
Efficient Convolution Kernels for Dependency

and Constituent Syntactic Trees

Alessandro Moschitti

Department of Computer Science
University of Rome ”Tor Vergata”, Italy

moschitti@info.uniroma2.it

Abstract. In this paper, we provide a study on the use of tree kernels
to encode syntactic parsing information in natural language learning. In
particular, we propose a new convolution kernel, namely the Partial Tree
(PT) kernel, to fully exploit dependency trees. We also propose an effi-
cient algorithm for its computation which is futhermore sped-up by ap-
plying the selection of tree nodes with non-null kernel. The experiments
with Support Vector Machines on the task of semantic role labeling and
question classification show that (a) the kernel running time is linear on
the average case and (b) the PT kernel improves on the other tree kernels
when applied to the appropriate parsing paradigm.

1 Introduction

Literature work shows several attempts (e.g. [1]) to define linking theories be-
tween the syntax and semantics of natural languages. As no complete theory
has yet been defined the design of syntactic features to learn semantic struc-
tures requires a remarkable research effort and intuition. Tree kernels have been
applied to reduce such effort for several natural language tasks, e.g. syntactic
parsing re-ranking [2], relation extraction [3], named entity recognition [4, 5] and
Semantic Role Labeling [6].

These studies show that the kernel ability to generate large feature sets is
useful to quickly model new and not well understood linguistic phenomena in
learning machines. However, it is often possible to manually design features for
linear kernels that produce high accuracy and fast computation time whereas
the complexity of tree kernels may prevent their application in real scenarios.

In general, the poor tree kernel results depend on the specific application
but also on the absence of studies that suggest which tree kernel type should be
applied. For example, the subtree (ST) kernel defined in [7] is characterized by
structures that contain all the descendants of the target root node until the leaves
whereas the subset trees (SSTs) defined in [2] may contain internal subtrees, with
no leaves. How do such different spaces impact on natural language tasks? Does
the parsing paradigm (constituent or dependency) affect the accuracy of different
kernels?
Regarding the complexity problem, although the SST kernel computation time

has been proven to be inherently quadratic in the number of tree nodes [2], we
may design algorithms that run fast on the average case.

In this paper, we study the impact of the ST and SST kernels on the modeling
of syntactic information in Support Vector Machines. To carry out a compre-
hensive investigation, we have defined a novel tree kernel based on a general
form of substructures, namely, the partial tree (PT) kernel. Moreover, to solve
the computation problems, we propose algorithms which, on the average case,
evaluate the above kernels in a running time linear in the number of nodes of
the two input parse trees.

We experimented with such kernels and Support Vector Machines (SVMs)
on (a) the classification of semantic roles defined in PropBank [8] and FrameNet
[9] and (b) the classification of questions from Question Answering scenarios. We
used both gold standard trees from the Penn Treebank [10] and automatic trees
derived with the Collins [11] and Stanford [12] parsers. The results show that:
(1) the SST kernel is more appropriate to exploit syntactic information from
constituent trees. (2) The new PT kernel is slightly less accurate than the SST
one on constituent trees but much more accurate on dependency structures. (3)
Our fast algorithms show a linear running time.

In the remainder of this paper, Section 2 introduces the different tree kernel
spaces. Section 3 describes the kernel functions and our fast algorithms for their
evaluation. Section 4 introduces the Semantic Role Labeling (SRL) and Question
Classification (QC) problems and their solution along with the related work.
Section 5 shows the comparative kernel performance in terms of execution time
and accuracy. Finally, Section 6 summarizes the conclusions.

2 Tree kernel Spaces

The kernels that we consider represent trees in terms of their substructures (frag-
ments). The kernel function detects if a tree subpart (common to both trees)
belongs to the feature space that we intend to generate. For such purpose, the
desired fragments need to be described. We consider three important character-
izations: the subtrees (STs), the subset trees (SSTs) and a new tree class, i.e.
the partial trees (PTs).

As we consider syntactic parse trees, each node with its children is associ-
ated with a grammar production rule, where the symbol at the left-hand side
corresponds to the parent and the symbols at the right-hand side are associated
with the children. The terminal symbols of the grammar are always associated
with the tree leaves.

We define as a subtree (ST) any node of a tree along with all its descendants.
For example, Figure 1 shows the parse tree of the sentence "Mary brought a cat"

together with its 6 STs. A subset tree (SST) is a more general structure since
its leaves can be non-terminal symbols.

For example, Figure 2 shows 10 SSTs (out of 17) of the subtree of Figure
1 rooted in VP. The SSTs satisfy the constraint that grammatical rules cannot
be broken. For example, [VP [V NP]] is an SST which has two non-terminal
symbols, V and NP, as leaves whereas [VP [V]] is not an SST. If we relax the

S

N

NP

D N

VP

V Mary

brought

a cat

NP

D N

a cat

N

 cat

D

a

V

brought

N

Mary

NP

D N

VP

V

brought

a cat

Fig. 1. A syntactic parse tree with its sub-
trees (STs).

NP

D N

a cat

NP

D N

NP

D N

a

NP

D N

NP

D N

VP

V

brought

a cat

 cat
NP

D N

VP

V

a cat

NP

D N

VP

V

N

 cat

D

a

V

brought

N

Mary
…

Fig. 2. A tree with some of its subset trees
(SSTs).

NP

D N

VP

V

brought

a cat

NP

D N

VP

V

a cat

NP

D N

VP

a cat

NP

D N

VP

a

NP

D

VP

a

NP

D

VP

NP

N

VP

NP

N

NP NP

D N D

NP

…

VP

Fig. 3. A tree with some of its partial trees
(PTs).

is

What offer

an plan

direct stock purchase

Fig. 4. A dependency tree of a question.

constraint over the SSTs, we obtain a more general form of substructures that we
call partial trees (PTs). These can be generated by the application of partial
production rules of the grammar, consequently [VP [V]] and [VP [NP]] are
valid PTs. Figure 3 shows that the number of PTs derived from the same tree as
before is still higher (i.e. 30 PTs). These different substructure numbers provide
an intuitive quantification of the different information levels among the tree-
based representations.

3 Fast Tree Kernel Functions

The main idea of tree kernels is to compute the number of common substructures
between two trees T1 and T2 without explicitly considering the whole fragment
space. We have designed a general function to compute the ST, SST and PT
kernels. Our fast evaluation of the PT kernel is inspired by the efficient evaluation
of non-continuous subsequences (described in [13]). To increase the computation
speed of the above tree kernels, we also apply the pre-selection of node pairs
which have non-null kernel.

3.1 The Partial Tree Kernel

The evaluation of the common PTs rooted in nodes n1 and n2 requires the
selection of the shared child subsets of the two nodes, e.g. [S [DT JJ N]] and
[S [DT N N]] have [S [N]] (2 times) and [S [DT N]] in common. As the order
of the children is important, we can use subsequence kernels for their generation.
More in detail, let F = {f1, f2, .., f|F|} be a tree fragment space of type PTs and
let the indicator function Ii(n) be equal to 1 if the target fi is rooted at node n
and 0 otherwise, we define the PT kernel as:

K(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2), (1)

where NT1 and NT2 are the sets of nodes in T1 and T2, respectively and ∆(n1, n2) =∑|F|
i=1 Ii(n1)Ii(n2), i.e. the number of common fragments rooted at the n1 and

n2 nodes. We can compute it as follows:

- if the node labels of n1 and n2 are different then ∆(n1, n2) = 0;
- else

∆(n1, n2) = 1 +
∑

J1,J2,l(J1)=l(J2)

l(J1)∏
i=1

∆(cn1 [J1i], cn2 [J2i]) (2)

where J1 = 〈J11, J12, J13, ..〉 and J2 = 〈J21, J22, J23, ..〉 are index sequences
associated with the ordered child sequences cn1 of n1 and cn2 of n2, respectively,
J1i and J2i point to the i-th children in the two sequences, and l(·) returns the
sequence length.

We note that (1) Eq. 2 is a convolution kernel according to the definition
and the proof given in [14]. (2) Such kernel generates a richer feature space than
those defined in [7, 2, 3, 5, 13]. Additionally, we add two decay factors: µ for the
height of the tree and λ for the length of the child sequences. It follows that

∆(n1, n2) = µ

„
λ2 +

X
J1,J2,l(J1)=l(J2)

λd(J1)+d(J2)

l(J1)Y
i=1

∆(cn1 [J1i], cn2 [J2i])

«
(3)

where d(J1) = J1l(J1) − J11 and d(J2) = J2l(J2) − J21. In this way, we pe-
nalize both larger trees and subtrees built on child subsequences that contain
gaps. Moreover, to have a similarity score between 0 and 1, we also apply the
normalization in the kernel space, i.e. K′(T1, T2) = K(T1,T2)√

K(T1,T1)×K(T2,T2)
.

3.2 Efficient Tree Kernel Computation

Clearly, the näıve approach to evaluate Eq. 3 requires exponential time. We can
efficiently compute it by considering that the summation in Eq. 3 can be dis-
tributed with respect to different types of sequences, e.g. those composed by p
children; it follows that ∆(n1, n2) = µ

(
λ2 +

∑lm
p=1 ∆p(cn1 , cn2)

)
, (4)

where ∆p evaluates the number of common subtrees rooted in subsequences of
exactly p children (of n1 and n2) and lm = min{l(cn1), l(cn2)}. Also note that
if we only consider the contribution of the longest child sequence from node
pairs that have the same children, we implement the SST kernel. For the STs
computation we also need to remove the λ2 term from Eq. 4.

Given the two child sequences s1a = cn1 and s2b = cn2 (a and b are the last
children),

∆p(s1a, s2b) = ∆(a, b) ×
|s1|∑
i=1

|s2|∑
r=1

λ|s1|−i+|s2|−r × ∆p−1(s1[1 : i], s2[1 : r]),

where s1[1 : i] and s2[1 : r] are the child subsequences from 1 to i and from
1 to r of s1 and s2. If we name the double summation term as Dp, we can

rewrite the relation as:

∆p(s1a, s2b) =

{
∆(a, b)Dp(|s1|, |s2|) if a = b;

0 otherwise.

Note that Dp satisfies the recursive relation: Dp(k, l) =
∆p−1(s1[1 : k], s2[1 : l]) + λDp(k, l− 1) + λDp(k − 1, l)− λ2Dp(k − 1, l− 1) (5)

By means of the above relation, we can compute the child subsequences of two
sequences s1 and s2 in O(p|s1||s2|). This means that the worst case complexity
of the PT kernel is O(pρ2|NT1 ||NT2 |), where ρ is the maximum branching factor
of the two trees. Note that the average ρ in natural language parse trees is very
small and the overall complexity can be reduced by avoiding the computation
of node pairs with different labels. The next section shows our fast algorithm to
find non-null node pairs.

Table 1. Pseudo-code for fast evaluation of the node pairs with non-null kernel (FTK).

function Evaluate Pair Set(Tree T1, T2)
LIST L1,L2;
NODE PAIR SET Np;
begin

L1 = T1.ordered list;
L2 = T2.ordered list; // lists sorted at loading time
n1 = extract(L1); // get the head element and remove it from the list
n2 = extract(L2);
while (n1 and n2 are not NULL)

if (label(n1) > label(n2))
then n2 = extract(L2);
else if (label(n1) < label(n2))

then n1 = extract(L1);
else

while (label(n1) == label(n2))
while (label(n1) == label(n2))

add(〈n1, n2〉, Np);
n2=get next elem(L2); /*get the head element and
move the pointer to the next element*/

end
n1 = extract(L1);
reset(L2); //set the pointer at the first element

end
end
return Np ;

end

3.3 Fast non-Null Node Pair Computation

To compute the tree kernels, we sum the ∆ function for each pair 〈n1, n2〉∈
NT1 × NT2 (Eq. 1). When the labels associated with n1 and n2 are different,
we can avoid evaluating ∆(n1, n2) since it is 0. Thus, we look for a node pair
set Np ={〈n1, n2〉∈ NT1 × NT2 : label(n1) = label(n2)}. Np can be evaluated by
(i) extracting the L1 and L2 lists of nodes from T1 and T2, (ii) sorting them in
alphanumeric order and (iii) scanning them to derive the node intersection. Step
(iii) may require only O(|NT1 |+ |NT2|) time, but, if label(n1)=label(n2) appears
r1 times in T1 and r2 times in T2, the number of pairs will be r1×r2. The formal
algorithm (FTK) is shown in Table 3.2.

Note that the list sorting can be done only once at data preparation time
(i.e. before training) in O(|NT1 | × log(|NT1 |)). The worst case occurs when the

two parse trees are both generated by only one production rule since the two
internal while cycles generate |NT1 | × |NT2 | pairs. Moreover, the probability of
two identical production rules is lower than that of two identical nodes, thus, we
can furthermore speed up the SST (and ST) kernel by (a) sorting the node list
with respect to production rules and (b) replacing the label(n) function with
production at(n).

3.4 Partial Tree Kernel Remarks

In order to model a very fast PT kernel computation, we have defined the al-
gorithm in Section 3.2 to evaluate it efficiently and we apply the selection of
non-null node pairs (algorithm in Table 3.2) which can be also applied to the
ST and SST kernels.

Our algorithm in Section 3.2 allows us to evaluate PT kernel in O(ρ3|NT1 ||NT2 |),
where ρ is the maximum branching factor of the two trees T1 and T2. It should
be emphasized that the näıve approach for the evaluation of the PT function is
exponential. Therefore, a fairer comparison of our approach should be carried
out against the efficient algorithm proposed in [3] for the evaluation of rela-
tion extraction kernels (REKs). These are not convolution kernels and produce
a much lower number of substructures than the PT kernel. The complexity of
REK was O(ρ4) when applied to only two nodes. If we applied it to all the node
pairs of two trees (as we do with the PT kernel), we would obtain a complexity
of O(ρ4|NT1 ||NT2 |) which is higher than the one produced by our method. Con-
sequently, our solution is very efficient and produces larger substructure spaces.

Moreover, to further speed up the kernel computation, we apply Eq. 4 to
node pairs for which the output is not null. A similar approach was suggested in
[2, 13] for the computation of the SST kernel. However, its impact on such kernel
has not been clearly shown by an extensive experimentation and the effect on
the new PT kernel should also be measured. For this purpose, in sections 5.1
and 5.2 we report the running time experiments for the evaluation of the SST
and PT kernels and the training time that they generate in SVMs.

4 Semantic Applications of Parse Tree Kernels

Semantic Role Labeling (SRL) and Question Classification (QC) are two interest-
ing natural language tasks in which the impact of tree kernels can be measured.
The former relates to the classification of the predicate argument structures de-
fined in PropBank [8] or FrameNet [9]. For example, Figure 5 shows the parse
tree of the sentence: "Mary brought a cat to school" along with the predicate
argument annotation proposed in the PropBank project. Only verbs are consid-
ered as predicates whereas arguments are labeled sequentially from Arg0 to Arg5.
Additionally, adjuncts are labeled with several ArgM labels, e.g. ArgM-TMP or
ArgM-LOC.

In FrameNet predicate/argument information is described by means of rich
semantic structures called Frames. These are schematic representations of situ-
ations involving various participants, properties and roles in which a word may

S

N

NP

D N

VP

V Mary

 to

brought

a cat

PP

IN N

school

Arg. 0

Arg. M Arg. 1

Predicate

NP

D N

VP

V

brought

a cat

SArg1 VP

V

 to

brought

PP

IN N

school

S

N

V Mary

brought

VP

SArg0 SArgM

Fig. 5. Tree substructure space for predicate argument classification.

typically be used. Frame elements or semantic roles are arguments of target
words, i.e. the predicates. For example the following sentence is annotated ac-
cording to the Arrest Frame:
[Time One Saturday night] [Authorities police in Brooklyn] [Target apprehended]
[Suspect sixteen teenagers].
The semantic roles Suspect and Authorities are specific to this Frame.

The common approach to learn the classification of predicate arguments re-
lates to the extraction of features from syntactic parse trees of the training
sentences [15]. An alternative representation based on tree kernels selects the
minimal partial tree that includes a predicate with only one of its arguments
[6]. For example, in Figure 5, the semantic/syntactic substructures associated
with the three arguments of the verb to bring, i.e. SArg0, SArg1 and SArgM , are
shown inside the three boxes. Note that such representation is quite intuitive.

Another interesting task is the classification of questions in the context of
Question Answering (QA) systems. Detecting the type of a question, e.g. whether
it asks for a person or for an organization, is critical to locate and extract the
right answer from the available documents. The long tradition of QA in TREC
has produced a large question set used in several researches. These are catego-
rized according to different taxonomies of different grains. We consider the coarse
grained classification scheme described in [16, 17]: Abbreviations, Descriptions
(e.g. definition and manner), Entity (e.g. animal, body and color), Human (e.g.
group and individual), Location (e.g. city and country) and Numeric (e.g. code
and date).

The idea of using tree kernels for Question Classification is to encode ques-
tions by means of their whole syntactic parse tree. This is simpler than tailoring
the subtree around the semantic information provided by PropBank or FrameNet
for the SRL task. Additionally, we can easily experiment with other kind of pars-
ing paradigms, e.g. the dependency parsing. A dependency tree of a sentence is a
syntactic representation that denotes grammatical relations between words. For
example, Figure 4 shows a dependency tree of the question ”What is an offer

of direct stock purchase plan?”.
We note that (1) the father-children node relationship encodes the depen-

dency between the head, e.g. plan, and its modifiers, e.g. direct, stock and pur-
chase. In our approximation, we only consider the dependency structure by re-
moving the link labels, i.e. we do not use either ”of” between offer and plan or

the other labels like ”object” and ”subject”. (2) It is clear that the SST and ST
kernels cannot fully exploit the representational power of a dependency tree since
from subtrees like [plan [direct stock purchase]], they cannot generate
substructures like [plan [stock purchase]] or [plan [direct purchase]].
In contrast, the PT kernel can generate all of these subsequences allowing SVMs
to better generalize on dependency structures although the strong specialization
of the SST kernel may be superior in some tasks. The experiments of Section 5
confirm our observations.

4.1 Related Work

In [2], the SST kernel was experimented with the Voted Perceptron for the parse-
tree re-ranking task. The combination with the original PCFG model improved
the syntactic parsing. In [18], an interesting algorithm that speeds up the average
running time is presented. Such algorithm uses the explicit fragment space to
compute the kernel between small trees. The results show an increase of the
speed similar to the one produced by our methods. In [3], two kernels over
syntactic shallow parser structures were devised for the extraction of linguistic
relations, e.g. person-affiliation. To measure the similarity between two nodes,
the contiguous string kernel and the sparse string kernel were used. In [5] such
kernels were slightly generalized by providing a matching function for the node
pairs. The time complexity for their computation limited the experiments on a
data set of just 200 news items. In [4], a feature description language was used to
extract structural features from the syntactic shallow parse trees associated with
named entities. The experiments on named entity categorization showed that
too many irrelevant tree fragments may cause overfitting. In [6] the SST kernel
was firstly proposed for semantic role classification. The combination between
such kernel and a polynomial kernel of standard features improved the state-
of-the-art. To complete such work, an analysis of different tree kernel spaces as
carried out here was required. In [19], the computational complexity problem is
addressed by considering only selected trees and the RankBoost algorithm.

5 The Experiments

In these experiments, we study tree kernels in terms of (a) average running time,
(b) accuracy on the classification of predicate argument structures of PropBank
(gold trees) and FrameNet (automatic trees) and (c) accuracy of QC on auto-
matic question trees.

The experiments were carried out with the SVM-light-TK software available
at http://ai-nlp.info.uniroma2.it/moschitti/ which encodes ST, SST and PT
kernels in the SVM-light software [21]. We adopted the default regularization pa-
rameter and we tried a few cost-factor values (i.e., {1, 3, 7, 10, 30, 100}) to adjust
the rate between Precision and Recall on the development set. We modeled the
multiclassifiers by training an SVM for each class according to the ONE-vs-ALL
scheme and by selecting the class associated with the maximum score.

For the ST, SST and PT kernels, we found that the best λ values (see Section
3) on the development set were 1, 0.4 and 0.8, respectively, whereas the best µ
was 0.4. We measured the performance by using the F1 measure1 for the single
arguments and the accuracy for the final multiclassifiers.

5.1 Kernel Running Time Experiments

To study the FTK running time,

0

20

40

60

80

100

120

5 10 15 20 25 30 35 40 45 50 55
Number of Tree Nodes

µ
se

co
n

d
s

FTK-SST
QTK-SST
FTK-PT

Fig. 6. Average time in µseconds for the
QTK, FTK and FTK-PT evaluations.

we extracted from the Penn Treebank
2 [10] several samples of 500 trees con-
taining exactly n nodes. Each point
of Figure 6 shows the average com-
putation time2 of the kernel function
applied to the 250,000 pairs of trees
of size n. It clearly appears that the
FTK and FTK-PT (i.e. FTK applied
to the PT kernel) average running time
has linear behavior whereas, as ex-
pected, the algorithm (QTK) which
does not use non-null pair selection
shows a quadratic curve.

5.2 Experiments on ProbBank

The aim of these experiments is to measure the impact of kernels on the semantic
role classification accuracy. We used PropBank (www.cis.upenn.edu/∼ace) along
with the gold standard parses of the Penn Treebank.

The corpus contains about 53,700 sentences and a fixed split between training
and testing used in other researches, e.g. [22]. Sections from 02 to 21 are used for
training, Section 23 for testing and Section 22 as development set for a total of
122,774 and 7,359 arguments in training and testing, respectively. We considered
arguments from Arg0 to Arg5, ArgA and ArgM. This latter refers to all adjuncts
collapsed together, e.g. adverb, manner, negation, location and so on (13 different
types).

Figure 7 illustrates the learning curves associated with the above kernels for
the SVM multiclassifiers. We note that: (a) the SST and linear kernels show the
highest accuracy, (b) the richest kernel in terms of substructures, i.e. the one
based on PTs, shows lower accuracy than the SST and linear kernels but higher
than the ST kernel and (c) the results using all training data are comparable
with those obtained in [22], i.e. 87.1% (role classification) but we should take
into account the different treatment of ArgMs.

Regarding the convergence complexity, Figure 8 shows the learning time of
SVMs using QTK, FTK and FTK-PT for the classification of one large argument
(Arg0), according to different sizes of training data. With 70% of the data, FTK
1 F1 assigns equal importance to Precision P and Recall R, i.e. f1 = 2P×R

P+R
.

2 We run the experiments on a Pentium 4, 2GHz, with 1 Gb ram.

0.75

0.78

0.80

0.83

0.85

0.88

0 10 20 30 40 50 60 70 80 90 100

% Training Data

A
cc

u
ra

cy

ST SST

Linear PT

Fig. 7. Multiclassifier accuracy according
to different training set percentages.

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

% Training Data

H
o

u
rs

FTK
QTK
FTK-PT

Fig. 8. Arg0 classifier learning time accord-
ing to different training percentages and
kernel algorithms.

is about 10 times faster than QTK. With all the data FTK terminated in 6 hours
whereas QTK required more than 1 week. However, the real complexity burden
relates to working in the dual space. To alleviate such problem interesting and
effective approaches have been proposed [23, 24].

5.3 Classification Accuracy with Automatic Trees on FrameNet

As PropBank arguments are defined with respect to syntactic considerations,
we should verify that the syntactic information provided by tree kernels is also
effective to detect other forms of semantic structures. For this purpose, we experi-
mented with our models and FrameNet data (www.icsi.berkeley.edu/∼framenet)
which is mainly produced based on semantic considerations. We extracted all
24,558 sentences from the 40 Frames selected for the Automatic Labeling of Se-
mantic Roles task of Senseval 3 (www.senseval.org). We considered the 18 most
frequent roles, for a total of 37,948 examples (30% of the sentences for testing
and 70% for training/validation). The sentences were processed with the Collins’
parser [11] to generate automatic parse trees.

Table 2 reports the F1 measure of some argument classifiers and the accuracy
of the multiclassifier using all available training data for linear, ST, SST and PT
kernels. We note that: (1) the F1 of the single arguments across the different
kernels follows a behavior similar to the accuracy of the global multiclassifier.
(2) The high F1 measures of tree kernels on automatic trees of FrameNet show
that they are robust with respect to parsing errors.

5.4 Experiments on Question Classification

We used the data set available at http://l2r.cs. uiuc.edu/∼cogcomp/Data/QA/QC/.
This contains 5,500 training and 500 test questions from the TREC 10 QA
competition. As we adopted the question taxonomy known as coarse grained
introduced in Section 4, we can compare with literature results, e.g. [16, 17].

These experiments show that the PT kernel can be superior to the SST kernel
when the source of syntactic information is expressed by dependency rather

Table 2. Evaluation of kernels on 18
FrameNet semantic roles.

Roles Linear ST SST PT

agent 89.8 86.9 87.8 86.2
theme 82.9 76.1 79.2 79.4
manner 70.8 79.9 82.0 81.7
source 86.5 85.6 87.7 86.6

Acc. 82.3 80.0 81.2 79.9

Table 3. Kernel evaluation on Question
Classification according to different parsing
approaches.

Parsers Const. Depend. BOW

Kernels SST PT SST PT Linear

Acc. 88.2 87.2 82.1 90.4 87.3

than constituent trees. For this purpose, we run the Stanford Parser (available
at http://www-nlp.stanford.edu/software/lex-parser.shtml) to generate both
parse types. Moreover, we used an SVM with the linear kernel over the bag-
of-words (BOW) as baseline. Columns 2 and 3 of Table 3 show the accuracy
of the SST and PT kernels over the constituent trees, columns 4 and 5 report
the accuracy on the dependency data and Column 6 presents the BOW kernel
accuracy.

We note that (1) the SST kernel is again superior to the PT kernel when
using constituent trees. If we apply the SST kernel on the dependency trees
the resulting accuracy is rather lower than the one of the PT kernel (82.1% vs.
90.4%). This is quite intuitive as the SST kernel cannot generate the features
needed to represent all the possible n-ary relations derivable from father-children
relations. Overall, the accuracy produced by the dependency trees is higher than
the one attainable with the constituent trees. Nevertheless, when the SST kernel
applied to the dependency structures is combined with BOW, the SVM accuracy
reaches 90% as well [16].

6 Conclusions

In this paper, we have studied the impact of diverse tree kernels for the learning
of syntactic/semantic linguistic structures. We used the subtree (ST) and the
subset tree (SST) kernels defined in previous work, and we designed a novel
general tree kernel, i.e. the partial tree (PT) kernel. Moreover, we improved the
kernel usability by designing fast algorithms which process syntactic structures
in linear average time.

The experiments with Support Vector Machines on the PropBank and FrameNet
predicate argument structures show that richer kernel spaces are more accurate,
e.g. SSTs and PTs produce higher accuracy than STs. However, if such structures
are not relevant for the representation of the target linguistic objects improve-
ment does not occur, e.g. PTs are not better than SSTs to describe constituent
trees. On the contrary, as suggested by the experiments on Question Classifica-
tion, the richer space provided by PTs produces a much higher accuracy than
SSTs when applied to dependency trees. This because the SST kernel seems not
adequate to process such data.

Finally, the running time experiments show that our fast tree kernels can be
efficiently applied to hundreds of thousands of instances.

References

1. Jackendoff, R.: Semantic Structures, Current Studies in Linguistics series. Cam-
bridge, Massachusetts: The MIT Press (1990)

2. Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: Kernels
over discrete structures, and the voted perceptron. In: ACL. (2002)

3. Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction.
JMLR (2003)

4. Cumby, C., Roth, D.: Kernel methods for relational learning. In: ICML. (2003)
5. Culotta, A., Sorensen, J.: Dependency tree kernels for relation extraction. In:

Proceedings ACL, Barcelona, Spain (2004)
6. Moschitti, A.: A study on convolution kernels for shallow semantic parsing. In:

proceedings of ACL, Barcelona, Spain (2004)
7. Vishwanathan, S., Smola, A.: Fast kernels on strings and trees. In: Proceedings of

NIPS. (2002)
8. Kingsbury, P., Palmer, M.: From Treebank to PropBank. In: Proceedings of LREC,

Las Palmas, Spain (2002)
9. Fillmore, C.J.: Frame semantics. In: Linguistics in the Morning Calm. (1982)

10. Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated
corpus of english: The Penn Treebank. CLJ. (1993).

11. Collins, M.: Three generative, lexicalized models for statistical parsing. In: Pro-
ceedings of the ACL, Somerset, New Jersey. (1997).

12. Klein, D., Manning, C.D.: Fast exact inference with a factored model for natural
language parsing. In: NIPS. (2002)

13. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press (2004)

14. Haussler, D.: Convolution kernels on discrete structures. Technical report ucs-crl-
99-10, University of California Santa Cruz (1999)

15. Gildea, D., Jurasfky, D.: Automatic labeling of semantic roles. CLJ. (2002)
16. Zhang, D., Lee, W.S.: Question classification using support vector machines. In:

Proceedings of SIGIR. (2003).
17. Li, X., Roth, D.: Learning question classifiers: The role of semantic information.

JNLE. (2005).
18. Kazama, J., Torisawa, K.: Speeding up training with tree kernels for node relation

labeling. In: Proceedings of EMNLP, Toronto, Canada (2005)
19. Kudo, T., Suzuki, J., Isozaki, H.: Boosting-based parse reranking with subtree

features. In: Proceedings ACL’05, (2005).
20. Carreras, X., Màrquez, L.: Introduction to the CoNLL-2005 shared task: Semantic

role labeling. In: Proceedings of CoNLL-2005. (2005).
21. Joachims, T.: Making large-scale SVM learning practical. In Schölkopf, B., Burges,

C., Smola, A., eds.: Advances in Kernel Methods - Support Vector Learning. (1999)
22. Pradhan, S., Hacioglu, K., Krugler, V., Ward, W., Martin, J.H., Jurafsky, D.:

Support vector learning for semantic argument classification. MLJ. (2005).
23. Kudo, T., Matsumoto, Y.: Fast methods for kernel-based text analysis. In: Pro-

ceedings of ACL. (2003).
24. Suzuki, J., Isozaki, H., Maeda, E.: Convolution kernels with feature selection for

natural language processing tasks. In: Proceedings of ACL, Spain (2004).

