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Abstract and a second phase in which the relatedness of question and

In this paper, we define a family of syntactic ker- answer has to be detected.

nels for automatic relational learning from pairs The latter is a traditional linguistic problem which has re-
of natural language sentences. We provide an  cently gained a considerable attention thanks to the Pascal
efficient computation of such models by opti- Recognizing Textual Entailment (RTE) challenges (Dagan
mizing the dynamic programming algorithm of et al., 2005; Bar Haim et al., 2006). Given two sentences,

the kernel evaluation. Experiments with Support a text and a hypothesis, the task consists in determining
Vector Machines and the above kernels show the  whether the text implies the hypothesis. In both tasks,
effectiveness and efficiency of our approach on two very complex objects are involved in relations, e.g.

two very important natural language tasks, Tex- at least two whole sentences. In these conditions typical
tual Entailment Recognition and Question An- language model approaches based on the so called bag-of-
swering. words (Ponte & Croft, 1998) turn out not to be applicable.

Consequently, the solution should rely on the use of domain
knowledge, e.g. WordNet (Miller, 1995) and syntactic in-
1. Introduction formation (Charniak, 2000).

Statistical relational learning is a wide research area thalo exploit the above features, we proposed a kernel func-
includes many techniques and approaches. As pointed otiPn (Zanzotto & Moschitti, 2006) which evaluates the
in (Getoor, 2005), a statistical model depends on domaifinaximum similarity between twetext, hypothesispairs.

relational structures to which model parameters are ofted hese are represented by syntactic parse trees enriched
tied. with relational information, which is defined between the

) .. hodes (i.e. tree constituents) of a text and its correspond-
In the domain of natural language texts several apphca‘uoning hypothesis. Such relations are automatically tagged by
of relational learning have been studied: from the simpleg \niordNet based labeler. In other words, some nodes in
extraction of word collocations, e.g. Named Entities anty,q first and second pair are tagged and the kernel function,
keyphrases (Bikel etal., 1999), to a higher level of seneanti ,,, maximizing the tree similarity, attempts to find which
r_e_lat|on search, e.g. relation extraction between Named ',Erlags of the first pair correspond to the tags of the second
tities (Zelenko et al., 2003; Cumby & Roth, 2003) or predi- ;¢ (j e, 4 relation matching problem). This is done by

cate argl_Jment relations (Moschitti, 2096). Lately, the mos performing a combinatorial search over matches.
challenging natural language processing goal has been the

extraction of complex relations between entire text frag-In this paper, we generalize the above kernel function and
ments. On this subject two main related tasks have capture@fovide an optimization for its computation which greatly
the attention of most researchers of the field: Question Anreduces the learning and testing time. Our approach can
swering and Textual Entailment recognition. be applied to an entire family of kernels involving pairs of

) o trees whose nodes encode relational information. The key
The former task has been widely studied in the TREC com;qe4 i to avoid carrying out the redundant computations of
petitions, e.g. (Voorhees, 2003). It consists of a first phashe riginal method by defining a more effective dynamic
in which text fragments related to the question are retdeve programming algorithm underlying the computation.

Appearing inProceedings of the;"" International Conference We apply such technique with different kernels that we de-

on Machine LearingCorvallis, OR, 2007. Copyright 2007 by gjgned to learn the relations between text pairs. Moreover,
the author(s)/owner(s).
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to apply the approach to domains where the number of reNP(X) VP(Y)” do not entail texts matchingAll NP(X)
lated tree nodes may lead to a real combinatorial exploVP(Y) PP(Z)".

sion, we also provide a version of the evaluation aIgorithmrhe above example shows that, to automatically derive
based on a beam search. The experiments with such mo[gﬁ '

els and two datasets AVE (Pefias et al., 2006) and RT xtual relations, we need to take syntax into account. For
(Dagan et al., 2005; Bar Haim et al. 20(.),6) show that our 'S purpose in (Zanzotto & Moschitti, 200pJaceholders

approach is efficient and reaches the state-of-the-art-in er¥vere used to mark the sentence constituents, e.g. NP, VP

. o U i -.and PP, in parse trees such that variables,®,d” andZ,
tailment recognition task. This is an important result as it i
. ; an be assigned to them. For example, the parse tree of the
demonstrates that our models can deal with the importan

problems of noisy data and error propagation due to auto§entence pairfy) is represented as follows:

matic syntactic parsing and automatic semantic labeling. ()

. . T T:
The rest of the paper is organized as follows: Sec. 2 shows s ! 23
our generalization of the similarity function between any — —
pair of texts. Sec. 3 presents our optimization which re-  Ndll ve2] NFL] vel2]

. S _ P _
duces the numb_er of_ kernel computations Whereas_ Sec. 4 7 Tl verZ w3 o7 e oo anddl verd w3
reports the running time and the accuracy evaluations of | | | s I | P
several family kernels. Finally, Sec. 5 draws the conclu- A" comPanes fle  5f3] nng3] Al Fortune 50 companies file 53] N3]

. | | I I
sions. annual reports annual reports

. . where the placeholdef8, [2, and[ indicate the relations
2. A Generalized Text Pair Kernel between the structures @f and7%. The relations between
constituents are determined by using the lexical relations

In this section we give a generalized version of thess- : .
air similarity model devised in (Zanzotto & Moschitti betwgen their component words. These are usually avail-
P ' _able in external thesauri, e.g. WordNet (Miller, 1995).

2006). First, we describe the idea to derive relations by
means of such a similarity (Sec. 2.1), then we present ouPlaceholders on syntactic trees can help to determine if two

generalized kernel functions (Sec. 2.2 and Sec. 2.3). text pairs share the samalation by looking at the subtrees
that they have in common. For example, to determine if
2.1. Learning from Pairs of Text Fragments “In autumn, all leaves fall.implies “In autumn, all maple

o ) ) leaves fall’, we can firstly consider their syntactic and
Determining the relations between two generic t&xtand .4 _indexed representation:

T, is a relational problem which not only depends on the (Es)

lexical content but also on the way such content is struc- ’ T T
turally organized. For example, in the following text pairs s s
N P
T:  “All companies file annual reporfs. PP v NABl Ve PP v NAE VP
w T T 7 N | | S | |
> r:pl)lo:?ss"urance companies file annual (E;) Il‘\l N‘P VDT/AESE verEl I e Vnmsiﬂ VBHT]
: L ! Lo o !
d In NN a1 jeaves fall In NN all maple leaves fall
an |
automn aut‘omn
T, “All companies file annual reports. .
T> “All companies file annual reports to (E-) If we changédi] with ® and[2 with I in F; and[®] with
the SEC. and@ with I in E5, we can simply compar&; andEs
we observe that i, the first sentence implies the second and we can discover that they share the following subtrees:
whereas no implication can be derived between sentences ®)
in FEs. Ty T
The difference betweeh; and F5 is independent of the /S\ /S\
meanings of the sentences. It only depends on the syntactic NAxl VA NFAX] vAY]
structures of the four sentences and the relations between 57 W va o7 A va
sentences within pairs. For example, most texts match- | |
ing the “All NP(X) VP(Y)” structure entail texts match- el al

ing the “All NP(Z X) VP(Y')” structure, where NP and VP This is the relation thak’; and E'5 have in common.

are noun and verbal phrases composed by the sequencesldfe above example shows that, syntactic trees enriched
words X, Y or Z. A similar, but negative, relation can be with placeholders may help to determine if two text pairs
inferred from the second example. The texts matchif “ share the same relations. The next section shows how to
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process such data with kernel functions. For example, lep® andp® be placeholders df* andI'?,
respectively, ifjp®| < [p®|, we can define a bijection be-
2.2. TreeKernel Functions tween a subset’® C p® andp®. Fig. 1 shows the tree

I with its placeholdergp® ={@[bl@/d]}, the treeT”

Given the parse tre(_as_ of text pairs, we may represe_nt theWith »° ={@M2[3} and a possible set of correspondences
by appropriately defining and extracting features whichen-, _ {(a,1), (b,2), (¢, 3)}.

code textual relations. However, such manual design ap-

pears to be very Comp|ex and it should be carried out f0|F|g 1 also reports how the substitution function works on
each different application of textual relational learnig  the giventrees, e.g. inthe tré€, each placehold@ is re-
viable alternative for the representation of parse tretisis ~ placed with the new placeholderd by ¢(-, ¢) obtaining the

use of tree kernels (Collins & Duffy, 2002). transformed tre¢(T"*, ¢, ). Coherently, in the tregT"”, ¢;)
each instance of the placehold#rin I'? is replaced with

i B8 K L
A syntactic tree kerneK'r (7%, 77) computes the number ) atter this substitution, the labels of the two trees can

of common subtrees betweeft andr”. Assuming that o matched and the tree kerrél can effectively be ap-
we indicate withn a node of the tree, with ch(n, j) the plied.

j-th child of the noden, and withnc(n) the number of
children ofn, the functionKr is computed by Having named’ the collection of all the possible sets of

correspondences between the placeholders of two pairs, a
Kr(r,79) = 5 acra Snsens An®,nP), (1) family of similarity functions can be computed as:

whereA (n®, n?) is recursively defined as follows: 5 s
KA((T7, 15), (17, T5)) =

Acec (Kr(t(TF, ), t(T{, ¢)) + Kr(H(T5, ), (T3, ¢))),
)

1. A(n®,n?) = 0 if the productions rooted in® and
n” are not equal

2. A(n®,n?) = \if n® andn® are preterminals with the WhereA expresses a function over

productions»* — w* andn” — w” andn® = n”  For example, when is the max function (Zanzotto &
andw® = w”. Moschitti, 2006), Eq. 2 finds the maximal similarity in
o _ | Tync(n® o - . terms of substructures when a certain number of variables
3. oAtE\Tér\;v?sﬁe) =A Ha‘zl )(1 + A(ch(n, j), ch(n?, j)) (placeholders) are instantiated. Although this is not in-ge
' eral a valid kernel (Boughorbel et al., 2004), kernel ma-
chines like SVMs still solve a data separation problem in
pseudo Euclidean spaces (Haasdonk, 2005) by finding a lo-
cal optimum that can be satisfactory for the task.

where \ is the tree decay factor. The abo¥dn®,n?)
evaluation allows us to compufér in O(|7%||7%]) time.

By means of the above kernel, we may design a syntacti
S|m|Iar.|ty between two text pavéff‘,T;‘) and (Tf,ﬁTf) by using valid kernel operations, e.8cc = 3, ap-
by a smpée tree kernel sum, i.e; = Kp(T{,17) + plied to sumsf& (-, ) + Kr(-,-), or products i (-, -)
Kr(T3', Ty'). However, when placeholders are used to de-g,.(. ), of tree kernels.

rive relational information, Eq. 1 will not be effective s

those in pair are different from those in pai. The next From a computational complexity point of view, dsis

section provides a solution to such problem. combinatorial with respect t¢p®| and [p”|, |C| rapidly
grows. Assigning placeholders only to chunks helps in

keeping their number controlled. In the RTE (Dagan et al.,
2005) data for example, the number of placeholders is
Since placeholders in two pairs are in principle different,hardly larger than 7 as hypotheses are generally short sen-
when added to parse trees, the number of shared substruences. Nevertheless, the numberfof computations is
tures between two texts decreases. Therefore, a sulastituti still high.

function which assigns the same name to related placehold- . L
ers is needed. To improve the running time, we observe that as the trees

t(T',c) are obtained from the initial tre€ (containing
Given a set of correspondences between placeholgérs placeholders) by applying different € C, it is reason-
of the first pair(7¢, T's) and those” of the second pair able to assume that they can share common subparts. Thus,
(TP, TP), (T, ¢) substitutes placeholders with new names,during the iterations of € C, K7 (t(I'*, ¢), t(I'?, ¢)) may
whereT is a text parse tree. If applied to the four trees ofcompute the similarity between subtrees that have already
the two pairs, the substitution functid@fl', c) guarantees been evaluated. In the next section, we exploit the above
that the related placeholders have the same name. property to computél, more efficiently.

Other kinds of valid kernels of the family can be designed

2.3. Kernel Functionsover Text Pairs
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c1 = {(a,1),(b,2), (c,3)} c2 = {(a,1), (b,2), (d,3)}
re t(T'%, e1) TR
X, @ X1 X1
/\ — —
As[@ Ds [d| Ay [a]] D [d] A [a:]] D5 [d:3]
Bs[@ ¢4t De[E@ c-[d Bs[ad ¢, [6:2 Dy [c3] ¢ [d] Bslal ¢4[b:2] D[ ¢ [d:3]
| | | | | | | | | | | |
w1 w2 w3 wq w1 w2 w3 wq w1 w2 w3 wWq
@ [ (d] (d]
r? t(TP, ¢1) t(TP, c2)
X, X1 X
As Ds Az Ds Az Ds
BS C4 DG Cr BSC4DGC7 BSC4DGC7
| | | | | | | | | | | |
mi mo m3 Mg mi1 mo ms3 M4 mi m2 m3 M4
Figure 1.Tree pairs with placeholders an@r’, ¢) transformation
3. Fast Kernelsfor Relational Learning ent transformations; = {(a, 1), (b,2),(c,3)} andecy =

{(a,1),(b,2),(d,3)}. Nodes are generally in the form

The previous section has shown that the similarity func—Xi where X is the original node labelz is the place-

tion K» (Eq. 2) firstly applies a transformatiag, ) and holder, and: is used to index nodes of the tree. Two
then computes the tree kerniel (Eq. 1) based on tha nodes are equal if they have the same node label and the

fu_nctlo_n (se_ze Section 2'2)_' The overall process can be optlsy e placeholder. The first frame of the figure represents
mized if A is evaluated with respect to substitutianand 4, original treed™™ andT"?. The second frame contains

by fa}ctorizing_redundarm C(.)mpu.tations. In this section o transformed treesf-, ¢;) while the last frame shows
we firstly motivate the previous idea (Sec. 3.1), then Wehe two trees derived applying-, ). We chooser;

!§nd such that they have a common non-empty subset
(Sec. 3.2) which are finally presented in (Sec. 3.3). o — ﬁa lil) (b,2)}. y hav ply su

3.1. Reusing Previous Computation Now, since the subtree df“ rooted in As[@ contains
only placeholders that are iny in the transformed trees,

First of all, to simplify the description of our approach, (I, 1) andt(I', ¢5), the subtrees rooted in,[a:1 are

we only focus on the computation of one tree kerneligentical. The same happens ot with the subtree rooted

function in Eq 2, i.e. we only consideis (I, T"”) = in A,[1] as all its placeholders are contained:irThus, in
Acec (Kr(t(I*,c),¢(I", c))), where the(I®,I'¥) pair  the transformed trees(I'?, ¢;) andt(I?, c»), the subtrees
can be eithetT®, T7) or (T§, TY). rooted inAja:1 are identical. As a resulfs applied to

Second, we observe that the two treE, ;) andt(T', ¢3), the above subtrees gives an identical result.

obtained by applying two sets of correspondenges, €
C, may partially overlap since; andc, can share a non-

empty set of common elements. Indeed, if we define the setg describe the algorithm that exploits the previous idea,
of subtreeS shared by/(T", ;) andi(T', c2) and containing e define three basic operators which extract specific infor-
placeholders ire; N ez = ¢, thent(y,c) = t(y,c1) =  mation about trees and placeholders. We need to (1) know
t(v,c2) Vy € 5. Therefore, when applying a tree kernel the placeholders contained in a given subtree, (2) project
function K1 to a pair(I,T'), it may be possible to find 5 set of correspondences onto two specific sets of place-
¢ such that subtrees df* and subtrees of? are invari-  holders and (3) redefine the transformation functiorin

ant with respect te; andey, i.e. Kr(t(v*,¢),t(v?,¢)) = the definition of the above operators, we assume a tree with
Kr(t(y*, c1),t(v7, ¢1))= Kr(t(y*, c2),t(v7,¢2)). This  placeholders’, a noden € T, and a set of all the sets of
suggests that to evaluaté, (I, I'”) more efficiently, we  correspondences between placeholders.

can refine the dynamic programming algorithm for the
computation.

3.2. Notationsand Operators

The first operator ip(n) that extracts the set of placehold-
ers from a subtree df rooted inn. For example, in Fig. 1,

As an example, let us consider the two tree$,andT”,  the set of placeholders in the subtred6frooted inAs is
represented in Fig. 1 and the application of two differ—p(AQ) = {@, @}_
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The second operator, the projectdk y = {(z,y) € 21‘={<a71),<b¢=2),<c,3)}
clz € X,y € Y}, is defined on two sets of placeholdefs 77"

andY and a set of correspondences C. For example, the re
. . X1 Ay Bz C4 Ds Cg Cz
projection ofc; = {(a, 1), (b,2), (c,3)} on the setsX = X, @D @b @l (b2 €3 CF
. A (@1),(b,2) (a,1),(b,2) (1) (b2)0 0 0
{@,bl} andy = {[1],[2}} is alx,y ={(a,1),(b,2)}. Bs (@) @) @no o 0 0
. . r? Cy, (b.2) (b2 0 (b2 0 0 0
The last operatot(n, c), applies to subtrees of a given tree. Ds €3 0 0 0 (©3) (3 0
. Dg (c3) 0 O 0 (c3) (c3) 0
It returns the subtree df rooted inn where the placehold- Cr [ 00 0 9 0 0
ers have been substituted according.té-or example, us-
ing the trees in Fig. 1 and this new operator, we can use; = {(a, 1), (b, 2), (d,3)}
t(As, co) to indicate the subtree rooted p[@ad node of  “2lpine)pn)*
I'* shown in the right frame of Fig. 1. re
X1 Ay Bz C4 Ds Cg Cr
X1 [(@1),,2),d3) (a1),b.2) (a1) (b2) (d3P (d3)
i i A (@1),(b2) (al)(b2) (al1) (b2)0 0 0
3.3. A Fast Evaluation of the K, Function B2 1) wn e e 0 o
. . . r# Cy (b.2) (b2 0 (b2 0 0 0
To give a more efficient algorithm for the kerngl, com- Ds d3) 0 0 0 @3 0 (d3)
. . . . Dg (d,3) 0 0 0 @d3) 0 (d3)
putation, we (@) integrate the transformatign c) in the Cr 0 00 0 0 0 0

computation of the tree kernélr, (b) formalize when two
differentc’s lead to the same\ evaluation and (c) define  common submatrie: 1., a0y 8y 12l (e ()
an algorithm forK that takes into account the previous

property. By introducing: in K7 (t(I'“, ¢),t(T%,¢)), Ka X3 Ay FB: C4 D5 Cg Cr
can be rewritten as: e o G & (3)2%)@' 0 0
Bs3 (a1) @) @ne o o 0

Ka(T* IP) = Acec (K (T, T7, ¢)) 3) e U

K can now be computed as: Al 8 R

KT(FO‘,FB,C): Z Z A(no‘,nﬁ,c), 4)

neelr'® nBers
where the nevA function also depends amas follows:

Figure 2.Projection ofc during theA computations

1. A(n®,n?,c) = 0 if the productions rooted in® and where the last step @k (n®, n”, ¢) definition changes in:

n® after the application of the transformatiom®, c)
andt(n”, c) are not equal ne(n®)

2. A(n®,nP,¢) = \if n® andnf are preterminals and 3+ &(n%, n.e) =X H (1+A (ch(n®, 7). ch(n”, ),
t(n®,c) = t(nP,c)
ne(n®)
3. AP c)=X ] (14 A(ch(n®, ), ch(n?, j),c)
=1 The above definition reduces the computational cost since
A(n*,nP,c) are used more than once in the computation
From the above equations, it follows tha(n®,n”, c)is  of Acec (K7 (I'*,T%, ¢)).
applied to the two subtrees rootedsrifi € T andn® €
I'# after their placeholders are transformedtby?, ¢) and
t(nf,c). Of course, this transformation involves only the
subset of placeholders efwhich are in the two subtrees,
i.8. c|p(ney,p(ns)- Therefore, the following property

A(n®,nB,c;) = A(n®,nP, cy)

Clp(ch(na_’j))_’p(ch(nﬁyj))) otherwise.

otherwise.

As an example of the usefulness of Eq. 5, let us consider
Fig. 2 which reports the projection of the sets of corre-
spondences; and ¢, according to the nodes af* and

I'? of Fig. 1. The three matrices represent the projections
C1lp(n).p(n?)s C2p(ne) p(n?) @NAEL N C2]p(ne) p(ns) for the
node pair(n®, n?). The first row shows the nodes bf*

. 5 X .
if c1lpnea),pns) = C2lpna) pns) ®) while the first column represents those of the second tree,
holds. I'?. For the sake of clarity, we report here the values of the
projection functionp(n) for each node: of bothI'* and
According to Eq. 5K can be defined as follows: 5:
K (T¢ Fﬁ — A(n® B o A C. D Cg | C
e = D, D, A0l el pm): p(n){@@l@}{@@}{@}{@}{l@}{i}{ﬁ}

neel'* nfers

(6) \ p<n>f ({EEE, \{,}\{}\m\ () \{}\ 0 \
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Note that the bottom matrix in Fig. 2 contains all the To experiment with entailment relations, we used the data
pairs for which c1],(n0) p(ns) C2|p(nay,pney holds.  sets made available by the first (Dagan et al., 2005) and
For this example, this property holds 37 times over 49second (Bar Haim et al., 2006) Recognizing Textual Entail-
computations. Therefore, to evaluatdn®,n®,c;), we  ment Challenge. These corpora are divided in development
need 12 computations after we have already computed1 and D2 and test set§'1 and7'2. D1 contains 567 ex-
A(n®,nP, co). amples whereag1, D2 andT2 all have the same size, i.e.
800 instances. Each example is an ordered pair of texts for

3.4. A Beam Search for the Max Function Computation ~ which the entailment relation has to be decided.

The previous section has shown an efficiency optimizationT0 experiment with relations between question and answer,
of redundant evaluation specific to the target kernel familywe used the Answer Validation Exercise (AVE) dataset

K. However, traditional search algorithms can be appliedPefas et al., 2006). This contains pairs of questions and
jointly. In the following, we show a beam search algorithm answers for which the correctness, i.e. if the answer cor-

designed to improve the computation speedgf,:

kernel_computation(La, T'g)
begin
agenda = ()
insert(agenda, A(To,T3,0))
for each a; € p®
for each as € p°
for each A(T's,T'g, c) € agenda
insert(agenda’, A(T,Tg,cU {(a1,a2)}))
agenda = agenda’
return peek_first_value(agenda)
end

The agenda retains the partial sét of correspondences
that have the best value of the partial ker&g),,.,, com-
puted over the partial matriA. The partial matrixA
has null values for pairs of nodds.,ng) if the sub-

trees rooted im, andng contain placeholders that are

not in the partial set of correspondencesrhe procedure
insert(agenda, A(T'y,T',¢)) puts in thek-size agenda
the setc if K.« is higher than the minimum value in
agenda. The procedureeek_first_value(agenda) takes
the highest score afgenda. The algorithm complexity is
O(k[p™|[p?||Ta I 5)

4. The Experiments

rectly responds to the associated question, has to be pre-
dicted. The AVE development set contains 2,870 instances.
Here, the positive and negative examples are not equally
distributed. It contains 436 positive and 2,434 negative ex
amples.

Since all the above three datasets were used in internationa
competitions, we could exactly compare with state-of-the-
art approaches.

4.2. Running Time Experiments

Analytically determining the complexity of our fast compu-
tation (FC) is difficult as it depends on the variability and
type of the application data. Since this comes from natural
language sentences, defining models that quantify the num-
ber of elementary operations in the kernel function is quite
complex. However, we can provide an empirical evalua-
tion of our algorithm in terms of its impact on training and
classification running time.

To give a finer evaluation, we studied the numbeAdide-
fined in Sec. 3.3) iterations according to different data.set
This is better suited to compare between the naive compu-
tation (NC) and FC as it is not biased by the processing
time required by the learning and classification code not
correlated with the kernel functions.

To study the relation between the size of training data and

The aim of the experiments is twofold: (a) we show thethe learning time needed by NC and FC, we divided D1

speed-up that our fast evaluation &fy, produces in both

and D2 in bins of increasing sizes (from 10% to 100% with

learning and testing phase of Support Vector Machines andtep 10%). Plot (a) in Figure 3 shows the time required for

(b) we illustrate the potentiality of th&', family for rela-

training an SVM with bins extracted from RTE2. Subfigure

tional learning tasks such as Textual Entailment Recogni¢b) illustrates the plot of\ iterations instead of execution

tion and Question Answering.

4.1. Experimental Setup

time. We note that FC greatly reduces the computation time
and the number of\ iterations (not biased by additional
time) is decreased by about 10 times (see when using all
training data).

We implementedK, with the naive (Eq. 2) and fast

(Eq. 3) computation approaches in the SVM-light-TK To study the classification time, we classified data bins of
software available att t p: / / ai - nl p. i nf 0. uni r oma2. increasing size with the same SVM model trained on the

it/noschitti. This encodes different tree kernels in Whole D1. Figure 4 shows that NC requires about 12 times
SVM-light (Joachims, 1999). We used the default cost facthe number of iterations of FC to classify T1, this produces
tor and trade-off parameters and we 5¢0 0.4. a much higher testing time.
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9.0E+07

8.0E+07

7.0E+07

—— Fast Computation
—= Naive Computation 6.0E+07 —+ Fast Computation|

-= Naive Computation

Seconds
n
=)
m
T
)
<

4.0E+07

3.0E+07

Number of Delta Iterations

2.0E+07

20 1.0E+07

0 L L L L L L L L 0.0E+00
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Percentage of test data Percentage of test data

Figure 4.Testing time and number @ iterations according to different test data bins and fixathing data from RTEL.

Finally, when the beam search is applied along with FC orexical kernel is built on external resources, e.g. WordNet
the RTE, SVMs decrease their learning time from 61.77 towhich are able to generalize words and provide a higher
54.04 seconds (on RTE2 data) and their testing time frommecall. To have a fair comparison with such systems, we
87.72to 71.17 seconds (on RTEL1 data). We note that ther@dded a similar lexical kernel (LK) to the above models.

is not much speed improvement since the number of pIaceTa

holders is small and practically constant in such datasets ble 1 shows the results of the above kernels on the split
P y used for the RTE and AVE competitions. We note that (i)

However other application domains different from text may - iree kernekK ; does not significantly improv K as

show an unbounded number of placeholders. In such case. 2 .
. . . without the use of placeholders for linking constituents,
algorithms like beam search would be the only feasible so; . A .
lutions few relations could b_e .der|ved, (I!meax rele_vgntly im-
' provesL K. Although it is not a valid kernel, it intuitively
selects the best correspondence between placeholdgrs; (ii

Ky also improves LK but it shows a lower accuracy than

To verify the quality of our relational learning approach, Kmax and (iv) as expected, the beam search applied to
we measured the accuracy of three different kernels: Kmax decreases its accuracy.

4.3. Accuracy Evaluation

o o o o Finally, K.« model improves the average result of the
o Kn(T9,15), (17, 17)) = K (T8, TY)+ K (15, T5), systems participating in RTE1, RTE2 and AVE of about
o Koo (T2, T5), (TP, TF)) = max (Kr (KT, ¢),t(T7,c)) 9 (i.e. 0.63 vs 0.54), 5 (i.e. 0.64 vs 0.59) and 8 (i.e. 0.43
‘ o 8 vs 0.35) absolute percent points, respectively. It shoseld b
+ Kr(UTF,0), (T3, ) noted that the best two systems of RTE outperformed all
o Ks((T{,T5), (TP, 1Y) = >eee (Er (T, ¢),t(T’,¢c)) the others of about 10-5 absolute percent points. However,
+ K (t(T$, ¢), t(TY, c))) . theycannotbe taken as the reference systems since they use
o o 8 B . lexical resources and training data not available to theroth
where(T}, T') and(Ty , T;) are two text pairs. Note that participants. The third best system was tkig .. model

[;B algdeE atredt;/r\:o tvallld kerr?tehls wr;er(:_dgnfam IS r][_ot. I:Q_I_Ewhich would also have been the best approach in AVE if
shouldbe notedinal, along with syntactic information, all the participants had had the same resources, i.e. a fair
systems usually use a kernel based on lexical similarity be-

. _-comparative setting.
tween words, see e.g. (Corley & Mihalcea, 2005). This parativ g
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RTEL | RTE2 AVE
Acc Acc Prec Rec F1 ACknOWl edgments
LK 0597 | 0.617 || 0.251 _ 0.823  0.385 - )
K+ Kp 0619 | 0616 || 0398 0384 0391 Alessandro Moschitti would like to thank the AMI2 lab at the
LK+ Kmax 0.631 | 0.640 || 0.386 0.495 0.434 University of Trento and the EU project LUNA "spoken Langeag
K+ Kx 0.605 | 0.621 || 0.364 0.478 0.414 d ding i il | o »
K+ K. +beam | 0021 | 0617 | 0310 0571 0401 UNderstanding in multilinguAl communication systems” tract
Avg others 054 | 059 - - 0.35 n° 33549 for supporting part of his research. Many thanks to the

. anonymous reviewers for their helpful suggestions.
Table 1.Accuracy of Relational Kernels on RTE1 and RTE2. Pre-

cision, Recall, and F1-measure on AVE.
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