BMO By means of, instrument, via

CBY Caused by

CHR Characteristic (property ascription)

CMP Comprising, has part

DST Destination of moving process

LOC Location, position

PNT Patient of act or process

SRC Source of act or process

TMP Temporal aspects

WRT With respect to

Table 2: The set of relations used in the annotation,

which is a subset of the set proposed in Nilsson, 2001.

74

3.2 Paraphrase tests

In order to ensure a consistent relation annotation, it

is necessary to develop a set of paraphrase tests that

can help the annotator determine which relation a given

preposition denotes in a given context. Some relations

are particularly difficult to intuitively keep apart from

closely related relations. One of these problematic re-

lation pairs is treated in some detail below.

For example locative and partitive relations can be diffi-

cult to keep apart, probably because they to some extent

are overlapping semantically. From a philosophical po-

int of view, an important question is ’when does an en-

tity become part of the entity it is located in?’, but from

a practical point of view, we are interested in answe-

ring the question ’how can we decide if a given relation

a locative or partitive relation?’.

In this paper we will only treat the latter question. A

tool that is useful for this purpose is the paraphrase test:

If we can paraphrase the text segment in question into

the phrasing the test prescribes, while preserving the

semantic content, we can conclude that the relation is a

possible relation for the given phrase.

3.2.1 Attribute Transportation Test

The two relations LOC and POF can be difficult to dif-

ferentiate, even when using paraphrase tests. There-

fore, an additional test that could be considered, is

Ruus’ attribute transportation test (Ruus, 1995)3. In

the example “The pages in the book”, the book gets

e.g. the attribute ’binding: {hardback | paperback}’

from cover, and the attribute ’paper grade:{bond | book

| bristol | newsprint}’ from pages.

Figure 2: A graphical representation of the relation be-

tween book and pages

We cannot observe an attribute transport, neither from

the bird to the roof, nor the other way. This suggests

that it is possible to use the atrribute transportation test

in order to determine whether a given relation is a POF

or a LOC relation. Thus, we can now formulate the

following paraphrase test for POF:

POF: A consists e.g. of B and

A has the attribute X, from B.

3We will here ignore the question of direction of transport

4 Experiments

The annotation process generates af a feature space of

six dimensions, namely the lemmatized form of the two

heads of the noun phrases, the ontological types of the

heads, the preposition and the relation. In the corpus

there is a total of only 952 text segments. In general

the distribution of the data is highly skewed and spar-

seness is a serious problem. More than half of the in-

stances are of the relation type WRT or PNT, and the

rest of the instances are distributed among the remai-

ning 10 relations with only 14 instances scattered over

the tree smallest classes. This is illustrated in figure 3.

There are 332 different combinations of ontological ty-

pes where 197 are unique. There are 681 different he-

ads and 403 of them are unique, with all of them being

lemmatized.

Figure 3: An illustration of the distribution of the 12

possible relations.

Our assumption is that there is consistency in which

relations prepositions usually denote in particular con-

texts, and hence the learning algorithms should be able

to generalize well. We also assume that the addition

of the ontological types of the head of the NP, is the

most vital information in classifying the relation type,

at least in this case where data is sparse.

We have run the experiments with a Support Vector

Machine algorithm SMO (Keerthi et al., 2001) and

the prepositional rule learning algorithm JRip (Cohen,

1995). The former in order to get high precision, the

latter in order to get easily interpretable rules for later

analysis (see section 4.1). The experiments were run

using 10-fold-cross-validation, with a further partition

of the training set at each fold into a tuning and a trai-

ning set. The tuning set was used to optimize the pa-

rameter4 settings for each algorithm . The implemen-

tation of the algorithms that we used, was the WEKA

software package (Frank et al., 2005).

4For SMO the parameters where complexity, kernel used
and gamma for the RBF kernel. For JRip it was number of
folds used for growing and pruning, minimum number of in-
stances covered and number of optimization runs

75

The experiments were run on seven different combi-

nations of the feature space, ranging from using only

the heads to using both heads, preposition and ontolo-

gical types of the heads. This was done in order to get

insight into the importance of using ontological types

in the learning. The results of these experiments are

shown in table 3. The last column shows the precision

for a projected classifier (PC) in the cases where it out-

performs the trivial rejector. The projected classifier,

in this case, assigns the relation that is most common

for the corresponding input pair; e.g if the ontological

types are DIS/HUM, then the most common relation is

PNT. The trivial rejector, which assigns the most com-

mon relation, in this case WRT, to all the instances,

achieves a precision of 37.8%.

Feature space JRip SVM PC

1 Preposition 68.4 68.5 67.6
2 Ontological types 74.4 77.0 61.8
3 Lemma 66.8 73.3 –
4 Lemma and Preposi-

tion
72.3 83.4 –

5 Ontological types and
Lemma

74,7 81.7 –

6 Ontological types and
Preposition

82.6 86.6 –

7 Ontological types,
Preposition and
Lemma

84,0 88.3 –

Table 3: The precision of SVM, JRip and a projected

classifier on the seven different combinations of input

features. “Lemma” here is short for lemmatized NP

head.

The following conclusions can be drawn from table 3.

The support vector machine algorithm produces a re-

sult which in all cases is better than the baseline, i.e. we

are able to produce a model that generalizes well over

the training instances compared to the projected clas-

sifier or the trivial rejector. This difference is not sta-

tistically significant at a confidence level of 0.95 when

only training on the surface form of prepositions.

A comparison of line 1–3 shows that training on onto-

logical types seems to be superior to using lemmatized

NP heads or prepositions, though the superiority is not

statistically significant when comparing to the lemma-

tized NP heads. When comparing line 4–7 the diffe-

rence between the results are not statistically signifi-

cant. This fact may owe to the data sparseness. Howe-

ver, comparing line 1 to line 6 or 7, shows that the im-

provement of adding the preposition and the lemma-

tized NP heads to the ontological types is statistically

significant.

In general, the results reveal an unexplored opportu-

nity to include ontological types and the relations that

prepositions denote in information retrieval. In the next

section, we will look more into the rules created by the

JRip algorithm from a linguistic point of view.

4.1 Analyzing the rules

In this section we will take a deeper look into the rules

produced by JRip on the data set with only ontological

types, since they are the most interesting in this context.

The JRip algorithm produced on average 21 rules. The

most general rule covering almost half of the instan-

ces is the default rule, that assigns all instances to the

WRT relation if no other rules apply. At the other end

of the spectrum, there are ten rules covering no more

than 34 instances, but with a precision of 100%. It is

futile to analyse these rules, since they cover the most

infrequent relations and hence may be overfitting the

data set. However, this seems not be the case with a

rule like “if the ontotype of the first head is DISEASE

and and the ontotype of the second head is HUMAN

then the relation is PATIENT” covering an instance as

e.g. “iron deficiency in females”.

The rule with the second highest coverage, and a fairly

low precision of around 66%, is the rule: “if the on-

totype of the second head is BODY PART then the

relation type is LOCATIVE”. The rule covers instan-

ces as e.g. “. . . thrombosis in the heart” but also incor-

rectly classifies all instances as LOCATIVE where the

relation type should be SOURCE. E.g. the sentence

‘. . . iron absorbtion from the intestine”, which is in fact

a SOURCE relation, but is classified as LOCATIVE by

the rule.

One of the least surprising and most precise rules is:

“if the ontotype of the second head is TIME then the

relation type is TEMPORAL” covering an instance as

e.g. “. . . diet for many months”. We would expect a

similar rule to be produced, if we had performed the

learning task on a general language corpus.

5 Conclusion and future work

Even though the experiments are in an early phase, the

results indicate that it is possible to analyse the seman-

tic relation a preposition denotes between two noun

phrases, by using machine learning and an annotated

corpus – at least within the domain covered by the on-

tology. Future work will therefore include annotation

and investigation of a general language corpus. Also, a

more thorough examination of the corpus, more specifi-

cally an investigation of which relations or prepositions

that are most difficult to analyse. Also, we will experi-

ment with the amount of information that we train on,

not as we have already done by in- or excluding types

of information, but rather the extension of the infor-

mation: Could we predict the ontological type of one

of the arguments by looking at the other? Finally, an

explicit inclusion of the whole ontology in the learning

process is on the agenda, as proposed in section 3.1.1

on page 3, in the anticipation that the learner will pro-

duce an even better model.

76

6 Acknowledgements

We would like to thank Troels Andreasen, Per Anker

Jensen and two anonymous reviewers for fruitful com-

ments. The latter especially for comments on the expe-

rimental part and inter-annotator agreement.

References

[Agirre and Martinez2001] E. Agirre and D. Martinez.
2001. Learning class-to-class selectional preferences.

[Andreasen et al.2002] Troels Andreasen, Per Anker
Jensen, Jørgen Fischer Nilsson, Patrizia Paggio, Bo-
lette Sandford Pedersen, and Hanne Erdman Thomsen.
2002. Ontological extraction of content for text que-
rying. In Lecture Notes in Computer Science, volume
2553, pages 123 – 136. Springer-Verlag.

[Andreasen et al.2004] Troels Andreasen, Per Anker
Jensen, Jørgen Fischer Nilsson, Patrizia Paggio,
Bolette Sandford Pedersen, and Hanne Erdman Thom-
sen. 2004. Content-based text querying with onto-
logical descriptors. Data & Knowledge Engineering,
48(2):199–219.

[Cohen1995] William W. Cohen. 1995. Fast effective
rule induction. In Armand Prieditis and Stuart Russell,
editors, Proceedings of the 12th International Confe-
rence on Machine Learning, pages 115–123, Tahoe
City, CA. Morgan Kaufmann.

[Frank et al.2005] Eibe Frank, Mark Hall, and Len
Trigg. 2005. Weka. Publicly available, November.

[Gyldendal2004] Gyldendal. 2004. The danish natio-
nal encyclopedia. ISBN: 8702031051.

[Hansen2000] Dorte Haltrup Hansen. 2000. Træning
og brug af brill-taggeren på danske tekster. Technical
report, CST.

[Ide and Véronis1998] Nancy Ide and Jean Véronis.
1998. Special issue on word sense disambiguation: In-
troduction to the special issue on word sense disambi-
guation: the state of the art. Computational Lingui-
stics, 24.

[Jensen and Nilsson2006] Per Anker Jensen and
Jørgen Fischer Nilsson, 2006. Syntax and Semantics of
Prepositions, volume 29 of Text, Speech and Language
Technology, chapter Ontology-Based Semantics for
Prepositions. Springer.

[Keerthi et al.2001] S. Sathiya Keerthi, Shirish Krish-
naj Shevade, Chiranjib Bhattacharyya, and K. R. K.
Murthy. 2001. Improvements to platt’s smo algo-
rithm for svm classifier design. Neural Computation,
13(3):637–649.

[Lenci et al.2000] Alessandro Lenci, Nuria Bel, Fede-
rica Busa, Nicoletta Calzolari1, Elisabetta Gola, Mo-
nica Monachini, Antoine Ogonowski, Ivonne Peters,
Wim Peters, Nilda Ruimy, Marta Villegas, and Anto-
nio Zampolli. 2000. Simple: A general framework for

the development of multilingual lexicons. Internatio-
nal Journal of Lexicography, 13(4):249–263.

[Madsen et al.2000] Bodil Nistrup Madsen, Bo-
lette Sandford Pedersen, and Hanne Erdman Thomsen.
2000. Semantic relations in content-based querying
systems: a research presentation from the ontoquery
project. In K Simov and A Kiryakov, editors, Ontolo-
gyes and Lexical Knowledge Bases. Proceedings of the
1st International Workshop, OntoLex 2000. University
of Southern Denmark, Kolding.

[Madsen et al.2001] Bodil Nistrup Madsen, Bo-
lette Sandford Pedersen, and Hanne Erdman Thomsen.
2001. Defining semantic relations for ontoquery. In
Per Anker Jensen and P Skadhauge, editors, Procee-
dings of the First International OntoQuery Workshop
Ontology-based interpretation of NP’s. University of
Southern Denmark, Kolding.

[Nilsson2001] Jørgen Fischer Nilsson. 2001. A logico-
algebraic framework for ontologies, ontolog. In Jensen
and Skadhauge, editors, Proceedings of the First In-
ternational OntoQuery Workshop Ontology-based in-
terpretation of NP’s. University of Southern Denmark,
Kolding.

[Pedersen1999] Bolette Sandford Pedersen. 1999. Den
danske simple-ordbog. en semantisk, ontologibaseret
ordbog. In C. Poulsen, editor, DALF 99, Datalingvi-
stisk Forenings årsmøde 1999. Center for sprogtekno-
logi.

[Ruus1995] Hanne Ruus. 1995. Danske kerneord.
Centrale dele af den danske leksikalske norm 1-2. Mu-
seum Tusculanums Forlag.

[Voorhees1993] Ellen M. Voorhees. 1993. Using word-
net to disambiguate word senses for text retrieval. In
Robert Korfhage, Edie M. Rasmussen, and Peter Wil-
lett, editors, Proceedings of the 16th Annual Interna-
tional ACM-SIGIR Conference on Research and Deve-
lopment in Information Retrieval. Pittsburgh, PA, USA,
June 27 - July 1, 1993, pages 171–180. ACM.

[Yarowsky1992] David Yarowsky. 1992. Word-sense
disambiguation using statistical models of Roget’s ca-
tegories trained on large corpora. In Proceedings of
COLING-92, pages 454–460, Nantes, France, July.

77

Towards Free-text Semantic Parsing: A Unified Framework Based on

FrameNet, VerbNet and PropBank

Ana-Maria Giuglea and Alessandro Moschitti

University of Rome “Tor Vergata”,

Rome, Italy

ana-maria.giuglea@topex.ro

moschitti@info.uniroma2.it

Abstract

This article describes a robust semantic

parser that uses a broad knowledge base

created by interconnecting three major

resources: FrameNet, VerbNet and

PropBank. The FrameNet corpus con-

tains the examples annotated with se-

mantic roles whereas the VerbNet lexi-

con provides the knowledge about the

syntactic behavior of the verbs. We

connect VerbNet and FrameNet by

mapping the FrameNet frames to the

VerbNet Intersective Levin classes. The

PropBank corpus, which is tightly con-

nected to the VerbNet lexicon, is used to

increase the verb coverage and also to

test the effectiveness of our approach.

The results indicate that our model is an

interesting step towards the design of

free-text semantic parsers.

1 Introduction

During the last years a noticeable effort has been

devoted to the design of lexical resources that

can provide the training ground for automatic

semantic role labelers. Unfortunately, most of the

systems developed until now are confined to the

scope of the resource that they use during the

learning stage. A very recent example in this

sense was provided by the CONLL 2005 Shared

Task on PropBank (Kingsbury and Palmer,

2002) role labeling (Carreras and Màrquez,

2005). While the best F-measure recorded on a

test set selected from the training corpus (WSJ)

was 80%, on the Brown corpus, the F-measure

dropped below 70%. The most significant causes

for this performance decay were highly ambigu-

ous and unseen predicates (i.e. predicates that do

not have training examples, unseen in the train-

ing set).

On the FrameNet (Johnson et al., 2003) role

labeling task, the Senseval-3 competition (Lit-

kowski, 2004) registered similar results (~80%)

by using the gold frame information as a given

feature. No tests were performed outside Frame-

Net. In this paper, we show that when the frame

feature is not used, the performance decay on

different corpora reaches 30 points. Thus, the

context knowledge provided by the frame is very

important and a free-text semantic parser using

FrameNet roles depends on the accurate auto-

matic detection of this information.

In order to test the feasibility of such a task,

we have trained an SVM (Support Vector Ma-

chine) Tree Kernel model for the automatic ac-

quisition of the frame information. Although Fra-

meNet contains three types of predicates (nouns,

adjectives and verbs), we concentrated on the

verb predicates and the roles associated with

them. Therefore, we considered only the frames

that have at least one verb lexical unit. Our

experiments show that given a FrameNet

predicate-argument structure, the task of identi-

fying the originating frame can be performed

with very good results when the verb predicates

have enough training examples, but becomes

very challenging otherwise. The predicates not

yet included in FrameNet and the predicates be-

longing to new application domains (that require

new frames) are especially problematic as for

them there is no available training data.

We have thus studied new means of captur-

ing the semantic context, other than the frame,

which can be easily annotated on FrameNet and

are available on a larger scale (i.e. have a better

coverage). A very good candidate seems to be

the Intersective Levin classes (Dang et al., 1998)

that can be found as well in other predicate re-

sources like PropBank and VerbNet (Kipper et

al., 2000). Thus, we have designed a semi-

automatic algorithm for assigning an Intersective

Levin class to each FrameNet verb predicate.

78

The algorithm creates a mapping between Fra-

meNet frames and the Intersective Levin classes.

By doing that we could connect FrameNet to

VerbNet and PropBank and obtain an increased

training set for the Intersective Levin class. This

leads to better verb coverage and a more robust

semantic parser. The newly created knowledge

base allows us to surpass the shortcomings that

arise when FrameNet, VerbNet and PropBank

are used separately while, at the same time, we

benefit from the extensive research involving

each of them (Pradhan et al., 2004; Gildea and

Jurafsky, 2002; Moschitti, 2004).

We mention that there are 3,672 distinct

verb senses
1
 in PropBank and 2,351 distinct verb

senses in FrameNet. Only 501 verb senses are in

common between the two corpora which mean

13.64% of PropBank and 21.31% of FrameNet.

Thus, by training an Intersective Levin class

classifier on both PropBank and FrameNet we

extend the number of available verb senses to

5,522.

In the remainder of this paper, Section 2

summarizes previous work done on FrameNet

automatic role detection. It also explains in more

detail why models based exclusively on this cor-

pus are not suitable for free-text parsing. Section

3 focuses on VerbNet and PropBank and how

they can enhance the robustness of our semantic

parser. Section 4 describes the mapping between

frames and Intersective Levin classes whereas

Section 5 presents the experiments that support

our thesis. Finally, Section 6 summarizes the

conclusions.

2 Automatic semantic role detection on

FrameNet

One of the goals of the FrameNet project is to

design a linguistic ontology that can be used for

automatic processing of semantic information.

This hierarchy contains an extensive semantic

analysis of verbs, nouns, adjectives and situa-

tions in which they are used, called frames. The

basic assumption on which the frames are built is

that each word evokes a particular situation with

specific participants (Fillmore, 1968). The situa-

tions can be fairly simple depicting the entities

involved and the roles they play or can be very

complex and in this case they are called scenar-

ios. The word that evokes a particular frame is

called target word or predicate and can be an

1
 A verb sense is an Intersective Levin class in which

the verb is listed.

adjective, noun or verb. The participant entities

are defined using semantic roles and they are

called frame elements.

Several models have been developed for the

automatic detection of the frame elements based

on the FrameNet corpus (Gildea and Jurafsky,

2002; Thompson et al., 2003; Litkowski, 2004).

While the algorithms used vary, almost all the

previous studies divide the task into 1) the identi-

fication of the verb arguments to be labeled and

2) the tagging of each argument with a role.

Also, most of the models agree on the core fea-

tures as being: Predicate, Headword, Phrase

Type, Governing Category, Position, Voice and

Path. These are the initial features adopted by

Gildea and Jurafsky (2002) (henceforth G&J) for

both frame element identification and role classi-

fication.

A difference among the previous machine-

learning models is whether the frame information

was used as gold feature. Of particular interest

for us is the impact of the frame over unseen

predicates and unseen words in general. The

results obtained by G&J are relevant in this

sense; especially, the experiment that uses the

frame to generalize from predicates seen in the

training data to other predicates (i.e. when no

data is available for a target word, G&J use data

from the corresponding frame). The overall per-

formance induced by the frame usage increased.

Other studies suggest that the frame is cru-

cial when trying to eliminate the major sources

of errors. In their error analysis, (Thompson et

al., 2003) pinpoints that the verb arguments with

headwords that are “rare” in a particular frame

but not rare over the whole corpus are especially

hard to classify. For these cases the frame is very

important because it provides the context infor-

mation needed to distinguish between different

word senses.

Overall, the experiments presented in G&J’s

study correlated with the results obtained in the

Senseval-3 competition show that the frame fea-

ture increases the performance and decreases the

amount of annotated examples needed in training

(i.e. frame usage improves the generalization

ability of the learning algorithm). On the other

hand the results obtained without the frame in-

formation are very poor.

This behavior suggests that predicates in the

same frame behave similarly in terms of their

argument structure and that they differ with re-

spect to other frames. From this perspective, hav-

ing a broader verb knowledge base becomes of

major importance for free-text semantic parsing.

79

Unfortunately, the 321 frames that contain at

least one verb predicate cover only a small frac-

tion of the English verb lexicon and of possible

domains. Also from these 321 frames only 100

were considered to have enough training data

and were used in Senseval-3 (see Litkowski,

2004 for more details).

Our approach for solving such problems in-

volves the usage of a frame-like feature, namely

the Intersective Levin class. We show that the

Levin class is similar in many aspects to the

frame and can replace it with almost no loss in

performance. At the same time, Levin class pro-

vides better coverage as it can be learned also

from other corpora (i.e. PropBank). We annotate

FrameNet with Intersective Levin classes by us-

ing a mapping algorithm that exploits current

theories of linking. Our extensive experimenta-

tion shows the validity of our technique and its

effectiveness on corpora different from Frame-

Net. The next section provides the theoretical

support for the unified usage of FrameNet,

VerbNet and PropBank, explaining why and how

is possible to link them.

3 Linking FrameNet to VerbNet and

PropBank

In general, predicates belonging to the same

FrameNet frame have a coherent syntactic be-

havior that is also different from predicates per-

taining to other frames (G&J). This finding is

consistent with theories of linking that claim that

the syntactic behavior of a verb can be predicted

from its semantics (Levin 1993, Levin and Rap-

paport Hovav, 1996). This insight determined us

to study the impact of using a feature based on

Intersective Levin classes instead of the frame

feature when classifying FrameNet semantic

roles. The main advantage of using Levin classes

comes from the fact that other resources like

PropBank and the VerbNet lexicon contain this

kind of information. Thus, we can train a Levin

class classifier also on the PropBank corpus,

considerably increasing the verb knowledge base

at our disposal. Another advantage derives from

the syntactic criteria that were applied in defin-

ing the Levin clusters. As shown later in this ar-

ticle, the syntactic nature of these classes makes

them easier to classify than frames, when using

only syntactic and lexical features.

More precisely, the Levin clusters are

formed according to diathesis alternation criteria

which are variations in the way verbal arguments

are grammatically expressed when a specific se-

mantic phenomenon arises. For example, two

different types of diathesis alternations are the

following:

(a) Middle Alternation

[Subject, Agent The butcher] cuts [Direct Object, Patient the meat].

[Subject, Patient The meat] cuts easily.

(b) Causative/inchoative Alternation

[Subject, Agent Janet] broke [Direct Object, Patient the cup].

[Subject, Patient The cup] broke.

In both cases, what is alternating is the

grammatical function that the Patient role takes

when changing from the transitive use of the

verb to the intransitive one. The semantic phe-

nomenon accompanying these types of alterna-

tions is the change of focus from the entity per-

forming the action to the theme of the event.

Levin documented 79 alternations which

constitute the building blocks for the verb

classes. Although alternations are chosen as the

primary means for identifying the classes, addi-

tional properties related to subcategorization,

morphology and extended meanings of verbs are

taken into account as well. Thus, from a syntactic

point of view, the verbs in one Levin class have a

regular behavior, different from the verbs per-

taining to other classes. Also, the classes are se-

mantically coherent and all verbs belonging to

one class share the same participant roles.

This constraint of having the same semantic

roles is further ensured inside the VerbNet lexi-

con that is constructed based on a more refined

version of the Levin classification called Inter-

sective Levin classes (Dang et al., 1998). The

lexicon provides a regular association between

the syntactic and semantic properties of each of

the described classes. It also provides informa-

tion about the syntactic frames (alternations) in

which the verbs participate and the set of possi-

ble semantic roles.

One corpus associated with the VerbNet

lexicon is PropBank. The annotation scheme of

PropBank ensures that the verbs belonging to the

same Levin class share similarly labeled argu-

ments. Inside one Intersective Levin class, to one

argument corresponds one semantic role num-

bered sequentially from Arg0 to Arg5. Higher

numbered argument labels are less consistent and

assigned per-verb basis.

The Levin classes were constructed based on

regularities exhibited at grammatical level and

the resulting clusters were shown to be semanti-

cally coherent. As opposed, the FrameNet frames

were build on semantic bases, by putting together

verbs, nouns and adjectives that evoke the same

situations. Although different in conception, the

80

FrameNet verb clusters and VerbNet verb clus-

ters have common properties
2
:

(1) Coherent syntactic behavior of verbs inside one

cluster,

(2) Different syntactic properties between any two

distinct verb clusters,

(3) Shared set of possible semantic roles for all verbs

pertaining to the same cluster.

Having these insights, we have assigned a corre-

spondent VerbNet class not to each verb predi-

cate but rather to each frame. In doing this we

have applied the simplifying assumption that a

frame has a unique corresponding Levin class.

Thus, we have created a one-to-many mapping

between the Intersective Levin classes and the

frames. In order to create a pair 〈FrameNet

frame, VerbNet class〉, our mapping algorithm

checks both the syntactic and semantic consis-

tency by comparing the role frequency distribu-

tions on different syntactic positions for the two

candidates. The algorithm is described in detail

in the next section.

4 Mapping FrameNet frames to

VerbNet classes

The mapping algorithm consists of three steps:

(a) we link the frames and Intersective Levin

verb classes that have the largest number of

verbs in common and we create a set of pairs

〈FrameNet frame, VerbNet class〉 (see Figure 1);

(b) we refine the pairs obtained in the previous

step based on diathesis alternation criteria, i.e.

the verbs pertaining to the FrameNet frame have

to undergo the same diathesis alternation that

characterize the corresponding VerbNet class

(see Figure 2) and (c) we manually check and

correct the resulting mapping. In the next sec-

tions we will explain in more detail each step of

the mapping algorithm.

4.1 Linking frames and Intersective Levin

classes based on common verbs

During the first phase of the algorithm, given a

frame, we compute its intersection with each

VerbNet class. We choose as candidate for the

mapping the Intersective Levin class that has the

largest number of verbs in common with the

given frame (Figure 1, line (I)). If the size of the

intersection between the FrameNet frame and the

candidate VerbNet class is bigger than or equal

2
 For FrameNet, properties 1 and 2 are true for most

of the frames but not for all. See section 4.4 for more

details.

to 3 elements then we form a pair 〈FrameNet

frame, VerbNet class〉 that qualifies for the

second step of the algorithm.

Only the frames that have more than three

verb lexical units are candidates for this step

(frames with less than 3 members cannot pass

condition (II)). This excludes a number of 60

frames that will subsequently be mapped

manually.

Figure 1. Linking FrameNet frames and VerbNet

classes

4.2 Refining the mapping based on verb

alternations

In order to assign a VerbNet class to a frame, we

have to check that the verbs belonging to that

frame respect the diathesis alternation criteria

used to define the VerbNet class. Thus, the pairs

〈FrameNet frame, VerbNet class〉 formed in step

(I) of the mapping algorithm have to undergo a

validation step that verifies the similarity be-

tween the enclosed FrameNet frame and VerbNet

class. This validation process has several sub-

steps.

First, we make use of the property (3) of the

Levin classes and FrameNet frames presented in

the previous section. According to this property,

all verbs pertaining to one frame or Levin class

have the same participant roles. Thus, a first test

of compatibility between a frame and a Levin

class is that they share the same participant roles.

As FrameNet is annotated with frame-specific

semantic roles we manually mapped these roles

into the VerbNet set of thematic roles. Given a

frame, we assigned thematic roles to all frame

elements that are associated with verbal predi-

cates. For example the roles Speaker, Addressee,

Message and Topic from the Telling frame were

respectively mapped into Agent, Recipient,

Theme and Topic.

)({ }

()**

*

,3)(

maxarg)(

:,|,

}|{

}|{

}|{

}|{

CFPairsPairsthenCFifII

 CFCcomputeI

FNFeachfor

PairsLet

:PAIRSCOMPUTE

CtomappedisFVNCFNFCFPairs

OUTPUT

FofverbaisvvFFrameFN

frameFrameNetaisFFFN

CofverbaisvvCClassVN

classVerbNetaisCCVN

INPUT

VNC

∪=≥∩

∩=

∈

∅=

∈∈=

=

=

=

=

∈

81

)(

||||||||3

1

||||||||3

2

),,(#),,..,(

),,(#),,..,(

),,(#),,..,(

),,(#),,..,(

,

}:{

,

1

1

1

1

CF

CF

CF

CF

CF

iin

C

iin

C

iin

F

iin

F

th

ii

DSTDST

DSTDST

ADJADJ

ADJADJ
Score

positionCowhereooDST

positionCowhereooADJ

positionFowhereooDST

positionFowhereooADJ

PairsCFeachfor

a role setrbNet thete of theVe theta rolis the iTR

×

×+

×

×=

===

===

===

===

∈

=

••

distant

adjacent

distant

adjacent

θ

θ

θ

θ

θθ

Second, we build a frequency distribution of

VerbNet thematic roles on different syntactic

position. Based on our observation and previous

studies (Merlo and Stevenson, 2001), we assume

that each Levin class has a distinct frequency

distribution of roles on different grammatical

slots. As we do not have matching grammatical

function in FrameNet and VerbNet, we approxi-

mate that subjects and direct objects are more

likely to appear on positions adjacent to the

predicate, while indirect objects appear on more

distant positions. The same intuition is used suc-

cessfully by G&J in the design of the Position

feature.

We will acquire from the corpus, for each

thematic role θi, the frequencies with which it

appears on an adjacent (ADJ) or distant (DST)

position in a given frame or VerbNet class (i.e.

#(θi, class, position)). Therefore, for each frame

and class, we obtain two vectors with thematic

role frequencies corresponding respectively to

the adjacent and distant positions (see Figure 2).

We compute a score for each pair 〈FrameNet

frame, VerbNet class〉 using the normalized sca-

lar product. We give a bigger weight to the adja-

cent dot product multiplying its score by 2/3 with

respect to the distant dot product that is multi-

plied by 1/3. We do this to minimize the impact

that adjunct roles like Temporal and Location

(that appear mostly on the distant positions)

could have on the final outcome.

Figure 2. Mapping algorithm – refining step

The above frequency vectors are computed

for FrameNet directly from the corpus of predi-

cate-argument structure examples associated

with each frame. The examples associated with

the VerbNet lexicon are extracted from the

PropBank corpus. In order to do this we apply a

preprocessing step in which each label ARG0..N

is replaced with its corresponding thematic role

given the Intersective Levin class of the predi-

cate. We assign the same roles to the adjuncts all

over PropBank as they are general for all verb

classes. The only exception is ARGM-DIR that

can correspond to Source, Goal or Path. We as-

sign different roles to this adjunct based on the

prepositions. We ignore some adjuncts like

ARGM-ADV or ARGM-DIS because they can-

not bear a thematic role.

4.3 Mapping Results

We found that only 133 VerbNet classes have

correspondents among FrameNet frames. Also,

from the frames mapped with an automatic score

smaller than 0.5 points almost a half did not

match any of the existing VerbNet classes
3
. A

summary of the results is depicted in Table 1.

The first column contains the automatic score

provided by the mapping algorithm when com-

paring frames with Intersective Levin classes.

The second column contains the number of

frames for each score interval. The third column

contains the percentage of frames, per each score

interval, that did not have a corresponding

VerbNet class and finally the forth column con-

tains the accuracy of the mapping algorithm.

Score
No. of

Frames

Not

mapped
Correct

Overall

Correct

[0,0.5] 118 48.3% 82.5%

(0.5,0.75] 69 0 84%

(0.75,1] 72 0 100%

89.6%

Table 1. Results of the mapping algorithm

4.4 Discussion

In the literature, other studies compared the

Levin classes to the FrameNet frames (Baker and

Ruppenhofer, 2002). Their findings suggest that

although the two set of clusters are roughly

equivalent there are also several types of

mistmaches: 1) Levin classes that are narrower

than the corresponding frames, 2) Levin classes

that are broader that the corresponding frames

and 3) overlapping groupings. For our task, point

2 does not pose a problem. Points 1 and 3

however suggest that there are cases in which to

one FrameNet frame corresponds more than one

Levin class. By investigating such cases we

noted that the mapping algorithm consistently

assigns scores below 75% to cases that match

problem 1 (two Levin classes inside one frame)

and below 50% to cases that match problem 3

(more than two Levin classes inside one frame).

Thus, in order to increase the accuracy of our

results a first step should be to assign an

3
 The automatic mapping can be improved by manu-

ally assigning the FrameNet frames of the pairs that

receive a score lower than 0.5.

82

Intersective Levin class to each of the verbs

pertaining to frames with score lower than 0.75.

Nevertheless the current results are encouraging

as they show that the algorithm is achiving its

purpose by successfully detecting syntactic

incoherencies that can be subsequently corrected

manually. Also, in the next section we will show

that our current mapping achieves very good

results, giving evidence for the effectivenes of

the Levin class feature.

5 Experiments

In the previous section we have presented the

algorithm for annotating the verb predicates of

FrameNet with Intersective Levin classes. In or-

der to show the effectiveness of this annotation

and of the Intersective Levin class in general we

have performed several experiments.

First, we trained (1) an ILC multiclassifier

from FrameNet, (2) an ILC multiclassifier from

PropBank and (3) a frame multiclassifier from

FrameNet. We compared the results obtained

when trying to classify the VerbNet class with

the results obtained when classifying frame. We

show that Intersective Levin classes are easier to

detect than FrameNet frames.

Our second set of experiments regards the

automatic labeling of FrameNet semantic roles

on FrameNet corpus when using as features: gold

frame, gold Intersective Levin class, automati-

cally detected frame and automatically detected

Intersective Levin class. We show that in all

situations in which the VerbNet class feature is

used, the accuracy loss, compared to the usage of

the frame feature, is negligible. We thus show

that the Intersective Levin class can successfully

replace the frame feature for the task of semantic

role labeling.

Another set of experiments regards the gen-

eralization property of the Intersective Levin

class. We show the impact of this feature when

very few training data is available and its evolu-

tion when adding more and more training exam-

ples. We again perform the experiments for: gold

frame, gold Intersective Levin class, automati-

cally detected frame and automatically detected

Intersective Levin class.

Finally, we simulate the difficulty of free

text by annotating PropBank with FrameNet se-

mantic roles. We use PropBank because it is dif-

ferent from FrameNet from a domain point of

view. This characteristic makes PropBank a dif-

ficult test bed for semantic role models trained

on FrameNet.

In the following section we present the re-

sults obtained for each of the experiments men-

tioned above.

5.1 Experimental setup

The corpora available for the experiments were

PropBank and FrameNet. PropBank contains

about 54,900 sentences and gold parse trees. We

used sections from 02 to 22 (52,172 sentences) to

train the Intersective Levin class classifiers and

section 23 (2,742 sentences) for testing purposes.

For the experiments on FrameNet corpus we

extracted 58,384 sentences from the 319 frames

that contain at least one verb annotation. There

are 128,339 argument instances of 454 semantic

roles. Only verbs are selected to be predicates in

our evaluations. Moreover, as there is no fixed

split between training and testing, we randomly

selected 20% of sentences for testing and 80%

for training. The sentences were processed using

Charniak’s parser (Charniak, 2000) to generate

parse trees automatically.

For classification, we used the SVM-light-

TK software available at http://ai-nlp.

info.uniroma2.it/moschitti which en-

codes tree kernels in the SVM-light software

(Joachims, 1999). The classification performance

was evaluated using the F1 measure for the sin-

gle-argument classifiers and the accuracy for the

multiclassifiers.

5.2 Automatic VerbNet vs. automatic Fra-

meNet frame detection

In these experiments we classify Intersective

Levin classes (ILC) on PropBank (PB) and

FrameNet (FN) and frame on FrameNet. For the

training stage we use SVMs with Tree Kernels.

The main idea of tree kernels is the modeling

of a KT(T1,T2) function which computes the

number of common substructures between two

trees T1 and T2. Thus, we can train SVMs with

structures drawn directly from the syntactic parse

tree of the sentence.

The kernel that we employed in our

experiments is based on the SCF structure

devised in (Moschitti, 2004). We slightly

modified SCF by adding the headwords of the

arguments, useful for representing the selectional

preferences.

 For frame detection on FrameNet, we trained

our classifier on 46,734 training instances and

tested on 11,650 testing instances, obtaining an

accuracy of 91.11%. For ILC detection the

results are depicted in Table 2. The first six

columns report the F1 measure of some verb

83

class classifiers whereas the last column shows

the global multiclassifier accuracy.

We note that ILC detection is performed better

than frame detection on both FrameNet and

PropBank. Also, the results obtained on ILC on

PropBank are similar with the ones obtained on

ILC on FrameNet. This suggests that the training

corpus does not have a major influence. Also, the

SCF-based tree kernel seems to be robust in what

concerns the quality of the parse trees. The

performance decay is very small on FrameNet

that uses automatic parse trees with respect to

PropBank that contains gold parse trees. These

properties suggest that ILC are very suitable for

free text.

Table 2 . F1 and accuracy of the argument classifiers and the overall multiclassifier for Intersective Levin class

5.3 Automatic semantic role labeling on

FrameNet

In the experiments involving semantic role

labelling, we used a SVM with a polynomial

kernel. We adopted the standard features

developed for semantic role detection by Gildea

and Jurafsky (see Section 2). Also, we

considered some of the features designed by

(Pradhan et al., 2004): First and Last Word/POS

in Constituent, Subcategorization, Head Word of

Prepositional Phrases and the Syntactic Frame

feature from (Xue and Palmer, 2004). For the

rest of the paper we will refer to these features as

being literature features (LF). The results

obtained when using the literature features alone

or in conjunction with the gold frame feature,

gold ILC, automatically detected frame feature

and automatically detected ILC are depicted in

Table 3. The first four columns report the F1

measure of some role classifiers whereas the last

column shows the global multiclassifier

accuracy. The first row contains the number of

training and testing instances and each of the

other rows contains the performance obtained for

different feature combinations. The results are

reported for the labeling task as the argument-

boundary detection task is not affected by the

frame-like features (G&J).

We note that automatic frame results are

very similar to automatic ILC results suggesting

that ILC feature is a very good candidate for

replacing the frame feature. Also, both automatic

features are very effective, decreasing the error

rate of 20%.

 Body_part Crime Degree Agent Multiclassifier

FN #Train Instances

FN #Test Instances

1,511

356

39

5

765

187

6,441

1,643

102,724

25,615

LF+Gold Frame 90.91 88.89 70.51 93.87 90.8

LF+Gold ILC 90.80 88.89 71.52 92.01 88.23

LF+Automatic Frame 84.87 88.89 70.10 87.73 85.64

LF+Automatic ILC 85.08 88.89 69.62 87.74 84.45

LF 79.76 75.00 64.17 80.82 80.99

Table 3. F1 and accuracy of the argument classifiers and the overall multiclassifier for

FrameNet semantic roles

5.4 Semantic role learning curve when us-

ing Intersective Levin classes

The next set of experiments show the impact of

the ILC feature on semantic role labelling when

few training data is available (Figure 3). As can

be noted, the automatic ILC features (i.e. derived

with classifers trained on FrameNet or PB)

produce accuracy almost as good as the gold ILC

one. Another observation is that the SRL

classifiers are not saturated and more training

examples would improve their accuracy.

 run-

51.3.2

cooking-

45.3

characterize-

29.2

other_cos-

45.4

say-

37.7

correspond-

36.1
Multiclassifier

PB #Train Instances

PB #Test Instances

262

5

6

5

2,945

134

2,207

149

9,707

608

259

20

52,172

2,742

PB Results 75 33.33 96.3 97.24 100 88.89 92.96

FN #Train Instances

FN #Test Instances

5,381

1,343

138

35

765

40

721

184

1,860

1,343

557

111

46,734

11,650

FN Results 96.36 72.73 95.73 92.43 94.43 78.23 92.63

84

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90 100

% Training Data

A
c
c
u
ra

c
y

 -
-

LF+ILC

LF

LF+Automatic ILC Trained on PB

LF+Automatic ILC Trained on FN

Figure 3. Semantic Role learning curve

5.5 Annotating PropBank with FrameNet

semantic roles

To show that our approach can be suitable for

semantic role free-text annotation, we have

automatically classified PropBank sentences with

the FrameNet semantic-role classifiers. In order

to measure the quality of the annotation, we ran-

domly selected 100 sentences and manually veri-

fied them. We measured the performance ob-

tained with and without the automatic ILC fea-

ture. The sentences contained 189 arguments

from which 35 were incorrect when ILC was

used compared to 72 incorrect in the absence of

this feature. This corresponds to an accuracy of

81% with Intersective Levin class versus 62%

without it.

6 Conclusions

In this paper we have shown that the Intersective

Levin class feature can successfully replace the

FrameNet frame feature. By doing that we could

interconnect FrameNet to VerbNet and Prop-

Bank obtaining better verb coverage and a more

robust semantic parser. Our good results show

that we have defined an effective framework

which is a promising step toward the design of

free-text semantic parsers.

In the future, we intend to measure the effective-

ness of our system by testing on larger, more

comprehensive corpora and without relying on

any manual annotation.

Reference

Collin Baker and Josef Ruppenhofer. 2002. Frame-

Net’s frames vs. Levin’s verb classes. 28th Annual

Meeting of the Berkeley Linguistics Society.

Xavier Carreras and Lluís Màrquez. 2005. Introduc-

tion to the CoNLL-2005 Shared Task: Semantic

Role Labeling. CONLL’05.

Eugene Charniak. 2000. A Maximum-Entropy-

Inspired Parser. ANLP’00

Hoa Trang Dang, Karin Kipper, Martha Palmer and

Joseph Rosenzweig. 1998. Investigating regular

sense extensions based on Intersective Levin

classes. Coling-ACL’98.

Charles Fillmore. 1968. The case for case. Universals

in Linguistic Theory.

 Daniel Gildea and Daniel Jurafsky. 2002. Automatic

labeling of semantic roles. CL Journal.

Christopher Johnson, Miriam Petruck, Collin Baker,

Michael Ellsworth, Josef Ruppenhofer, and Charles

Fillmore. 2003. FrameNet: Theory and Practice.

Berkeley, California.

Paul Kingsbury, Martha Palmer. 2002. From Tree-

Bank to PropBank. LREC’02.

Karin Kipper, Hoa Trang Dang and Martha Palmer.

2000. Class-based construction of a verb lexicon.

AAAI’00.

 Beth Levin. 1993. English Verb Classes and Alterna-

tions A Preliminary Investigation. Chicago: Uni-

versity of Chicago Press.

Kenneth Litkowski. 2004. Senseval-3 task automatic

labeling of semantic roles. Senseval-3.

Paola Merlo and Suzanne Stevenson. 2001. Auto-

matic verb classification based on statistical distri-

bution of argument structure. CL Journal.

Alessandro Moschitti. 2004. A study on convolution

kernel for shallow semantic parsing. ACL’04.

Sameer Pradhan, Kadri Hacioglu, Valeri Krugler,

Wayne Ward, James H. Martin, and Daniel Juraf-

sky. 2004. Support vector learning for semantic ar-

gument classification. Machine Learning Journal.

Cynthia A. Thompson, Roger Levy, and Christopher

Manning. 2003. A Generative Model for FrameNet

Semantic Role Labeling. ECML’03.

Thorsten Joachims. 1999. Making large-scale SVM

learning practical.. Advances in Kernel Methods -

Support Vector Learning.

Nianwen Xue and Martha Palmer. 2004. Calibrating

features for semantic role labeling. EMNLP’04.

85

Constructing a Rule Based Naming System for Thai Names Using the

Concept of Ontologies

Chakkrit Snae

Department of Computer Science

Naresuan University

Phitsanulok, Thailand

chakkrits@nu.ac.th

Abstract

Names are important in many societies,

even in technologically oriented ones

which use ID systems or other ways to

identify individual people. Names such

as personal surnames are the most im-

portant as they are used in many proc-

esses, such as identifying of people, re-

cord linkage and for genealogical re-

search as well. For Thai names this

situation is a bit different in that in Thai

the first names are most important.

Even phone books and directories are

sorted according to the first names.

Here we present a system for construct-

ing Thai names from basic syllables.

Typically Thai names convey a mean-

ing. For this we use an ontology of

names to capture the meaning of the

variants which are based on the Thai

naming methodology and rules.

1 Introduction

Names are used for identifying persons, places,

things and even ideas or concepts. Names serve

for labelling of categories or classes and for indi-

vidual items. They are properties of individuals

which are of greater importance in most commu-

nities. In technological oriented societies such as

modern Western the reference between names as

a label and the person is not as obvious as in

small tribal societies. This is especially true

where names are stored within large information

systems. This includes government, medical,

educational and even commercial records which

are kept about individuals. Names are the most

important referrer to a person even if there are

numbering systems like ID numbers because

such systems are not universal. Names are often

queried in a different way than they were en-

tered. Names represent complex lexical struc-

tures which have to be handled systematically for

data entry, storage and retrieval in order to get

sufficient recall or precision the retrieval process

in.

In this paper we present a first account of our

findings on constructing Thai names with the

help of an ontology of names as well as a work-

ing methodology for the naming process in Thai

culture.

This paper is organized as follows: Section 2

contains a description of names and their ele-

ments. In Section 3 we outline the concept of

ontology of names. In Section 4 we present the

construction process and system for Thai names.

We apply this system together with an ontology

to construct names with an appropriate meaning.

Section 5 shows the conclusions of our study and

further work which has to be performed.

2 What is a Name?

Names for individuals are often called proper

names, for humans sometimes also an-

throponyms. Names for places are called

toponyms, for bodies of water hydronyms, for

ethnic groups ethnonyms, for metaphors meto-

nyms and so on. Names are more than just

strings of characters. Names show important in-

formation such as titles, gender, marital status,

and even birthplace. For this names provide dif-

ferent elements (Section 2.2), which may differ

between cultures.

86

2.1 Naming for Identity and Security

From the technical point of view we want to link

and match as many names as possible with the

correct individuals. If we deal with individuals of

the same name, e.g. John Smith, we have to es-

tablish a second identifier at least. This can be –

and is in many cases – a temporal element, like

the date of birth, which is an individual and un-

changing property of the person. Another way to

circumvent the problem is to establish numbering

systems, like ID numbers. Systems of numbers

or other ciphers can be generated within individ-

ual organisations. It is not likely that the result-

ing ID numbers will be the same in different or-

ganisations. The numbering may have limitations

as well, e.g. the individual health care setting

(e.g. within a hospital or district) or, in principle,

more widely (e.g. the National Health Service

number). In the past, the National Health Service

number in England and Wales had serious limita-

tions as a matching variable, and it was not

widely used on health-care records. With the al-

location of the new ten-digit number throughout

the NHS all this has been changed (Gill, 1997).

Although numbering systems are simple to

implement they can lead to different errors in

recording, transcripting, and keying. So we have

to take into account methods which reduce these

errors and facilitate good quality of data entry

and retrieval. One such method uses a checking

device such as check-digits (Wild, 1968, Ham-

ming, 1986). When we are not able to use unique

numbers or ciphers, natural matching variables

are the person's name, date of birth, sex and per-

haps other supplementary variables such as the

address with postal code and place of birth,

which are used in combination for matching. Re-

cently, it has been suggested that this simple

code could be extended for security critical

places (e.g. airports, checkpoints etc.) with bio-

metric marker information extracted from person

identifier information e.g. finger-

prints/iridograms.

2.2 Elements of Personal Names

The following table shows typical elements of

personal names together with potential variations

and sources of choices, e.g. dictionary of given

names.

Figure 1: The elements of names

3 Ontology of Names?

The term ontology has been widely used in re-

cent years in the field of Artificial Intelligence,

computer and information science especially in

domains such as, cooperative information sys-

tems, intelligent information integration, infor-

mation retrieval and extraction, knowledge rep-

resentation, and database management systems

(Guarino, 1998, Andrade and Saltz, 1999, 2000).

Many different definitions of the term are pro-

posed. One of the most widely quoted and well-

known definition of ontology is Gruber's (Gru-

ber, 1993): An ontology is an explicit specifica-

tion of a conceptualization.

The term is borrowed from philosophy, where

an ontology is a systematic account of existence.

Here in this paper we adopt the following defini-

tion: Ontology is the study or concern about what

kinds of things exist - what entities or things are

there in the universe (Blackburn, 1996). Our

work on ontologies will comprise: a terminologi-

cal component where we lay down the concepts

and an assertional component (or Knowledge

Base) which contains the individual instances

(entities). The level of description will be tax-

onomies with hierarchically related terms and

controlled vocabularies (thesaurus) with the help

of semantic networks.

An ontology of names can be worked out in

many different forms, but every ontology will

include a dictionary, some definition of the terms

87

(semantics), and indications how they depend on

each other, e.g. in hierarchies and semantic net-

works. For example, an ontology of names can

be defined as what kinds of names exist, e.g. first

name, surname, nickname, etc (Section 2.2). This

typically comprises definitions of different

names, the elements of names and their struc-

tures. In this section we show how an ontology

of names can be captured and defined.

An ontology can also be used to establish the

network of synonyms, e.g. using spelling norms

to determine whether two names are the

same/similar or not. For example, two names:

Totie and Totiey can be defined based on as-

sumption that they are the same as Totty. This

attempts to tackle the seemingly irreducible con-

ventions of surname. In compositional semantics

let us consider the name “Gutensohn”. This name

will be used to illustrate the various semantic

considerations in German naming. The name is a

composition of the two strings Godith and Sohn,

which have unambiguous, meaningful interpreta-

tions. The interpretation of Godith is god or good

battle and Sohn is interpreted as a male child in

relation to his parent. The composition Gutsohn,

Gudzon, or in other cultures: Guditson, Godye-

son and Godithson and Godison (Reaney and

Wilson 1997).

We incorporate the different elements of per-

sonal names (Figure 1) into a semantic network

(Figure 2) to illustrate how they associate with

each other, e.g. with hierarchies.

Figure 2: Representation of the names elements using semantic nets

88

Identifying and searching result in a list many

names with variations and meanings. In order

to find the correct person with a name we have

to adopt ontologies of names, e.g. based on

place of birth or relationship of people. The

typical origins of surnames which can be a ba-

sis for ontologies of names can be classified as

follows:

local surnames - surnames of relationship -

surnames of occupation or office.

Local surnames, which are most widely

used, stem from toponyms, we can call them

toponymic. They reflect land owners, place of

birth, or the center of life. For example, Rich-

ard de Tonebridge was named after his castle

of Tonbridge, but he was also called Richard

de Clara from the Suffolk Clare, which became

his chief seat and the family’s definitive sur-

name. Also Richard de Hadestoke, a London

alderman, had left Hadstock (Essex) and set-

tled in London (Reaney and Wilson 1997).

These local surnames derive (with occasional

exceptions) from English, Scottish or French

places (e.g. de, at, in). Toponymic Thai names

are derived from Thai places and took origi-

nally a preposition na, for example, Prapas na

Ranong is a person from a Southern province

in Thailand called Ranong.

Surnames which come from family relation

are often called patronymic, but we have to

introduce a more elaborate term, because we

encounter names from females and other rela-

tions than just father, such as Gilbert Fatheved-

steppeson, Richard Hannebrothir, America

Ibbotdoghter, and John Prestebruther.

Surnames of occupation and office refer to

actual office holders like clergy names or state

offices. Some of these, such as steward, con-

stable, marshal, etc., became hereditary and

gave rise to hereditary surnames, but the terms

were also commonly used of lesser offices,

whilst marshal was a common term for a far-

rier and such names frequently denoted the

actual occupation. However, Nuns, Abbots,

Priors, Monks and other clerical people were

bound by vows of celibacy and thus did usu-

ally not have families which adopted their re-

spective surname.

4 Rule Based Naming System for

Thai Names

In this section we introduce the well known

methodology for Thai naming process as well

as how Thai names can be constructed using

the basic Thai rules of forming syllables.

4.1 Custom Naming Process Using Thai

Astrology

The way of naming can vary, e.g. naming by

monks, grandparents. Since former times

names are very important to people. Naming

from the past to the present has been continu-

ously developed and has developed a variety of

patterns. Each pattern has it own rules depend-

ing on local places and the belief that has been

developed until the present. The basic goal of

naming is to provide a good fortune and pro-

gress during life. Most first names have a

meaning. The widely used methodology of

Thai naming process is briefly described in the

following.

Principal naming using Thai astrology is

widely used since the past. Because it uses the

birth day to form the name. This is a belief that

the individual has a set of 8 attributes called

name of the angles referred to in Thai astrol-

ogy. These attributes influence each person’s

livelihood, fortune, etc. The attributes refer to

Servant >Age> Power> Honour> Property>

Diligence> Patron> Misfortune. Each attribute

has it own letters which can be used for con-

structing names.

4.2 Syllable Construction

Syllables are aggregated to names which sound

good or aimed at good fortune according to the

methodology mentioned above. As a consonant

can not stand alone in Thai language and per-

sonal names we consider rules for vowels only.

The order is:

Vowels can come first or can be followed

by a first consonant, e.g. Ek

Vowels can follow a first consonant with-

out a final consonant, e.g. Ka

Vowels that can not have final consonant,

e.g. Tam, Tua

Vowels that need final consonant, e.g. Kak

Figure 3: Forming of Thai syllables

89

Example of construction of Thai syllables

using Thai Romanization 1.10 unicode (CU

2004) according to Figure 3: (Ka) = CV,

(Ek) = VC, (Kok) = CF, (Kak) =

CVF, (Ek) = VF.

Thai names are built from one or more syl-

lables that may or may not have a meaning.

There are syllables which alone do not mean

much in particular, but when used as prefixes

and suffixes can change the meaning of the

syllables they precede or follow as stated be-

low.

Prefixes: for example, (1) kob means

"gather" while pra-kob means "put together" or

"consist of", (2) cham means "remember"

while pra-cham means "regularly".

Suffixes: for example, (1) ngarm means

"beautiful" and num means "water". Add jai

("heart") to each and we have names like

ngarm-jai and num-jai meaning "beautiful in

the heart" and "generous" respectively.

In the following it is shown how to con-

struct Thai names that convey a meaning with

the help of ontologies. Syllables are built from

consonants (either C or F, C being the first and

F the final consonant) and vowels. A name

consists of one or more syllables. One syllable

can have a meaning of its own, which leads in

case of two or more syllables in a name to

more complex meanings.

The process of constructing names accord-

ing to the naming rules and methodology be-

gins with a leading consonant or vowel that

can be the only letter in the name. If we con-

tinue to add more letters we come either to a

valid name (a name which has a meaning) or to

an invalid name (a name without a meaning).

Invalid names will be discarded in such a way

that the last letter will be replaced by another

or will be added with more letters.

Figure 4: Representation and construction

of Thai names

In Figure 4 it is shown that names comprise

n syllables with a reasonable number of letters.

The meanings of the syllables as well as of the

name are found with the help of an ontology of

names.

The meaning of the name for a girl Pensri

in the example (see Figure 4) is “the goodness

and beauty of the moon”.

How do we know which name belongs to a

boy or a girl? There are several ideas to take

into consideration when selecting a name for

indicating the gender. Ontologies can help in

deciding the name by capturing and indexing

the meaning as is shown in Table 1.

Boys can be named by:

taking names of leading or important

male characters accepted as having

lasting literary value, e.g. Chakkri (an

actor from KhunChang KhunPhaen)

and Suthat (an actor from Phra Aphai

Mani).

combining monosyllables evidently

indicating the males sex, e.g. Chatri (a

mighty man), Choetchai (a perfect

man), and Danai (son).

using adjectives indicating male quali-

ties such as strength, and bravery, e.g.

Watcharaphon (strength), woraphon

(strength), and Kriangkrai (brevery) .

using terms representing something

strong, important or high, e.g. Suriya,

Phassakorn, and Phanuphong are

popular names. They all mean the sun.

Choosing names for girls is even more compli-

cated. There are so many things to consider

(Table 2). A girl can be named by:

taking name of leading female charac-

ters from well-known literature: Phim

Phi La Lai (an actress from Khun-

Chang KhunPhaen) and Suwanmali

(an actress from Phra Aphai Mani).

combining monosyllables evidently

indicating the females sex, e.g. Cha-

runi (pretty girl), Kanyarat (pretty

woman), Khanitda (younger sister),and

Khwansuda (beloved daughter).

using syllables indicating female quali-

ties such as those having to do with

looks and beauty, e.g. Pariyaphat

(lovely) and Phichittra (beautiful).

90

using syllables which are names of

flowers, flowering trees: Manlika (jas-

mine), Maliwan (jasmine), and Wat-

sana (Charisma), all of which are

names of flowers found in Thailand;

also syllables which simply mean

flower: Buppha, Phakamat, Butsabong,

and Ladawan.

using syllables describing softness,

gentleness and mildness, e.g. Pranit

(gentle), Lamun (soft), and Sukhum

(mild).

using syllables describing scent, taste,

e.g. Saowakhon (lovely smell, fra-

grant) and Parimon (fragrant),

Mathurot (sweet) and Wasita (sweet

and aromatic). On the other hand, un-

favourable tastes like Khom (bitter) or

Fad (sappy) are not used.

using syllables which are names of or-

naments and jewellery, e.g. Phatchara

Walai (diamond bracelet), Rattana

Wali (gem necklace), Phara (dia-

mond), and Rachawadi (blue gems).

Table 1 Examples of Thai names with their meanings according to male gender.

91

Table 2 Examples of Thai names with their meanings and female gender.

This grouping process is used to build an ontol-

ogy which has a (classified) database structure.

This allows for speeding up the information re-

trieval process for the naming system.

4.3 Web Based Naming Expert System

Currently we are constructing and implementing

a web-based naming expert system which offers

two basic ways to come to “good” Thai names

according to the first methodology mentioned

above. The system will give us the letters for

each date of birth. We use these letters to con-

struct names based on the basic rules (see Figure

2). The user will be able to choose from a list of

resulting possible names according to their re-

spective meaning.

We use a dictionary database of more than

8.000 Thai names which contains not only the

spelling, but also the meaning and correct pro-

92

nunciation. In situations where names follow the

rules but do not have a meaning we compare the

name with similar names in a dictionary database

and check for similarity using a simple string

matching scheme. Then the user can select the

best name from the resulting list of names.

A second way to come to names is by using

ontologies instead of basic spelling rules which

are used according to the sex and date of birth.

For this we check the different names against the

date of birth by implementing an indexed data-

base system of names from Thai dictionary for

every day of a week.

5 Conclusion and Further Work

We have used Thai customs for the naming proc-

ess, an ontology of names, and the basic rules for

forming syllables in Thai to construct the rule

based naming system. We want to extend the

system using name matching algorithms to return

the variants of names from a Thai dictionary with

the relative probability of their similarity. To

speed up this process we will use a database

structure based on an ontology of names, e.g. by

indexing names according to gender and mean-

ing with the help of a Thai dictionary database.

We will use a Romanized version of Thai names.

The advantage of this process would be an

improvement of searching algorithms for Thai

names in databases as well as in the internet.

Here we will need name matching algorithms.

The next step of development is to take into ac-

count different cultures.

Currently we are designing a system for mul-

ticultural name matching called NARESUAN-

M2 (NAme Recognition Expert System Using

Automated Name Matching Methods). A pri-

mary objective here is to study how ontologies

and algorithms can help in deciding which rules

of naming system have to be implemented. This

will also require an investigation into how on-

tologies that cover the different elements of

names can be merged.

References

Henrique Andrade and Joel Saltz.1999. Towards

a Knowledge Base Management System

KBMS: An Ontology-Aware Database Man-

agement System DBMS, Proceedings of the

14th Brazilian Symposium on Databases,

Florianopolis, Brazil.

Henrique Andrade and Joel Saltz. 2000. Query

Optimization in Kess – An Ontology-Based

KBMS. Proceedings of the 15th Brazilian

Symposium on Databases (SBBD’2000). João

Pessoa, Brazil.

Simon Blackburn. 1996. The Oxford Dictionary

of Philosophy, Oxford: OUP.

CU.2004.

<http://www.arts.chula.ac.th/%7Eling/tts/>

(Nov. 19, 2005)

Kerry Dematteis, Richard Lutz and Heather

McCallum-Bayliss. 1998. Whose Name Is It:

Names, Ownership and Databases. Originally

written for: 1998 Annual Meeting American

Name Society San Francisco, CA.

Leicester E. Gill. 1997. OX-LINK: The Oxford

Medical Record Linkage System, Complex

linkage made easy, Record Linkage Tech-

niques. In: Proceedings of an International

Workshop and Exposition, 15-33.

Thomas R. Gruber. 1993. A Translation Ap-

proach to Portable Ontology Specification.

Knowledge Acquisition, Vol. 5, No. 2, 199-

220.

Nicola Guarino. 1998. Formal Ontology and In-

formation Systems. In: Nicola Guarino (Ed.):

Proceedings FOIS’98, Amsterdam.

Richard W. Hamming. 1986. Coding and Infor-

mation Theory. 2nd ed. Englewood Cliffs, NJ:

Prentice Hall.

Daniel S. Jurafsky and James H. Martin. 2000.

Speech and Language Processing, Prentice

Hall.

Percy H. Reaney and R.M. Wilson. 1997. A Dic-

tionary of English Surnames, Oxford: OUP.

W.G. Wild. 1968. The Theory of Modulus N

Check Digit Systems. The Computer Bulletin,

12, 308-311.

Wikipedia. 2005.

<http://en.wikipedia.org/wiki/Royal_Thai_Ge

neral_System_of_Transcription> (Nov. 19,

2005)

Ian Winchester. 1973. On referring to ordinary

historical persons. In: Identifying People in the

Past. E.A. Wrigley (Ed.), 17-40.

Ian Winchester. 1970. The Linkage of Historical Re-

cords by Man and Computer: Techniques and

Problems. Journal of Interdisciplinary History. 1,

107-124.

93

94

Author Index

Iñaki Alegria . 25

Olatz Arregi . 25

Roberto Basili . 49

Oliver Bender . 41

Gosse Bouma . 64

Sander Canisius . 9

Alessio Ceroni . 17

Mauro Cettolo . 1

Fabrizio Costa . 17

Walter Daelemans . 9

Barbara Di Eugenio . 33

Ismail Fahmi . 64

Marcello Federico . 1

Paolo Frasconi . 17

Ana-Maria Giuglea . 78

Claudio Giuliano . 57

Alfio Gliozzo . 57

Sas̆a Hasan . 41

Tine Lassen . 72

Sauro Menchetti . 17

Alessandro Moschitti 49,78

Su Nam Kim . 33

Hermann Ney . 41

Andrea Passerini . 17

Daniele Pighin .49

Vanessa Sandrini . 1

Basilio Sierra . 25

Chakkrit Snae . 86

Carlo Strapparava . 57

Rajen Subba . 33

Antal van den Bosch . 9

Thomas Vestskov Terney 72

Ana Zelaia . 25

95

